Chapter 16

Trace formulas

The trace formula is not a formula, it is an idea.
—NMartin Gutzwiller

global information. How can we use a local description of a/flo learn

something about the global behavior? We have given a quistcslof this
program in sectsl.5 and 1.6; now we redo the same material in greater depth.
In chapterl5 we have related global averages to the eigenvalues of ajguep
evolution operators. Here we show that the traces of ewrlutiperators can be
evaluated as integrals over Dirac delta functions, andisway the spectra of
evolution operators become related to periodic orbitshdfé is one idea that one
should learn about chaotic dynamics, it happens in thistehagnd it is this: there
is a fundamental locab global duality which says that

D yNAMICs 1S POSED in terms of local equations, but the ergodic averages requir

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analylisgdynamics on
well-tiled manifolds, Selberg traces and zetas; and foegemonlinear
dynamical systems the duality is embodied in the trace ftasthat we

will now derive. These objects are to dynamics what partifionctions are to
statistical mechanics.

16.1 A trace formula for maps

Our extraction of the spectrum df commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simplefjratederive the
trace formula for maps, and then, in sd@.2, for flows. The final formulal6.23
covers both cases.

To compute an expectation value usidd.21) we have to integrate over all
the values of the kernef"(x,y). If £" were a matrix we would be computing a
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CHAPTER 16. TRACE FORMULAS 272

weighted sum of its eigenvalues which is dominated by théitepeigenvalue as
n — oo. As the trace of£" is also dominated by the leading eigenvalug as o,

we might just as well look at the trace .
[exercise 13.2]

tr LN = fde”(x, X) = fdxé(x— (%)) A (16.1)

By definition, the trace is the sum over eigenvalues,
L= e, (16.2)
a=0

We find it convenient to write the eigenvalues as exponehtgather than as
multipliers 2, and we assume that spectrum/is discrete sy, s1, &, - - -, ordered
so that Re § > Re s,,1.

For the time being we choose not to worry about convergenseidi sums,
ignore the question of what function space the eigenfunstibelong to, and
compute the eigenvalue spectrum without constructing aploit eigenfunctions.
We shall revisit these issues in more depth in chapieand discuss how lack of
hyperbolicity leads to continuous spectra in chagter

16.1.1 Hyperbolicity assumption

We have learned in sect4.2how to evaluate the delta-function integrab(l).

According to (4.8 the trace 16.1) picks up a contribution whenever—
f1(x) = 0, i.e., whenevex belongs to a periodic orbit. For reasons which we
will explain in sect.16.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cycgeof periodn, for a mapf can be
evaluated by restricting the integration to an infinitedio@en neighborhoo,,
around the cycle,

trpL™ = f dxs(x — f™(x))
Mp
d
Np 1
_ b T2 (16.3)
det(1- M) pElu—Am

For the time being we set here and (9 the observable®» = 1. Periodic
orbit fundamental matrixM,, is also known as thenonodromy matrixand its
eigenvalues\p1, Apo, ..., Apgd as the Floquet multipliers.

We sort the eigenvalues, 1, App, ..., Apg of the p-cycle [dxd] fundamental
matrix Mp into expanding, marginal and contracting sggsm,c}, as in 6.5).
As the integral {6.3 can be evaluated only iM, has no eigenvalue of
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CHAPTER 16. TRACE FORMULAS 273

unit magnitude, we assume that no eigenvalue is marginalsfvedi show in
sect.16.2that the longitudinal\p 4.1 = 1 eigenvalue for flows can be eliminated
by restricting the consideration to the transverse funadatenatrix Mp), and
factorize the tracel(.3) into a product over the expanding and the contracting
eigenvalues

R 1 1
det(1- my)| = m]:[ 1_1/Ap’e]:[ A (16.4)

whereAp = [[eApe is the product of expanding eigenvalues. Botp. and
1/Ape are smaller than 1 in absolute value, and as they are eitakeorreome in
complex conjugate pairs we are allowed to drop the absohites\brackets$: - - |

in the above products.

Thehyperbolicity assumptiorequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Apel > e any p, any expandingApel > 1
|Apcl < e*Te  anyp, any contractingApcl < 1, (16.5)

wherele, Ac > 0 are strictly positive bounds on the expanding, contrgatiycle
Lyapunov exponents. If adynamical system satisfies therbgfieity assumption
(for example, the well separated 3-disk system clearly Jdbs £! spectrum
will be relatively easy to control. If the expansjoontraction is slower than
exponential, let us say\p;l ~ sz, the system may exhibit “phase transitions,”
and the analysis is much harder - we shall discuss this inteh2p

Elliptic stability, with a pair of purely imaginary exponents,, = € is
excluded by the hyperbolicity assumption. While the cdmiion of a single
repeat of a cycle

1 1
(1-e9)(1-ei?)  2(1- cosh)

(16.6)

does not makel(.9) diverge, ifAm = €27/ is rth root of unity, ¥ |det(1 - ML)|
diverges. For a generérepeats cosg) behave badly and by ergodicity-tos¢6)

is arbitrarily small, 1- cos{6) < e, infinitely often. This goes by the name of
“small divisor problem,” and requires a separate treatment

It follows from (16.4) that for long timest = rT, — oo, only the product of
expanding eigenvalues matte}wstet(l— ML) — |Ap|". We shall use this fact to

motivate the construction of dynamical zeta functions ict.sE/.3 However, for
evaluation of the full spectrum the exact cycle weidté.@ has to be kept.

16.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and eli@dic points have
stability eigenvalue$A ;| # 1 strictly bounded away from unity, the trag® is
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CHAPTER 16. TRACE FORMULAS 274

given by the sum over afieriodic points iof periodn:

n _ n _ eGA|
tr £ _fde (%, x)_KEFZ;fn YR (16.7)

Here Fix f" = {x : f"(x) = x} is the set of all periodic points of periag and

A is the observablel6.5 evaluated oven discrete time steps along the cycle to
which the periodic poink; belongs. The weight follows from the properties of
the Dirac delta function1(4.§) by taking the determinant @fi(x; — f"(x);). If a
trajectory retraces itself times, its fundamental matrix s, whereM,, is the
[dxd] fundamental matrix4.6) evaluated along a single traversal of the prime
cycle p. As we saw in {5.5), the integrated observabi' is additive along the
cycle: If a prime cyclep trajectory retraces itsetftimes,n = rn,, we obtainA,
repeated times,A; = A"(X) = rAp, X € p.

A prime cycle is a single traversal of the orbit, and its label non-repeating
symbol string. There is only one prime cycle for each cyckenputation class.
For example, the four cycle poin®11= 1001 = 1100= 0110 belong to the ]
same prime cycle = 0011 of length 4. As both the stability of a cycle and tt@apte' 10]
weightA, are the same everywhere along the orbit, each prime cycengthn,
contributesn,, terms to the sum, one for each cycle point. Heric@%) can be

rewritten as a sum over all prime cycles and their repeats

Snngr » (16.8)

with the Kronecker deltann r projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward stif the
continuous time flows, where it would yield a series of Diratta spikes. In both
cases a Laplace transform rids us of the time periodicitystramt.

In the sum over all cycle periods,

o 2B A
2'tr L , :
Z rL=tr—=>n Z et (16.9)

the constraindn n,r is replaced by weight'. Such discrete time Laplace transform
of tr £ is usually referred to as a “generating function.” Why th&sform? We
are actually not interested in evaluating the surf.® for any particular fixed
period n; what we are interested in is the long time— oo behavior. The
transform trades in the large tinmebehavior for the smalt behavior. Expressing
the trace as inl(6.2), in terms of the sum of the eigenvalues £fwe obtain the
trace formula for maps

:Olfe: Z Z| dznprerﬁAp - (16.10)
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CHAPTER 16. TRACE FORMULAS 275

This is our second example of the duality between the spactiueigenvalues
and the spectrum of periodic orbits, announced in the inirtdn to this chapter.
(The first example was the topological trace formula.g).)

fast track:
W sect. 16.2, p. 275

Example 16.1 A trace formula for transfer operators: For a piecewise-linear map
(15.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Ap = AS"A’l’l, where the cycle p contains ng symbols 0 and n; symbols 1, the
trace (16.7) reduces to

n 0 n
n 1 1 1
tr £" = ( ) — = ( + ) , (16.11)
mZ:O m/|1- ATAT™| ; |AQIAY  [A1|AK

with eigenvalues

1 1

Sl ———
IAolAK  [AAK

(16.12)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (15.17) for which A = A1 = —Ao. In this case all odd

eigenvalues vanish, and the even eigenvalues are given by €% = 2/ A1, k even. )
[exercise 14.7]

Asymptotically the spectrum (16.12) is dominated by the lesser of the two fixed
point slopes A = Ag (if |Ao| < |A1], otherwise A = A1), and the eigenvalues € fall off

exponentially as 1/ A*, dominated by the single less unstable fixed-point. fexample 21.1]

Fork = 0 this is in agreement with the explicit transfer matrix (15.19) eigenvalues
(15.20). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (15.19), and that it is clear
by inspection that it has only one eigenvalue €® = 1/|Ag|+1/|A1]|? The example at hand
is one of the simplest illustrations of necessity of defining the space that the operator
acts on in order to define the spectrum. The transfer operator (15.19) is the correct
operator on the space of functions piecewise constant on the state space partition
{ Mo, My}; on this space the operator indeed has only the eigenvalue €®. As we shall
see in example 21.1, the full spectrum (16.12) corresponds to the action of the transfer
operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (15.17)
follows from (16.9)

Lo+ o)
zL Z(|Ao—1\ R

tr = s
_ 1 1
1=2L 1- Z(IAo—ll + |A1—1|)

(16.13)

verifying the trace formula (16.10).

16.2 A trace formula for flows

Amazing! | did not understand a single word.
—Fritz Haake
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CHAPTER 16. TRACE FORMULAS 276

(R. Artuso and P. Cvitanovit)

Our extraction of the spectrum dgft commences with the evaluation of the trace
trLl=tre™ = f dxLi(x, X) = f dxs(x - (%) fAN (16.14)

We are not interested in any particular tirhebut into the long-time behavior
ast — oo, so we need to transform the trace from the “time domain” th®
“frequency domain.” A generic flow is a semi-flow defined fordian time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an eimtubperator
yields the resolventl@.31). This is a delicate step, since the evolution operator
becomes the identity in the— O* limit. In order to make sense of the trace we
regularize the Laplace transform by a lower d¢titosmaller than the period of any
periodic orbit, and write

e (5-A)e o (55

(16.15)

f dtesttr £ =tr Z

a=0
whereA is the generator of the semigroup of dynamical evolution,seet14.5
Our task is to evaluate #! from its explicit State space representation.

16.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself dyaat each cycle

period, the eigenvalue of the fundamental matrix corredpmnto the eigenvector

along the flow necessarily equals unity for all periodic t&bi Hence for flows _

the trace integral t£! requires a separate treatment for the longitudinal dtluacti[sectlon >24]
To evaluate the contribution of an isolated prime cyelef period T, restrict the
integration to an infinitesimally thin tub&{, enveloping the cycle (see figutel?),
and consider a local coordinate system with a longitudinakdinatedx; along
the direction of the flow, and—1 transverse coordinates ,

trp L= fM dx dxyo(x, = f£(9)o(x - 1)) - (16.16)

(we set8 = 0 in the expg - A') weight for the time being). Pick a point on the
prime cycle p, and let

d 12
V() = [Z Vi (X)Z} (16.17)
i=1
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CHAPTER 16. TRACE FORMULAS 277

be the magnitude of the tangential velocity at any pairt (.0, --,0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time at(x) = 0 points, and that would get us nowhere.

As 0 < 7 < Tp, the trajectoryx(r) = f7(xp) sweeps out the entire cycle, and
for larger timesx; is a cyclic variable of periodicitylp,

X|(7) = X (t+rTp) r=21,2--- (16.18)

We parametrize both the longitudinal coordinaj¢r) and the velocity(r) =
V(X (7)) by the flight timer, and rewrite the integral along the periodic orbit as

9§dﬁ| 8(x - f'(x) = SBdTV(T) o(x(7) = X(r + 1) (16.19)
p p

By the periodicity condition 16.18 the Diracé function picks up contributions
for t = rTp, so the Laplace transform can be split as

fo dt e_Std(X“(T) - X||(T + t)) = ; g ST I
I = f dteSt6(x)(r) = (T + 1Ty + 1))

Taylor expanding and applying the periodicity conditid®.(L§, we havex(r +
Mo +t) =x(7) +v(Dt+ ...,

Iy = j_‘s dte_St(S(X||(T) - X||(T+ er+t)) = T::') ,

so the remaining integrall6.19 overr is simply the cycle perio@p dr = Tp.
The contribution of the longitudinal integral to the Lapacansform is thus

foo dtest 56 dx; o(x - f'(x))) = sz g ST (16.20)
0 p r=1

This integration is a prototype of what needs to be done fch ezarginal direction,
whenever existence of a conserved quantity (energy in Hammln flows, angular
momentum, translational invariance, etc.) implies existeof a smooth manifold
of equivalent (equivariant) solutions of dynamical eqoiasi

16.2.2 Stability in the transverse directions

Think of ther = 0 point in above integrals along the cygbeas a choice of a
particular Poincaré section. As we have shown in €e8fthe transverse stability
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CHAPTER 16. TRACE FORMULAS 278

eigenvalues do not depend on the choice of a Poincaré sgstioignoring the
dependence om(r) in evaluating the transverse integral it6(19 is justified.
For the transverse integration variables the fundamenédtixnis defined in a
reduced Poincaré surface of sectiBrof fixed x. Linearization of the periodic
flow transverse to the orbit yields

dx,6(x, - f.'° ;, 16.21
fp ol )= det(1 - M) -

where M, is the p-cycle [d-1xd-1] transversefundamental matrix. As in
(16.95 we have to assume hyperbolicity, i.e., that the magniteded transverse
eigenvalues are bounded away from unity.

Substitution {6.20, (16.21) in (16.16 leads to an expression forff as a
sum over all prime cyclep and their repetitions

2 g BA-sT)

fdteSttrLt ZTpZ|det1 i

(16.22)

Thee — 0 limit of the two expressions for the resolverit6(19 and (L6.22), now
yields theclassical trace formula for flows

RO W e
[exercise 16.1]

(If you are worried about the convergence of the resolvemt, §eep the regularization.)

(16.23)

This formula is still another example of the duality betwétes (local) cycles
and (global) eigenvalues. T, takes only integer values, we can replacgé— z
throughout, so the trace formula for mad$(10 is a special case of the trace
formula for flows. The relation between the continuous arsdréite time cases
can be summarized as follows:

el o M (16.24)

We could now proceed to estimate the location of the leadingutarity of
tr (s— A)~* by extrapolating finite cycle length truncations @6(23 by methods
such as Padé approximants. However, it pays to first per@simple resummation
which converts this divergence of a trace intoegoof a spectral determinant. We
shall do this in sectl7.2 but first a brief refresher of how all this relates to the
formula for escape ratel(7) offered in the introduction might help digest the
material.

W fast track:
sect. 17, p. 283
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CHAPTER 16. TRACE FORMULAS 279

16.3 An asymptotic trace formula

,
J In order to illuminate the manipulations of set6.1and relate them to
something we already possess intuition about, we now reglge heuristic sum
of sect.1.5.1from the exact trace formuld §6.10. The Laplace transform46.10

or (16.23 are designed to capture the timeco asymptotic behavior of the trace
sums. By the hyperbolicity assumptioha(9), fort = Tr large the cycle weight
approaches

det(1- M)

= Al (16.25)

whereA p is the product of the expanding eigenvalue$/gf Denote the corresponding
approximation to theth trace (6.7) by

I = Z v (16.26)

and denote the approximate trace formula obtained by reyjdlce cycle weights
|det(1 — ME)| by |ApI" in (16.10 by T'(2). Equivalently, think of this as a replacement
of the evolution operatorl6.23 by a transfer operator (as in examgle.1). For
concreteness consider a dynamical system whose symbaolamdygs is complete
binary, for example the 3-disk system figutes. In this case distinct periodic
points that contribute to thath periodic points sum1.8 are labeled by all
admissible itineraries composed of sequences of letters0, 1}

0o 00 eG'An(Xi)
r@ = ) #Th=) 7 ™
n=1 n=1  xeFixfn I
fh  BA 2 eBho  BAun  PAo o Z2BA
= z{—+ + + + +
{ Aol |A4] } { IAol2  Ao1l 1Al A1l }

Ao -Aoo1 -Ao10 -A100
+ {e3ﬂ ¢ ¢ ¢ } (16.27)

+ + + .
IAol®  |Aocoidl  [Aoid  |A1od

Both the cycle averages and the stabilitieg\; are the same for all pointg € p
in a cyclep. Summing over repeats of all prime cycles we obtain

r@=>y" 1nftf .ty =R MIA. (16.28)
P p

This is precisely our initial heuristic estimate §). Note that we could not perform
r
such sum overin the exact trace formuld.6.10 as|det(1 - M[))| + |det(1 - Mp)| :

the correct way to resum the exact trace formulas is to firgaed the factors

1/I1 - A,jl, as we shall do inX(7.9. [section 17.2]
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CHAPTER 16. TRACE FORMULAS 280

Figure 16.1:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cy«
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

If the weightse®""® are multiplicative along the flow, and the flow is hyperbolic,
for given the magnitude of eacl?'*)/A;| term is bounded by some constant
M". The total number of cycles grows as(®r ase™, h = topological entropy, in
general), and the sum is convergent Z@uficiently small,|zZ < 1/2M. For large
n the nth level sum {6.7) tends to the leading" eigenvalueg™®. Summing this
asymptotic estimate level by level

Z€e0
— z6e%0

2~ i (ze°)" = T (16.29)
n=1

we see that we should be able to deternggndy determining the smallest value
of z= e for which the cycle expansiori§.29 diverges.

If one is interested only in the leading eigenvalue/pit suffices to consider
the approximate tracE(z). We will use this fact in sectl7.3to motivate the
introduction of dynamical zeta function$4.14), and in sectl7.5we shall give
the exact relation between the exact and the approximate toamulas.

Résumé

The description of a chaotic dynamical system in terms olesycan be visualized

as a tessellation of the dynamical system, figui€, with a smooth flow approximated
by its periodic orbit skeletoneach region\i; centered on a periodic poirt of the
topological lengtm, and the size of the region determined by the linearization o
the flow around the periodic point. The integral over suclotogically partitioned
state space vyields tlaassical trace formula

X JBA-sT)

ZS SQ—Z Z|

det 1- Mr

Now that we have a trace formula, we might ask for what is itdjoés it stands, it
is little more than a scary divergent formula which relatesunspeakable infinity
of global eigenvalues to the unthinkable infinity of locastable cycles. However,
it is a good stepping stone on the way to construction of sgledéterminants (to
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which we turn next), and a first hint that when the going is gdiod theory might
turn out to be convergent beyond our wildest dreams (ch&dfer In order to
implement such formulas, we will have to determine “all’mpé cycles. The first
step is topological: enumeration of all admissible cyclegdartaken in chapteirl.
The more onerous enterprize of actually computing the syale first approach
traditionally, as a numerical task in chapier and then more boldly as a part and
parcel of variational foundations of classical and quantiymamics in chaptez?.

Commentary

Remark 16.1 Who's dunne it? Continuous time flow traces weighted by cycle periods
were introduced by Boweri] who treated them as Poincaré section suspensions wdighte
by the “time ceiling” function 8.5). They were used by Parry and Pollicdt}.[

Remark 16.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In tleellRolm theory traces like
(16.19 require compact operators with continuous function kistrighis is not the case
for our Dirac delta evolution operators: neverthelessielfie a large class of dynamical
systems for which our results may be shown to be perfectlgllelp the mathematical
literature expressions like 6.7) are calledlat traces (see the review][and chapteR1l).
Other names for traces appear as well: for instance, in théegkbof 14 mappings,
sharptraces refer to generalizations df§;7) where contributions of periodic points are
weighted by the Lefschetz sigrl, reflecting whether the periodic point sits on a branch
of nth iterate of the map which crosses the diagonal starting fselow or starting from
above [L1]. Such traces are connected to the theory of kneading envisri(see ref./]
and references therein). Traces weightedtfiysign of the derivative of the fixed point
have been used to study the period doubling repeller, lgadihigh precision estimates
of the Feigenbaum constafytrefs. [, 6, 6].

Exercises
16.1.t — 0, regularization of eigenvalue sums'. In 16.2. General weights. (easy) Letf! be a flow andf! the
taking the Laplace transforni§.23 we have ignored operator
thet — 0, divergence, as we do not know how
to regularize the delta function kernel in this limit. Lig(x) = fdy(;(x_ f(y))w(t, y)g(y)
In the quantum (or heat kernel) case this limit gives

rise to the Weyl or Thomas-Fermi mean eigenvalue
spacing.Regularize the divergent sum 6.3 and
assign to such volume term some interesting role in
the theory of classical resonance spectra. E-mail the
solution to the authors.

wherew is a weight function. In this problem we will
try and determine some of the propertremust satisfy.

(@) Compute£sLg(x) to show that
w(s, FH{X))W(t, X) = W(t + S, X) .
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