
Chapter 16

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

D   in terms of local equations, but the ergodic averages require
global information. How can we use a local description of a flow to learn
something about the global behavior? We have given a quick sketch of this

program in sects.1.5 and1.6; now we redo the same material in greater depth.
In chapter15 we have related global averages to the eigenvalues of appropriate
evolution operators. Here we show that the traces of evolution operators can be
evaluated as integrals over Dirac delta functions, and in this way the spectra of
evolution operators become related to periodic orbits. If there is one idea that one
should learn about chaotic dynamics, it happens in this chapter, and it is this: there
is a fundamental local↔ global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis;for dynamics on
well-tiled manifolds, Selberg traces and zetas; and for generic nonlinear
dynamical systems the duality is embodied in the trace formulas that we

will now derive. These objects are to dynamics what partition functions are to
statistical mechanics.

16.1 A trace formula for maps

Our extraction of the spectrum ofL commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simpler, wefirst derive the
trace formula for maps, and then, in sect.16.2, for flows. The final formula (16.23)
covers both cases.

To compute an expectation value using (15.21) we have to integrate over all
the values of the kernelLn(x, y). If Ln were a matrix we would be computing a
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weighted sum of its eigenvalues which is dominated by the leading eigenvalue as
n→ ∞. As the trace ofLn is also dominated by the leading eigenvalue ast →∞,
we might just as well look at the trace

[exercise 13.2]

trLn =

∫

dxLn(x, x) =
∫

dxδ
(

x− f n(x)
)

eβ·A
n(x) . (16.1)

By definition, the trace is the sum over eigenvalues,

trLn =

∞
∑

α=0

esαn . (16.2)

We find it convenient to write the eigenvalues as exponentsesα rather than as
multipliersλα, and we assume that spectrum ofL is discrete,s0, s1, s2, · · ·, ordered
so that Re sα ≥ Re sα+1.

For the time being we choose not to worry about convergence ofsuch sums,
ignore the question of what function space the eigenfunctions belong to, and
compute the eigenvalue spectrum without constructing any explicit eigenfunctions.
We shall revisit these issues in more depth in chapter21, and discuss how lack of
hyperbolicity leads to continuous spectra in chapter23.

16.1.1 Hyperbolicity assumption

We have learned in sect.14.2how to evaluate the delta-function integral (16.1).

According to (14.8) the trace (16.1) picks up a contribution wheneverx −
f n(x) = 0, i.e., wheneverx belongs to a periodic orbit. For reasons which we
will explain in sect.16.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cyclep of period np for a map f can be
evaluated by restricting the integration to an infinitesimal open neighborhoodMp

around the cycle,

tr pL
np =

∫

Mp

dxδ
(

x− f np(x)
)

=
np

∣

∣

∣

∣
det

(

1− Mp

)

∣

∣

∣

∣

= np

d
∏

i=1

1
|1− Λp,i |

. (16.3)

For the time being we set here and in (14.9) the observableeβAp = 1. Periodic
orbit fundamental matrixMp is also known as themonodromy matrix, and its
eigenvaluesΛp,1, Λp,2, . . ., Λp,d as the Floquet multipliers.

We sort the eigenvaluesΛp,1,Λp,2, . . .,Λp,d of the p-cycle [d×d] fundamental
matrix Mp into expanding, marginal and contracting sets{e,m, c}, as in (5.5).

As the integral (16.3) can be evaluated only ifMp has no eigenvalue of
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unit magnitude, we assume that no eigenvalue is marginal (weshall show in
sect.16.2that the longitudinalΛp,d+1 = 1 eigenvalue for flows can be eliminated
by restricting the consideration to the transverse fundamental matrix Mp), and
factorize the trace (16.3) into a product over the expanding and the contracting
eigenvalues

∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

−1
=

1
|Λp|

∏

e

1
1− 1/Λp,e

∏

c

1
1− Λp,c

, (16.4)

whereΛp =
∏

eΛp,e is the product of expanding eigenvalues. BothΛp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets| · · · |
in the above products.

Thehyperbolicity assumptionrequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding|Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting|Λp,c| < 1 , (16.5)

whereλe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assumption
(for example, the well separated 3-disk system clearly does), theLt spectrum
will be relatively easy to control. If the expansion/contraction is slower than
exponential, let us say|Λp,i | ∼ Tp

2, the system may exhibit “phase transitions,”
and the analysis is much harder - we shall discuss this in chapter 23.

Elliptic stability, with a pair of purely imaginary exponentsΛm = e±iθ is
excluded by the hyperbolicity assumption. While the contribution of a single
repeat of a cycle

1
(1− eiθ)(1− e−iθ)

=
1

2(1− cosθ)
(16.6)

does not make (14.9) diverge, ifΛm = ei2πp/r is rth root of unity, 1/
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

diverges. For a genericθ repeats cos(rθ) behave badly and by ergodicity 1−cos(rθ)
is arbitrarily small, 1− cos(rθ) < ǫ, infinitely often. This goes by the name of
“small divisor problem,” and requires a separate treatment.

It follows from (16.4) that for long times,t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

→ |Λp|
r . We shall use this fact to

motivate the construction of dynamical zeta functions in sect. 17.3. However, for
evaluation of the full spectrum the exact cycle weight (16.3) has to be kept.

16.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
stability eigenvalues|Λp,i | , 1 strictly bounded away from unity, the traceLn is
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given by the sum over allperiodic points iof periodn:

trLn =

∫

dxLn(x, x) =
∑

xi∈Fix f n

eβ·Ai

|det (1− Mn(xi))|
. (16.7)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of periodn, and
Ai is the observable (15.5) evaluated overn discrete time steps along the cycle to
which the periodic pointxi belongs. The weight follows from the properties of
the Dirac delta function (14.8) by taking the determinant of∂i(x j − f n(x) j). If a
trajectory retraces itselfr times, its fundamental matrix isMr

p, whereMp is the
[d×d] fundamental matrix (4.6) evaluated along a single traversal of the prime
cycle p. As we saw in (15.5), the integrated observableAn is additive along the
cycle: If a prime cyclep trajectory retraces itselfr times,n = rnp, we obtainAp

repeatedr times,Ai = An(xi) = rAp, xi ∈ p.

A prime cycle is a single traversal of the orbit, and its labelis a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four cycle points0011= 1001= 1100= 0110 belong to the

[chapter 10]
same prime cyclep = 0011 of length 4. As both the stability of a cycle and the
weightAp are the same everywhere along the orbit, each prime cycle of lengthnp

contributesnp terms to the sum, one for each cycle point. Hence (16.7) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞
∑

r=1

erβ·Ap

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

δn,npr , (16.8)

with the Kronecker deltaδn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In both
cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞
∑

n=1

zntrLn = tr
zL

1− zL
=

∑

p

np

∞
∑

r=1

znprerβ·Ap

∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣

, (16.9)

the constraintδn,npr is replaced by weightzn. Such discrete time Laplace transform
of trLn is usually referred to as a “generating function.” Why this transform? We
are actually not interested in evaluating the sum (16.8) for any particular fixed
period n; what we are interested in is the long timen → ∞ behavior. The
transform trades in the large timen behavior for the smallzbehavior. Expressing
the trace as in (16.2), in terms of the sum of the eigenvalues ofL, we obtain the
trace formula for maps:

∞
∑

α=0

zesα

1− zesα
=

∑

p

np

∞
∑

r=1

znpr erβ·Ap

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (16.10)
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This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (13.8).)

fast track:

sect. 16.2, p. 275

Example 16.1 A trace formula for transfer operators: For a piecewise-linear map
(15.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Λp = Λ

n0
0 Λ

n1
1 , where the cycle p contains n0 symbols 0 and n1 symbols 1, the

trace (16.7) reduces to

trLn =

n
∑

m=0

(

n
m

)

1
|1− Λm

0Λ
n−m
1 |
=

∞
∑

k=0













1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1













n

, (16.11)

with eigenvalues

esk =
1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1

. (16.12)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (15.17) for which Λ = Λ1 = −Λ0. In this case all odd
eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.

[exercise 14.7]
Asymptotically the spectrum (16.12) is dominated by the lesser of the two fixed

point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off
exponentially as 1/Λk, dominated by the single less unstable fixed-point.

[example 21.1]
For k = 0 this is in agreement with the explicit transfer matrix (15.19) eigenvalues

(15.20). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (15.19), and that it is clear
by inspection that it has only one eigenvalue es0 = 1/|Λ0|+1/|Λ1|? The example at hand
is one of the simplest illustrations of necessity of defining the space that the operator
acts on in order to define the spectrum. The transfer operator (15.19) is the correct
operator on the space of functions piecewise constant on the state space partition
{M0,M1}; on this space the operator indeed has only the eigenvalue es0. As we shall
see in example 21.1, the full spectrum (16.12) corresponds to the action of the transfer
operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (15.17)
follows from (16.9)

tr
zL

1− zL
=

z
(

1
|Λ0−1| +

1
|Λ1−1|

)

1− z
(

1
|Λ0−1| +

1
|Λ1−1|

) , (16.13)

verifying the trace formula (16.10).

16.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake
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(R. Artuso and P. Cvitanović)

Our extraction of the spectrum ofLt commences with the evaluation of the trace

trLt = tr eAt =

∫

dxLt(x, x) =
∫

dxδ
(

x− f t(x)
)

eβ·A
t(x) . (16.14)

We are not interested in any particular timet, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” intothe
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (14.31). This is a delicate step, since the evolution operator
becomes the identity in thet → 0+ limit. In order to make sense of the trace we
regularize the Laplace transform by a lower cutoff ǫ smaller than the period of any
periodic orbit, and write

∫ ∞

ǫ

dt e−st trLt = tr
e−(s−A)ǫ

s−A
=

∞
∑

α=0

e−(s−sα)ǫ

s− sα
, (16.15)

whereA is the generator of the semigroup of dynamical evolution, see sect.14.5.
Our task is to evaluate trLt from its explicit state space representation.

16.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the fundamental matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows

[section 5.2.1]
the trace integral trLt requires a separate treatment for the longitudinal direction.
To evaluate the contribution of an isolated prime cyclep of periodTp, restrict the
integration to an infinitesimally thin tubeMp enveloping the cycle (see figure1.12),
and consider a local coordinate system with a longitudinal coordinatedx‖ along
the direction of the flow, andd−1 transverse coordinatesx⊥ ,

tr pL
t =

∫

Mp

dx⊥dx‖ δ
(

x⊥ − f t
⊥(x)

)

δ
(

x‖ − f t(x‖)
)

. (16.16)

(we setβ = 0 in the exp(β · At) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =

















d
∑

i=1

vi(x)2

















1/2

(16.17)
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be the magnitude of the tangential velocity at any pointx = (x‖, 0, · · · , 0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time atv(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectoryx‖(τ) = f τ(xp) sweeps out the entire cycle, and
for larger timesx‖ is a cyclic variable of periodicityTp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (16.18)

We parametrize both the longitudinal coordinatex‖(τ) and the velocityv(τ) =
v(x‖(τ)) by the flight timeτ, and rewrite the integral along the periodic orbit as

∮

p
dx‖ δ

(

x‖ − f t(x‖)
)

=

∮

p
dτ v(τ) δ

(

x‖(τ) − x‖(τ + t
)

) . (16.19)

By the periodicity condition (16.18) the Diracδ function picks up contributions
for t = rTp, so the Laplace transform can be split as

∫ ∞

0
dt e−st δ

(

x‖(τ) − x‖(τ + t)
)

=

∞
∑

r=1

e−sTpr Ir

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) .

Taylor expanding and applying the periodicity condition (16.18), we havex‖(τ +
rTp + t) = x‖(τ) + v(τ)t + . . .,

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) =
1

v(τ)
,

so the remaining integral (16.19) over τ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus

∫ ∞

0
dt e−st

∮

p
dx‖ δ

(

x‖ − f t(x‖)
)

= Tp

∞
∑

r=1

e−sTpr . (16.20)

This integration is a prototype of what needs to be done for each marginal direction,
whenever existence of a conserved quantity (energy in Hamiltonian flows, angular
momentum, translational invariance, etc.) implies existence of a smooth manifold
of equivalent (equivariant) solutions of dynamical equations.

16.2.2 Stability in the transverse directions

Think of theτ = 0 point in above integrals along the cyclep as a choice of a
particular Poincaré section. As we have shown in sect.5.3, the transverse stability
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eigenvalues do not depend on the choice of a Poincaré section, so ignoring the
dependence onx‖(τ) in evaluating the transverse integral in (16.16) is justified.
For the transverse integration variables the fundamental matrix is defined in a
reduced Poincaré surface of sectionP of fixed x‖. Linearization of the periodic
flow transverse to the orbit yields

∫

P

dx⊥δ
(

x⊥ − f
rTp
⊥ (x)

)

=
1

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

, (16.21)

where Mp is the p-cycle [d− 1× d− 1] transversefundamental matrix. As in
(16.5) we have to assume hyperbolicity, i.e., that the magnitudesof all transverse
eigenvalues are bounded away from unity.

Substitution (16.20), (16.21) in (16.16) leads to an expression for trLt as a
sum over all prime cyclesp and their repetitions

∫ ∞

ǫ

dt e−st trLt =
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (16.22)

Theǫ → 0 limit of the two expressions for the resolvent, (16.15) and (16.22), now
yields theclassical trace formula for flows

∞
∑

α=0

1
s− sα

=
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣

. (16.23)

[exercise 16.1]

(If you are worried about the convergence of the resolvent sum, keep theε regularization.)

This formula is still another example of the duality betweenthe (local) cycles
and (global) eigenvalues. IfTp takes only integer values, we can replacee−s→ z
throughout, so the trace formula for maps (16.10) is a special case of the trace
formula for flows. The relation between the continuous and discrete time cases
can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (16.24)

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (16.23) by methods
such as Padé approximants. However, it pays to first performa simple resummation
which converts this divergence of a trace into azeroof a spectral determinant. We
shall do this in sect.17.2, but first a brief refresher of how all this relates to the
formula for escape rate (1.7) offered in the introduction might help digest the
material.

fast track:

sect. 17, p. 283
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16.3 An asymptotic trace formula

In order to illuminate the manipulations of sect.16.1and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect.1.5.1from the exact trace formula (16.10). The Laplace transforms (16.10)
or (16.23) are designed to capture the time→ ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (16.5), for t = Tpr large the cycle weight
approaches

∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣
→ |Λp|

r , (16.25)

whereΛp is the product of the expanding eigenvalues ofMp. Denote the corresponding
approximation to thenth trace (16.7) by

Γn =

(n)
∑

i

1
|Λi |
, (16.26)

and denote the approximate trace formula obtained by replacing the cycle weights
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

by |Λp|
r in (16.10) byΓ(z). Equivalently, think of this as a replacement

of the evolution operator (15.23) by a transfer operator (as in example16.1). For
concreteness consider a dynamical system whose symbolic dynamics is complete
binary, for example the 3-disk system figure1.6. In this case distinct periodic
points that contribute to thenth periodic points sum (16.8) are labeled by all
admissible itineraries composed of sequences of letterssi ∈ {0, 1}:

Γ(z) =
∞
∑

n=1

znΓn =

∞
∑

n=1

zn
∑

xi∈Fix f n

eβ·A
n(xi )

|Λi |

= z

{

eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}

+ z2
{

e2β·A0

|Λ0|
2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|
2

}

+z3
{

e3β·A0

|Λ0|
3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}

(16.27)

Both the cycle averagesAi and the stabilitiesΛi are the same for all pointsxi ∈ p
in a cyclep. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1− tp
, tp = znpeβ·Ap/|Λp| . (16.28)

This is precisely our initial heuristic estimate (1.8). Note that we could not perform

such sum overr in the exact trace formula (16.10) as
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

,

∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

r
;

the correct way to resum the exact trace formulas is to first expand the factors
1/|1− Λp,i |, as we shall do in (17.9).

[section 17.2]
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Figure 16.1: Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods.
Indicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

If the weightseβA
n(x) are multiplicative along the flow, and the flow is hyperbolic,

for givenβ the magnitude of each|eβA
n(xi )/Λi | term is bounded by some constant

Mn. The total number of cycles grows as 2n (or asehn, h= topological entropy, in
general), and the sum is convergent forz sufficiently small,|z| < 1/2M. For large
n thenth level sum (16.7) tends to the leadingLn eigenvalueens0. Summing this
asymptotic estimate level by level

Γ(z) ≈
∞
∑

n=1

(zes0)n
=

zes0

1− zes0
(16.29)

we see that we should be able to determines0 by determining the smallest value
of z= e−s0 for which the cycle expansion (16.28) diverges.

If one is interested only in the leading eigenvalue ofL, it suffices to consider
the approximate traceΓ(z). We will use this fact in sect.17.3 to motivate the
introduction of dynamical zeta functions (17.14), and in sect.17.5we shall give
the exact relation between the exact and the approximate trace formulas.

Résum é

The description of a chaotic dynamical system in terms of cycles can be visualized
as a tessellation of the dynamical system, figure16.1, with a smooth flow approximated
by itsperiodic orbit skeleton, each regionMi centered on a periodic pointxi of the
topological lengthn, and the size of the region determined by the linearization of
the flow around the periodic point. The integral over such topologically partitioned
state space yields theclassical trace formula

∞
∑

α=0

1
s− sα

=
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

.

Now that we have a trace formula, we might ask for what is it good? As it stands, it
is little more than a scary divergent formula which relates the unspeakable infinity
of global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants (to
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which we turn next), and a first hint that when the going is good, the theory might
turn out to be convergent beyond our wildest dreams (chapter21). In order to
implement such formulas, we will have to determine “all” prime cycles. The first
step is topological: enumeration of all admissible cycles undertaken in chapter11.
The more onerous enterprize of actually computing the cycles we first approach
traditionally, as a numerical task in chapter12, and then more boldly as a part and
parcel of variational foundations of classical and quantumdynamics in chapter27.

Commentary

Remark 16.1 Who’s dunne it? Continuous time flow traces weighted by cycle periods
were introduced by Bowen [1] who treated them as Poincaré section suspensions weighted
by the “time ceiling” function (3.5). They were used by Parry and Pollicott [2].

Remark 16.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In the Fredholm theory traces like
(16.14) require compact operators with continuous function kernels. This is not the case
for our Dirac delta evolution operators: nevertheless, there is a large class of dynamical
systems for which our results may be shown to be perfectly legal. In the mathematical
literature expressions like (16.7) are calledflat traces (see the review [4] and chapter21).
Other names for traces appear as well: for instance, in the context of 1-d mappings,
sharptraces refer to generalizations of (16.7) where contributions of periodic points are
weighted by the Lefschetz sign±1, reflecting whether the periodic point sits on a branch
of nth iterate of the map which crosses the diagonal starting from below or starting from
above [11]. Such traces are connected to the theory of kneading invariants (see ref. [4]
and references therein). Traces weighted by±1 sign of the derivative of the fixed point
have been used to study the period doubling repeller, leading to high precision estimates
of the Feigenbaum constantδ, refs. [5, 6, 6].

Exercises

16.1. t → 0+ regularization of eigenvalue sums∗∗. In
taking the Laplace transform (16.23) we have ignored
the t → 0+ divergence, as we do not know how
to regularize the delta function kernel in this limit.
In the quantum (or heat kernel) case this limit gives
rise to the Weyl or Thomas-Fermi mean eigenvalue
spacing.Regularize the divergent sum in (16.23) and
assign to such volume term some interesting role in
the theory of classical resonance spectra. E-mail the
solution to the authors.

16.2. General weights. (easy) Letf t be a flow andLt the
operator

Ltg(x) =
∫

dyδ(x− f t(y))w(t, y)g(y)

wherew is a weight function. In this problem we will
try and determine some of the propertiesw must satisfy.

(a) ComputeLsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .
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