Chapter 16

Trace formulas

The trace formula is not a formula, it is an idea.
—Martin Gutzwiller

YNAMICS 18 POSED in terms of local equations, but the ergodic averages requir

D global information. How can we use a local description of a/fto learn
something about the global behavior? We have given a quitkislof this

program in sectsl.5 and 1.6, now we redo the same material in greater depth.

In chapterl5 we have related global averages to the eigenvalues of ajigep
evolution operators. Here we show that the traces of ewsiutperators can be
evaluated as integrals over Dirac delta functions, andiglay the spectra of

evolution operators become related to periodic orbitshdfe is one idea that one
should learn about chaotic dynamics, it happens in thistehagnd it is this: there

is a fundamental locab global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analyfsisdynamics on
well-tiled manifolds, Selberg traces and zetas; and foegemonlinear
dynamical systems the duality is embodied in the trace ftamthat we

will now derive. These objects are to dynamics what partifienctions are to
statistical mechanics.

16.1 A trace formula for maps

Our extraction of the spectrum df commences with the evaluation of the trace.

As the case of discrete time mappings is somewhat simplefirstederive the
trace formula for maps, and then, in séd.2, for flows. The final formulal6.23
covers both cases.

To compute an expectation value usirigp 21 we have to integrate over all
the values of the kernef"(x,y). If £" were a matrix we would be computing a
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weighted sum of its eigenvalues which is dominated by theitepeigenvalue as
n — oo. As the trace of£" is also dominated by the leading eigenvalug as oo,
we might just as well look at the trace

trL" = f dxL"(x, X) = f dxs(x— f"(x)) A9 (16.1)

By definition, the trace is the sum over eigenvalues,

)

trLh = Z esn (16.2)

a=0

We find it convenient to write the eigenvalues as exponehtsather than as
multipliers 2., and we assume that spectrum/is discrete sy, s1, S, - - -, ordered
so that Re §> Re $,41.

For the time being we choose not to worry about convergensaici sums,
ignore the question of what function space the eigenfunstibelong to, and
compute the eigenvalue spectrum without constructing apljoit eigenfunctions.
We shall revisit these issues in more depth in chapteand discuss how lack of
hyperbolicity leads to continuous spectra in chagter

16.1.1 Hyperbolicity assumption

We have learned in sect4.2how to evaluate the delta-function integrab(J).

According to (4.8 the trace {6.1) picks up a contribution whenever—
f'(x) = 0, i.e., whenevex belongs to a periodic orbit. For reasons which we
will explain in sect.16.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cycfeof periodn, for a mapf can be
evaluated by restricting the integration to an infinitedioggen neighborhood,
around the cycle,

trpL™ = f dxs(x — f™(x))
Mo

d

_ Mp _ 1
B 1det(1_ Mp)' ”le 1= Apil (16.3)

For the time being we set here and (9 the observable®» = 1. Periodic
orbit fundamental matrixM; is also known as thenonodromy matrixand its
eigenvalues\p 1, Ap2, ..., Apg as the Floguet multipliers.

We sort the eigenvalue$p 1, A2, . .., Apg of the p-cycle [dxd] fundamental
matrix M, into expanding, marginal and contracting sggsm,c}, as in 6.5).
As the integral {6.3 can be evaluated only iM, has no eigenvalue of
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unit magnitude, we assume that no eigenvalue is marginalsfvedi show in
sect.16.2that the longitudinal 4,1 = 1 eigenvalue for flows can be eliminated
by restricting the consideration to the transverse fundaatenatrix M), and
factorize the tracel(.3 into a product over the expanding and the contracting
eigenvalues

|detl Mp) | |Ap|[_11 1/Apeﬂ1 Apc (16.4)

where Ap = [JeApe is the product of expanding eigenvalues. Both. and
1/Ape are smaller than 1 in absolute value, and as they are eitheoreome in
complex conjugate pairs we are allowed to drop the absohltes\brackets- - - |

in the above products.

Thehyperbolicity assumptiorequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

Apel > eTo any p, any expandingApel > 1
Apcl < eTe  anyp, any contractingApl < 1, (16.5)

wheree, Ac > 0 are strictly positive bounds on the expanding, contrgatiycle
Lyapunov exponents. If a dynamical system satisfies therbygfieity assumption
(for example, the well separated 3-disk system clearly idee £' spectrum
will be relatively easy to control. If the expansjoontraction is slower than
exponential, let us sap\pj| ~ sz, the system may exhibit “phase transitions,”
and the analysis is much harder - we shall discuss this intehap

Elliptic stability, with a pair of purely imaginary exponents,, = € is
excluded by the hyperbolicity assumption. While the cdmttion of a single
repeat of a cycle

1 1
(1-€9(1-e?) ~ 2(1- cost)

(16.6)

does not makel@.9 diverge, ifAm = €2°P/" is rth root of unity, ¥/ det(l - ML)‘
diverges. For a generitrepeats cosg) behave badly and by ergodicity-tos¢6)

is arbitrarily small, 1- cos¢6) < e, infinitely often. This goes by the name of
“small divisor problem,” and requires a separate treatment

It follows from (16.4) that for long timest = rT, — oo, only the product of
expanding eigenvalues matte t(l - ML)| — |Apl". We shall use this fact to
motivate the construction of dynamical zeta functions itt.sk7.3 However, for
evaluation of the full spectrum the exact cycle weidt.Q) has to be kept.

16.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and eliqdic points have
stability eigenvalue$Ap;| # 1 strictly bounded away from unity, the trag® is
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given by the sum over afieriodic points iof periodn:

n _ n — éA‘
trL' = fdx.[: (X, X) = Z m (167)

xeFixfn

Here Fix f" = {x : f'(x) = X} is the set of all periodic points of periag and

A is the observablel6.5 evaluated oven discrete time steps along the cycle to
which the periodic point; belongs. The weight follows from the properties of
the Dirac delta function1(4.8) by taking the determinant @fi(x; — f"(x);). If a
trajectory retraces itself times, its fundamental matrix is1), whereM, is the
[dxd] fundamental matrix4.6) evaluated along a single traversal of the prime
cycle p. As we saw in {5.5), the integrated observabi is additive along the
cycle: If a prime cyclep trajectory retraces itsefftimes,n = rn,, we obtainA,
repeated times,A; = A"(x) = rAp, X € p.

A prime cycle is a single traversal of the orbit, and its label non-repeating
symbol string. There is only one prime cycle for each cycterputation class.
For example, the four cycle poin@011 = 1001 = 1100 = 0110 belong to the
same prime cycle = 0011 of length 4. As both the stability of a cycle and tl
weight A, are the same everywhere along the orbit, each prime cycengtting
contributesn, terms to the sum, one for each cycle point. Herib&4) can be
rewritten as a sum over all prime cycles and their repeats

I%chap{el 10]

oo aBAy

trL" anz|detl Mr)|

Snnpr » (16.8)

with the Kronecker deltd@nn,r projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward stilf the
continuous time flows, where it would yield a series of Diratta spikes. In both
cases a Laplace transform rids us of the time periodicitytramt.

In the sum over all cycle periods,

> 20" gB-Ap
tr LN = .
HZ‘{ L=t Zp: pz|detl Mr| (16.9)

the constraindnn, is replaced by weight'. Such discrete time Laplace transform
of tr £" is usually referred to as a “generating function.” Why théntsform? We
are actually not interested in evaluating the sur.® for any particular fixed
period n; what we are interested in is the long time— oo behavior. The
transform trades in the large tinmebehavior for the smalt behavior. Expressing
the trace as in1(6.2), in terms of the sum of the eigenvalues £fwe obtain the
trace formula for maps

ilzeﬁy Z ildznpre% : (16.10)

= et(1 M')l
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This is our second example of the duality between the spectiueigenvalues
and the spectrum of periodic orbits, announced in the inizbdn to this chapter.
(The first example was the topological trace formula.g).)

fast track:
W sect. 16.2, p. 275

Example 16.1 A trace formula for transfer operators: For a piecewise-linear map
(15.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Ap = AS”AT, where the cycle p contains ng symbols 0 and ny symbols 1, the
trace (16.7) reduces to

S(ny 1 (1 1Y
trL" = ( = [ + ] , 16.11
2 m) 11— ATAT™ 2 [AlAK AN (o1

m=0 k=0
with eigenvalues

1 1

= 4 .
[MolA§  [A1lA

(16.12)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (15.17) for which A = A1 = —Ao. In this case all odd

eigenvalues vanish, and the even eigenvalues are given by €% = 2/A¥1, k even. )
[exercise 14.7]

Asymptotically the spectrum (16.12) is dominated by the lesser of the two fixed
point slopes A = Ag (if |Ag| < |A1], otherwise A = A1), and the eigenvalues € fall off

) B ) ; g
exponentially as 1/ A, dominated by the single less unstable fixed-point. [example 21.1]

Fork = O this is in agreement with the explicit transfer matrix (15.19) eigenvalues
(15.20). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (15.19), and that it is clear
by inspection that it has only one eigenvalue €® = 1/|Ao|+1/|A1|? The example at hand
is one of the simplest illustrations of necessity of defining the space that the operator
acts on in order to define the spectrum. The transfer operator (15.19) is the correct
operator on the space of functions piecewise constant on the state space partition
{ Mo, Ma}; on this space the operator indeed has only the eigenvalue €*. As we shall
see in example 21.1, the full spectrum (16.12) corresponds to the action of the transfer
operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (15.17)
follows from (16.9)

1 1
zL 2(m1 + o)

tr =
1-2L 1 Z(\A;A\ v

(16.13)

verifying the trace formula (16.10).

16.2 A trace formula for flows

Amazing! | did not understand a single word.
—Fritz Haake

trace - 280ct2007.tex

CHAPTER 16. TRACE FORMULAS 276

(R. Artuso and P. Cvitanovit)

Our extraction of the spectrum g commences with the evaluation of the trace
trLt=tre™ = f dxLi(x,X) = f dx(x— Fi(x)) A0 (16.14)

We are not interested in any particular tirhebut into the long-time behavior
ast — oo, so we need to transform the trace from the “time domain” th®
“frequency domain.” A generic flow is a semi-flow defined fordian time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an eu@iubperator
yields the resolventl{4.31). This is a delicate step, since the evolution operator
becomes the identity in the— 0* limit. In order to make sense of the trace we
regularize the Laplace transform by a lower ¢bitssmaller than the period of any
periodic orbit, and write

00 —(s-A)e X o (s=s)e
Cste ot € €
= = 16.1
fé dte>tr L =tr S E , (16.15)

- a=0 S™ %

whereAA is the generator of the semigroup of dynamical evolutios,se=t14.5
Our task is to evaluate #£' from its explicit state space representation.

16.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself dyaat each cycle
period, the eigenvalue of the fundamental matrix corredjpanto the eigenvector
along the flow necessarily equals unity for all periodic twbi Hence for flows
the trace integral t! requires a separate treatment for the longitudinal divacti
To evaluate the contribution of an isolated prime cyglef periodTp, restrict the
integration to an infinitesimally thin tub&{, enveloping the cycle (see figutel?),
and consider a local coordinate system with a longitudisalrdinatedx; along
the direction of the flow, and—1 transverse coordinates ,

[section 5.2.1]

trpLl= fM dx dx; 8(x. = f1(x)8(x — '(x) - (16.16)

(we setg = 0 in the expg - A) weight for the time being). Pick a point on the
prime cycle p, and let

d 1/2
v(x) = (Z vi(x)z] (16.17)
i=1
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be the magnitude of the tangential velocity at any pairt (x,0,---,0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time ai(x) = 0 points, and that would get us nowhere.

As 0 < 7 < Tp, the trajectoryx(r) = f7(x,) sweeps out the entire cycle, and
for larger timesy; is a cyclic variable of periodicityl,

XH(T) = XH(T + er) r=212--- (16.18)

We parametrize both the longitudinal coordinaig¢r) and the velocityv(r) =
V(¥ (7)) by the flight timer, and rewrite the integral along the periodic orbit as

b ol - 1) = ) ervmax (@ - x(r +0). (16.19)
p p

By the periodicity condition 16.19 the Diracé function picks up contributions
fort =Ty, so the Laplace transform can be split as

md st _ _ N ~STor |,
[ ate et - xcr+0) D
Ir = fsdte’5‘5(>q|(r) —X(r+1Tp +t)).

Taylor expanding and applying the periodicity conditidi.(1§, we havex(r +
Mp+1t) =X () + (D)t + ..,

I = j: dte’s‘é(x“(r) - xy(r + er+t)) = Tl‘r)

so the remaining integrall$.19 overr is simply the cycle perioqﬁp dr = Tp.
The contribution of the longitudinal integral to the Lapacansform is thus

f " dtest 56 dxg o(x - 109)) = Tp ). ™" (16.20)
0 p r=1

This integration is a prototype of what needs to be done fch ezarginal direction,
whenever existence of a conserved quantity (energy in Hamién flows, angular
momentum, translational invariance, etc.) implies exiséeof a smooth manifold
of equivalent (equivariant) solutions of dynamical eqoasi

16.2.2 Stability in the transverse directions

Think of ther = 0 point in above integrals along the cygbeas a choice of a
particular Poincaré section. As we have shown in e8fthe transverse stability
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eigenvalues do not depend on the choice of a Poincaré sestoignoring the
dependence ow(r) in evaluating the transverse integral t6(16 is justified.
For the transverse integration variables the fundamenfixnis defined in a
reduced Poincaré surface of sectiBrof fixed x. Linearization of the periodic
flow transverse to the orbit yields

dx.s(xe = FTP(0) = —= | 16.21
fq» xd(x 09) |det(1 - mp) (162

where M, is the p-cycle [d-1xd- 1] transversefundamental matrix. As in
(16.5 we have to assume hyperbolicity, i.e., that the magnitaded transverse
eigenvalues are bounded away from unity.

Substitution {6.20, (16.21) in (16.16 leads to an expression for £ as a
sum over all prime cyclep and their repetitions

)

fdteSttrLt ZTledetl M')|.

Thee — 0 limit of the two expressions for the resolverit6(15 and (L6.22), now
yields theclassical trace formula for flows

(16.22)

X dBA-sTy)

os Su Z Z|det1 Mp)|

(16.23)

Mz

Q
i

[exercise 16.1]
(If you are worried about the convergence of the resolvemt, &eep the regularization.)

This formula is still another example of the duality betwéles (local) cycles
and (global) eigenvalues. T, takes only integer values, we can replacé— z
throughout, so the trace formula for mag$ (10 is a special case of the trace
formula for flows. The relation between the continuous arstréte time cases
can be summarized as follows:

Tp & np

e S

e o oM (16.24)

© Z

We could now proceed to estimate the location of the leadimgutarity of
tr (s— A)~* by extrapolating finite cycle length truncations ®6(23 by methods
such as Padé approximants. However, it pays to first perfsimple resummation
which converts this divergence of a trace intvesoof a spectral determinant. We
shall do this in sectl7.2, but first a brief refresher of how all this relates to the
formula for escape ratel(7) offered in the introduction might help digest the
material.

fast track:
@ sect. 17, p. 283
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16.3 An asymptotic trace formula

§
J In order to illuminate the manipulations of set6.1and relate them to
something we already possess intuition about, we now rezlére heuristic sum
of sect.1.5.1from the exact trace formuld 6.10. The Laplace transform4§.10

or (16.23 are designed to capture the timeco asymptotic behavior of the trace
sums. By the hyperbolicity assumptioh6(5), for t = T,r large the cycle weight
approaches

|det(1 - M[))I S IA (16.25)

whereA is the product of the expanding eigenvalued/pf Denote the corresponding
approximation to thath trace (6.7) by

r=>y = (16.26)

and denote the approximate trace formula obtained by rielalce cycle weights
|det(1 - ML)' by |Apl"in (16.10 byI'(2). Equivalently, think of this as a replacement
of the evolution operatorl6.23 by a transfer operator (as in example.1). For
concreteness consider a dynamical system whose symbaoi@dys is complete
binary, for example the 3-disk system figukes. In this case distinct periodic
points that contribute to thath periodic points sum16.8) are labeled by all
admissible itineraries composed of sequences of lesters0, 1}:

&> & &BA(%)
n=1 n=1  xeFixfn !
fho BA eBho  PAun BAo  gBA
Z{W A } ’ { AP " Thodl  TAwdl T TAIR }
{e3ﬁ‘A0 BAor  gBAoo gBAlo }

—_—+ + + +... 16.27
Aol |Acodl  |Aotd  A10dl ( )

Both the cycle averages and the stabilitieg\; are the same for all points € p
in a cyclep. Summing over repeats of all prime cycles we obtain

Nplp

'@ = .
1t

tp = 20 f|Ap|. (16.28)

This is precisely our initial heuristic estimate ). Note that we could not perform
such sum over in the exact trace formuld 6.10 as’det(l - M[))' # |det(1 - Mp)|r;
the correct way to resum the exact trace formulas is to firsaed the factors
1/|1 - Apjl, as we shall do in(7.9).
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Figure 16.1:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

If the weightse?A"® are multiplicative along the flow, and the flow is hyperbolic,
for giveng the magnitude of eacje?”"®)/A;| term is bounded by some constant
M". The total number of cycles grows as(@r ase™, h= topological entropy, in
general), and the sum is convergent Zauficiently small,|Z4 < 1/2M. For large
n thenth level sum 16.7) tends to the leading" eigenvalueg™®. Summing this
asymptotic estimate level by level

r@~) @)= lfe; (16.29)
n=1

we see that we should be able to determgnéy determining the smallest value
of z= e % for which the cycle expansiori6.29 diverges.

If one is interested only in the leading eigenvalue/pft suffices to consider
the approximate tracE(z). We will use this fact in sectl7.3to motivate the
introduction of dynamical zeta function&q.14, and in sectl7.5we shall give
the exact relation between the exact and the approximate foamulas.

Résumé

The description of a chaotic dynamical system in terms olesycan be visualized

as atessellation of the dynamical system, fidifid, with a smooth flow approximated
by its periodic orbit skeletoneach regionV; centered on a periodic poirtof the
topological lengt, and the size of the region determined by the linearizatfon o
the flow around the periodic point. The integral over suclotogically partitioned
state space yields th#assical trace formula

0 er(ﬂAp—sTp)

- T4 det(1- mp)|

Now that we have a trace formula, we might ask for what is ittfoés it stands, it
is little more than a scary divergent formula which relatesunspeakable infinity
of global eigenvalues to the unthinkable infinity of locastable cycles. However,
it is a good stepping stone on the way to construction of spledeterminants (to
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which we turn next), and a first hint that when the going is galoe theory might
turn out to be convergent beyond our wildest dreams (ch&fer In order to
implement such formulas, we will have to determine “all’'me cycles. The first
step is topological: enumeration of all admissible cycledartaken in chapteirl.
The more onerous enterprize of actually computing the sywle first approach
traditionally, as a numerical task in chapie and then more boldly as a part and
parcel of variational foundations of classical and quantiymamics in chapte27.

Commentary

Remark 16.1 Who's dunne it? Continuous time flow traces weighted by cycle periods
were introduced by Boweri] who treated them as Poincaré section suspensions weighte
by the “time ceiling” function 8.5). They were used by Parry and Pollicat}.[

Remark 16.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In tieelfolm theory traces like
(16.19 require compact operators with continuous function kistnighis is not the case
for our Dirac delta evolution operators: neverthelessieth® a large class of dynamical
systems for which our results may be shown to be perfectlgllen the mathematical
literature expressions like 6.7 are calledlat traces (see the review][and chapte21).
Other names for traces appear as well: for instance, in théexbof 1d mappings,
sharptraces refer to generalizations df§(7) where contributions of periodic points are
weighted by the Lefschetz sigel, reflecting whether the periodic point sits on a branch
of nth iterate of the map which crosses the diagonal starting fselow or starting from
above [L1]. Such traces are connected to the theory of kneading aviarisee ref.q]
and references therein). Traces weightedtiysign of the derivative of the fixed point
have been used to study the period doubling repeller, lgadihigh precision estimates
of the Feigenbaum constahtrefs. |5, 6, 6].

Exercises
16.1. t — 0, regularization of eigenvalue sums. In  16.2. General weights. (easy) Letf! be a flow and/! the
taking the Laplace transforni§.23 we have ignored operator
thet — 0, divergence, as we do not know how
to regularize the delta function kernel in this limit. Lig(x) = fdyﬁ(x_ LYW, Y)g(y)
In the quantum (or heat kernel) case this limit gives

rise to the Weyl or Thomas-Fermi mean eigenvalue
spacing.Regularize the divergent sum 623 and
assign to such volume term some interesting role in
the theory of classical resonance spectra. E-mail the
solution to the authors.

wherew is a weight function. In this problem we will
try and determine some of the propertiemust satisfy.

(a) Compute£sL'g(X) to show that
w(s, FI())w(t, X) = w(t + s, ).
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