
Chapter 22

Thermodynamic formalism

Being Hungarian is not sufficient. You also must be
talented.

— Zsa Zsa Gabor

(G. Vattay)

I    we characterized chaotic systems via global quantities
such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods ofindividual periodic

orbits. In statistical mechanics a similar duality exists.Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemical
potential) which are averages over fine details of the systemcalled microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made theanalogy between
these two subjects explicit. Later this “Thermodynamic Formalism” of dynamical
systems became widely used making it possible to calculate various fractal dimensions.
We sketch the main ideas of this theory and show how periodic orbit theory helps
to carry out calculations.

22.1 Ŕenyi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting pointsMs1s2...sn of trajectories whose symbol sequence starts
with a given set ofn symbolss1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V(s1s2...sn), the
areaA(s1s2...sn) or the lengthl(s1s2...sn) of this set. Or in general we can have
some measureµ(Ms1s2...sn) = µ(s1s2...sn) of this set. As we have seen in (20.10)
the most important is the natural measure, which is the probability that an ergodic
trajectory visits the setµ(s1s2...sn) = P(s1s2...sn). The natural measure is additive.
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CHAPTER 22. THERMODYNAMIC FORMALISM 375

Summed up for all possible symbol sequences of lengthn it gives the measure of
the whole state space:

∑

s1s2...sn

µ(s1s2...sn) = 1 (22.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence

∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce the
exponents

λ(s1s2...sn) = −
1
n

logµ(s1s2...sn). (22.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol
sequences of lengthn with exponents betweenλ andλ + dλ be given byNn(λ)dλ.
For largen the number of such sequences increases exponentially. The rate of this
exponential growth can be characterized byg(λ) such that

Nn(λ) ∼ exp(ng(λ)) .

The knowledge of the distributionNn(λ) or its essential partg(λ) fully characterizes
the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are calledpartition sums

Zn(β) =
∑

s1s2...sn

µβ(s1s2...sn), (22.3)

as they are obviously motivated by Gibbs type partition sumsof statistical mechanics.
The parameterβ plays the role of inverse temperature 1/kBT andE(s1s2...sn) =
− logµ(s1s2...sn) is the energy associated with the microstate labeled bys1s2...sn

We are tempted also to introduce something analogous with the Free energy. In
dynamical systems this is called the Rényi entropy [4] defined by the growth rate
of the partition sum

Kβ = lim
n→∞

1
n

1
1− β

log

















∑

s1s2...sn

µβ(s1s2...sn)

















. (22.4)
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CHAPTER 22. THERMODYNAMIC FORMALISM 376

In the special caseβ→ 1 we get Kolmogorov entropy

K1 = lim
n→∞

1
n

∑

s1s2...sn

−µ(s1s2...sn) logµ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

log N(n),

whereN(n) is the number of existing lengthn sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =
∫

dλNn(λ) exp(−nλβ),

where we used the definition (22.2). For largen we can replaceNn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλexp(ng(λ)) exp(−nλβ).

For largen this integral is dominated by contributions from thoseλ∗ which maximize
the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (22.5)

From this equation we can determineλ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (22.4) we can now connect the Rényi entropies andg(λ)

(β − 1)Kβ = λ
∗(β)β − g(λ∗(β)). (22.6)

Equations (22.5) and (22.6) define the Legendre transform ofg(λ). This equation
is analogous with the thermodynamic equation connecting the entropy and the
free energy. As we know from thermodynamics we can invert theLegendre
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CHAPTER 22. THERMODYNAMIC FORMALISM 377

transform. In our case we can expressg(λ) from the Rényi entropies via the
Legendre transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (22.7)

where nowβ∗(λ) can be determined from

d
dβ∗

[(β∗ − 1)Kβ∗ ] = λ. (22.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (22.7) and (22.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (20.10)

µ(s1, ..., sn) ≈
enγ

|Λs1s2...sn |
. (22.9)

The partition sum (22.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|
β
, (22.10)

where the summation goes for periodic orbits of lengthn. We can define the
characteristic function

Ω(z, β) = exp















−
∑

n

zn

n
Zn(β)















. (22.11)

According to (22.4) for largen the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (22.12)

Substituting this into (22.11) we can see that the leading zero of the characteristic
function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (22.10) into (22.11)
and introducing prime and repeated periodic orbits as usualwe get

Ω(z, β) = exp

















−
∑

p,r

znpreβγnpr

r|Λr
p|
β

















.
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Figure 22.1: 0
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We can see that the characteristic function is the same as thezeta function we
introduced for Lyapunov exponents (G.14) except we havezeβγ instead ofz. Then
we can conclude that the Rényi entropies can be expressed with the pressure
function directly as

P(β) = (β − 1)Kβ + βγ, (22.13)

since the leading zero of the zeta function is the pressure. The Rényi entropiesKβ,
hence the distribution of the exponentsg(λ) as well, can be calculated via finding
the leading eigenvalue of the operator (G.4).

From (22.13) we can get all the important quantities of the thermodynamic
formalism. Forβ = 0 we get the topological entropy

P(0) = −K0 = −htop. (22.14)

Forβ = 1 we get the escape rate

P(1) = γ. (22.15)

Taking the derivative of (22.13) in β = 1 we get Pesin’s formula [1] connecting
Kolmogorov entropy and the Lyapunov exponent

P′(1) = λ = K1 + γ. (22.16)

[exercise 22.1]

It is important to note that, as always, these formulas are strictly valid for nice
hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On figure22.2we show a typical pressure andg(λ) curve computed for the two
scale tent map of Exercise22.4. We have to mention, that all typical hyperbolic
dynamical system produces a similar parabola like curve. Although this is somewhat
boring we can interpret it like a sign of a high level of universality: The exponents
λ have a sharp distribution around the most probable value. The most probable
value isλ = P′(0) andg(λ) = htop is the topological entropy. The average value
in closed systems is whereg(λ) touches the diagonal:λ = g(λ) and 1= g′(λ).

Next, we are looking at the distribution of trajectories in real space.
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CHAPTER 22. THERMODYNAMIC FORMALISM 379

Figure 22.2: g(λ) and P(β) for the map of
exercise22.4 at a = 3 andb = 3/2. See solutionS
for details.
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22.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure. In the
3-disk case the starting points of trajectories not leavingthe system after the first
bounce form two strips. Then these strips are subdivided into an infinite hierarchy
of substrings as we follow trajectories which do not leave the system after more
and more bounces. The finer strips are similar to strips on a larger scale. Objects
with such self similar properties are calledfractals.

We can characterize fractals via their local scaling properties. The first step is
to draw a uniform grid on the surface of section. We can look atvarious measures
in the square boxes of the grid. The most interesting measureis again the natural
measure located in the box. By decreasing the size of the gridǫ the measure in
a given box will decrease. If the distribution of the measureis smooth then we
expect that the measure of theith box is proportional with the dimension of the
section

µi ∼ ǫ
d.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

µi ∼ ǫ
αi ,

whereαi is the local “dimension” or Hölder exponent of the the object. Asα is not
necessarily an integer here we are dealing with objects withfractional dimensions.
We can study the distribution of the measure on the surface ofsection by looking
at the distribution of these local exponents. We can define

αi =
logµi

logǫ
,

the local Hölder exponent and then we can count how many of them are between
α andα + dα. This is Nǫ(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nǫ(α) ∼ ǫ
−d ,
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CHAPTER 22. THERMODYNAMIC FORMALISM 380

while for hairy objects we expect anα dependent scaling exponent

Nǫ(α) ∼ ǫ
− f (α).

f (α) can be interpreted [6] as the dimension of the points on the surface of section
with scaling exponentα. We can calculatef (α) with the help of partition sums as
we did forg(λ) in the previous section. First, we define

Zǫ(q) =
∑

i

µ
q
i . (22.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by theτ(q) exponent

Zǫ(q) ∼ ǫ−τ(q).

The partition sum can be written in terms of the distributionfunction ofα-s

Zǫ(q) =
∫

dαNǫ(α)ǫ
qα.

Using the asymptotic form of the distribution we get

Zǫ(q) ∼
∫

dαǫqα− f (α) .

As ǫ goes to zero the integral is dominated by the term maximizingthe exponent.
Thisα∗ can be determined from the equation

d
dα∗

(qα∗ − f (α∗)) = 0,

leading to

q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f (α∗).

In a uniform fractal characterized by a single dimension both α and f (α)
collapse toα = f (α) = D. The scaling exponent then has the formτ(q) = (q−1)D.
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CHAPTER 22. THERMODYNAMIC FORMALISM 381

In case of non uniform fractals we can introduce generalizeddimensions [8] Dq

via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. Forq = 0 the partition sum (22.17)
counts the number of non empty boxesN̄ǫ . Consequently

D0 = − lim
ǫ→0

log N̄ǫ
logǫ

,

is called the box counting dimension. Forq = 1 the dimension can be determined
as the limit of the formulas forq→ 1 leading to

D1 = lim
ǫ→0

∑

i

µi logµi/ log ǫ.

This is the scaling exponent of the Shannon information entropy [10] of the distribution,
hence its name isinformation dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (22.17) into the more convenient form

∑

i

µ
q
i

ǫτ(q)
∼ 1. (22.18)

If we cover theith branch of the fractal with a grid of sizeli instead ofǫ we can
use the relation [5]

∑

i

µ
q
i

liτ(q)
∼ 1, (22.19)

the non-uniform grid generalization of22.18. Next we show how can we use the
periodic orbit formalism to calculate fractal dimensions.We have already seen
that the width of the strips of the repeller can be approximated with the stabilities
of the periodic orbits placed within them

li ∼
1
|Λi|
.

Then using this relation and the periodic orbit expression of the natural measure
we can write (22.19) into the form

∑

i

eqγn

|Λi|
q−τ(q)

∼ 1, (22.20)
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where the summation goes for periodic orbits of lengthn. The sum for stabilities
can be expressed with the pressure function again

∑

i

1

|Λi|
q−τ(q)

∼ e−nP(q−τ(q)),

and (22.20) can be written as

eqγne−nP(q−τ(q)) ∼ 1,

for largen. Finally we get an implicit formula for the dimensions

P(q − (q − 1)Dq) = qγ. (22.21)

Solving this equation directly gives us the partial dimensions of the multifractal
repeller along the stable direction. We can see again that the pressure function
alone contains all the relevant information. Settingq = 0 in (22.21) we can prove
that the zero of the pressure function is the box-counting dimension of the repeller

P(D0) = 0.

Taking the derivative of (22.21) in q = 1 we get

P′(1)(1− D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1− γ/λ. (22.22)

If the system is bound (γ = 0) the information dimension and all other dimensions
areDq = 1. Also sinceD10 is positive (22.22) proves that the Lyapunov exponent
must be larger than the escape rateλ > γ in general.

[exercise 22.4]

[exercise 22.5]

[exercise 22.6]

Résum é

In this chapter we have shown that thermodynamic quantitiesand various fractal
dimensions can be expressed in terms of the pressure function. The pressure
function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov caseβ is just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter is that the distribution of
locally fluctuating exponents should not be computed via making statistics. We
can use cyclist formulas for determining the pressure. Thenthe pressure can be
found using short cycles+ curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories coded in g(λ) andP(β) can be
calculated from short cycles. To use this intimate relationbetween long and short
trajectories effectively is still a research level problem.
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Commentary

Remark 22.1 Mild phase transition. In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentioned in20.1in non-hyperbolic systems
the periodic orbit expression of the measure can be

µ0 = eγn/|Λ0|
δ ,

whereδ can differ from 1. Usually it is 1/2. For sufficientlynegative β the corresponding
term 1/|Λ0|

β can dominate (22.10) while in (22.3) eγn/|Λ0|
δβ plays no dominant role. In

this case the pressure as a function ofβ can have a kink at the critical pointβ = βc where
βc log |Λ0| = (βc − 1)Kβc + βcγ. Forβ < βc the pressure and the Rényi entropies differ

P(β) , (β − 1)Kβ + βγ .

This phenomena is called phase transition. This is however not a very deep problem. We
can fix the relation between pressure and the entropies by replacing 1/|Λ0| with 1/|Λ0|

δ in
(22.10).

Remark 22.2 Hard phase transition. The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic orbits with |Λ0| → 1 asn →
∞. Then forβ > 1 the contribution of these orbits dominate both (22.10) and (22.3).
Consequently the partition sum scales asZn(β)→ 1 and both the pressure and the entropies
are zero. In this case quantities connected withβ ≤ 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
D0 andD1. This phase transition cannot be fixed. It is probably fair tosay that quantities
which depend on this phase transition are only of mathematical interest and not very
useful for characterization of realistic dynamical systems.

Exercises

22.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the fundamental matrixJ

µ(k)
= lim

t→∞

1
t

log |Λt
k(x0)|, (22.23)

as a generalization of (15.32).

Show that ind dimensions Pesin’s formula is

K1 =

d
∑

k=1

µ(k) − γ, (22.24)

where the summation goes for the positiveµ(k)-s only.
Hint: Use thed-dimensional generalization of (22.9)

µp = enγ/|
∏

k

Λp,k |,

where the product goes for the expanding eigenvalues of
the fundamental matrix ofp-cycle. (G. Vattay)

22.2. Stadium billiard Kolmogorov entropy.
(Continuation of exercise8.4.) Take a = 1.6 and
d = 1 in the stadium billiard figure8.1, and estimate
the Lyapunov exponent by averaging over a very long
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trajectory. Biham and Kvale [14] estimate the discrete
time Lyapunov toλ ≈ 1.0 ± .1, the continuous time
Lyapunov toλ ≈ 0.43 ± .02, the topological entropy
(for their symbolic dynamics)h ≈ 1.15± .03.

22.3. Entropy of rugged-edge billiards. Take a semi-circle
of diameterε and replace the sides of a unit square by
⌊1/ε⌋ semi-circle arcs.

(a) Is the billiard ergodic asε→ 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → −
2
π

ln ε + const,

asε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, sayL, the entropy
for the flow decays as

K1 →
2 lnL
πL
.

22.4. Two scale map Compute all those quantities -
dimensions, escape rate, entropies, etc. - for the repeller
of the one dimensional map

f (x) =

{

1+ ax if x < 0,
1− bx if x > 0. (22.25)

wherea and b are larger than 2. Compute the fractal
dimension, plot the pressure and compute thef (α)
spectrum of singularities.

22.5. Four scale map Compute the Rényi entropies andg(λ)
for the four scale map

f (x) =



























a1x if
(1− b)((x − b/a1)/(b − b/a1)) + b if
a2(x − b) if
(1− b)((x − b − b/a2)/(1− b − b/a2)) + b if

Hint: Calculate the pressure function and use (22.13).

22.6. Transfer matrix Take the unimodal mapf (x) =
sin(πx) of the interval I = [0, 1]. Calculate the
four preimages of the intervalsI0 = [0, 1/2] and
I1 = [1/2, 1]. Extrapolatef (x) with piecewise linear
functions on these intervals. Finda1, a2 and b of
the previous exercise. Calculate the pressure function
of this linear extrapolation. Work out higher level
approximations by linearly extrapolating the map on the
2n-th preimages ofI.
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