Chapter 22

Thermodynamic formalism

Being Hungarian is not dhicient. You also must be
talented.

— Zsa Zsa Gabor

(G. Vattay)

N THE PRECEDING CHAPTERS We characterized chaotic systems via global quantities
I such as averages. It turned out that these are closely defateery fine
details of the dynamics like stabilities and time periodsndfvidual periodic
orbits. In statistical mechanics a similar duality exis#acroscopic systems are
characterized with thermodynamic quantities (presseraperature and chemical
potential) which are averages over fine details of the systalled microstates.
One of the greatest achievements of the theory of dynamystéis was when
in the sixties and seventies Bowen, Ruelle and Sinai madanhkgy between
these two subjects explicit. Later this “Thermodynamicrialism” of dynamical

systems became widely used making it possible to calcuéateus fractal dimensions.

We sketch the main ideas of this theory and show how periathit theory helps
to carry out calculations.

22.1 Renyi entropies

As we have already seen trajectories in a dynamical systenbhea@haracterized
by their symbolic sequences from a generating Markov pamtitWe can locate
the set of starting pointdss, s, Of trajectories whose symbol sequence starts
with a given set oh symbolss; s,...s,. We can associate manyfigirent quantities

to these sets. There are geometric measures such as theews(sss;...s,), the
areaA(s1%...sy) or the lengthl(s;s,...sy) of this set. Or in general we can have
some measurg(Mss,.s,) = u(S1S...Sy) of this set. As we have seen iBQ.10

the most important is the natural measure, which is the fibtyathat an ergodic
trajectory visits the sgt(s1%...1) = P(s1$...S). The natural measure is additive.
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Summed up for all possible symbol sequences of lengtlgives the measure of
the whole state space:

D M) =1 (22.1)
$19..-

expresses probability conservation. Also, summing uptferlast symbol we get
the measure of a one step shorter sequence

D i(s19..-80) = p($182...50-2).
S

As we increase the lengt)(of the sequence the measure associated with it
decreases typically with an exponential rate. It is therfulde introduce the
exponents

A$1%..5) =~ 10g(515..%). (22.2)

To get full information on the distribution of the natural aseire in the symbolic
space we can study the distribution of exponents. Let thebeuarof symbol
sequences of lengtiwith exponents betweehand + d1 be given byN,(2)dA.
For largen the number of such sequences increases exponentiallyaféhefithis
exponential growth can be characterizedgfy) such that

Nn(4) ~ exp(g(a)).

The knowledge of the distributioN(2) or its essential pag(1) fully characterizes
the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distitm. However it
is very time consuming to calculate the distribution diletly making statistics
for millions of symbolic sequences. Instead, we introduggileary quantities
which are easier to calculate and to handle. These are gaiéition sums

Z@) = D W(Ensn.s) (22.3)

$192..-5

as they are obviously motivated by Gibbs type partition safisgatistical mechanics.
The parameteg plays the role of inverse temperaturgkdT and E(s;S,...Sn) =
—logu(sls,...sn) is the energy associated with the microstate labeles; By..s,

We are tempted also to introduce something analogous watlrtee energy. In
dynamical systems this is called the Rényi entrofjydefined by the growth rate
of the partition sum

11
= lim = —— B
Kg = nlm ni-p Iog[SlS;Snu (3152...51)]. (22.4)
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In the special casg — 1 we get Kolmogorov entropy

1
Ky = lim = 515223. (5155 10g 1(91%,... ).

while for g = 0 we recover the topological entropy

.1
htop = Ko = r!mo - logN(n),

whereN(n) is the number of existing lengtinsequences. To connect the partition
sums with the distribution of the exponents, we can writertfas averages over
the exponents

Z:(6) = f AN, (1) exp(-na).

where we used the definitior2Z.2). For largen we can replacéNy(1) with its
asymptotic form

Z,(6) ~ f dlexpg() exp(-nig).

For largenthis integral is dominated by contributions from thasevhich maximize
the exponent

g(4) - 8.
The exponent is maximal when the derivative of the exponanishes
g() =5 (22.5)
From this equation we can determingg). Finally the partition sum is
Zn(B) ~ exp(lg(1"(8)) — 4" (B)B)).
Using the definitionZ2.4) we can now connect the Rényi entropies g
(B—1Kg = 1'(B)B - g(1"(B)). (22.6)

Equations 22.5 and @2.6) define the Legendre transform gft). This equation
is analogous with the thermodynamic equation connectiegetitropy and the
free energy. As we know from thermodynamics we can invertliegendre
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transform. In our case we can exprefd) from the Rényi entropies via the
Legendre transformation

9(4) = 48°(A) = (6"(4) — DKpr(. (22.7)
where nows*(1) can be determined from

d
ds*

[(B" = DKg] = A (22.8)
Obviously, if we can determine the Rényi entropies we caaver the distribution
of probabilities from £2.7) and ¢2.9.

The periodic orbit calculation of the Rényi entropies candarried out by

approximating the natural measure corresponding to a sysgsuence by the
expressionZ0.10

ev

H(S, s S) ¥ ——. (22.9)
Asis,. 5l
The partition sumZ%2.3 now reads
vy
ZB) = Yy —, 22.10
)~ ) (22.10)

where the summation goes for periodic orbits of lengthWe can define the
characteristic function

Qz.p) = eXp(— D %Zn(ﬁ)]- (22.12)

According to 2.4) for largen the partition sum behaves as

Zn(B) ~ e "D (22.12)

Substituting this intoZ2.11) we can see that the leading zero of the characteristic

function is
2(p) = V.

On the other hand substituting the periodic orbit approiona22.10 into (22.11)
and introducing prime and repeated periodic orbits as wseaet

2" e
Q = N
(z.p) exp[ pzr TIALP
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Figure 22.1:

We can see that the characteristic function is the same azetaefunction we
introduced for Lyapunov exponents (14 except we havee®” instead ofz. Then
we can conclude that the Rényi entropies can be expresdédtive pressure
function directly as

P@®) = (B - 1)Kg + By, (22.13)

since the leading zero of the zeta function is the pressure Renyi entropies,
hence the distribution of the expone(@) as well, can be calculated via finding
the leading eigenvalue of the operatGr.4).

From 2.13 we can get all the important quantities of the thermodymami
formalism. ForB = 0 we get the topological entropy

P(0) = —Ko = ~htop. (22.14)
ForpB = 1 we get the escape rate
P1) =7y. (22.15)

Taking the derivative 0f42.13 in 8 = 1 we get Pesin’s formulal] connecting
Kolmogorov entropy and the Lyapunov exponent

P(1)=1=Ky+7. (22.16)
[exercise 22.1]

It is important to note that, as always, these formulas aretlgtvalid for nice
hyperbolic systems only. At the end of this Chapter we disdhe important
problems we are facing in non-hyperbolic cases.

On figure22.2we show a typical pressure ag@) curve computed for the two
scale tent map of Exercis#®2.4 We have to mention, that all typical hyperbolic
dynamical system produces a similar parabola like curvéhobigh this is somewhat
boring we can interpret it like a sign of a high level of unsality: The exponents
A have a sharp distribution around the most probable value riibst probable
value is1 = P’(0) andg(1) = hyp is the topological entropy. The average value
in closed systems is whegg?) touches the diagonalt = g(1) and 1= g/ (1).

Next, we are looking at the distribution of trajectories éalrspace.
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Figure 22.2: g(1) and P(B) for the map of
exercise22.4ata = 3 andb = 3/2. See solutiorS

for details. T : o

22.2 Fractal dimensions

By looking at the repeller we can recognize an interestiraiapstructure. In the
3-disk case the starting points of trajectories not leatiregsystem after the first
bounce form two strips. Then these strips are subdividedantinfinite hierarchy
of substrings as we follow trajectories which do not leawe giistem after more
and more bounces. The finer strips are similar to strips orger&cale. Objects
with such self similar properties are callgdctals.

We can characterize fractals via their local scaling prioger The first step is
to draw a uniform grid on the surface of section. We can lookagibus measures
in the square boxes of the grid. The most interesting measagain the natural
measure located in the box. By decreasing the size of theegtid measure in
a given box will decrease. If the distribution of the measarsmooth then we
expect that the measure of thte box is proportional with the dimension of the
section

Hi ~ .

If the measure is distributed on a hairy object like the repele can observe
unusual scaling behavior of type

pi ~ €M,

whereq; is the local “dimension” or Holder exponent of the the oljeks « is not
necessarily an integer here we are dealing with objectsfreititional dimensions.
We can study the distribution of the measure on the surfaseaifon by looking
at the distribution of these local exponents. We can define

_ logui

aj = 5
" loge

the local Holder exponent and then we can count how manyeoh tare between
a anda + da. This is Ne(e)da. Again, in smooth objects this function scales
simply with the dimension of the system

N, ((Y) ~ €—d >

thermodyn - 13jun2008.tex



CHAPTER 22. THERMODYNAMIC FORMALISM 380
while for hairy objects we expect andependent scaling exponent
Ne(@) ~ e '@,

f(@) can be interpreted] as the dimension of the points on the surface of section
with scaling exponent. We can calculatd (o) with the help of partition sums as
we did forg(1) in the previous section. First, we define

2@ = ) ui (22.17)

Then we would like to determine the asymptotic behavior ef plartition sum
characterized by the(q) exponent

Z(q) ~ ™.
The partition sum can be written in terms of the distributionction ofa-s
Z.(q) = fdaNe(a)eq”.

Using the asymptotic form of the distribution we get

Z.(q) ~ f Aot 1@

As e goes to zero the integral is dominated by the term maximittiegexponent.
Thisa* can be determined from the equation

d . .
F(qd - f(@")) =0,
(o4
leading to
q=f'(").
Finally we can read fd the scaling exponent of the partition sum
7(q) = @"q- f(a).

In a uniform fractal characterized by a single dimensiorhbetand f(«)
collapse tar = f(a) = D. The scaling exponent then has the farfg) = (q—1)D.
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In case of non uniform fractals we can introduce generaldietensions §] Dqy
via the definition

Dq = 7(q)/(q - 1).

Some of these dimensions have special namesq Fd the partition sum42.17)
counts the number of non empty boXds Consequently

log N,

Do =-Ilim
0 0 loge

B

is called the box counting dimension. Fpe 1 the dimension can be determined
as the limit of the formulas foq — 1 leading to

D1 = mZm log i/ loge.

This is the scaling exponent of the Shannon informatioropytf1 0] of the distribution,
hence its name isformation dimension.

Using equisize grids is impractical in most of the applioas. Instead, we
can rewrite 22.17) into the more convenient form

q
H
Z @ 1. (22.18)

If we cover theith branch of the fractal with a grid of sizginstead ofe we can
use the relation]

q
Hi
Z @ 1, (22.19)

the non-uniform grid generalization @2.18 Next we show how can we use the
periodic orbit formalism to calculate fractal dimension&/e have already seen
that the width of the strips of the repeller can be approxauatith the stabilities
of the periodic orbits placed within them

Then using this relation and the periodic orbit expressibthe natural measure
we can write 22.19 into the form

eqyn
Z‘ g L (22.20)
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where the summation goes for periodic orbits of lengtfhe sum for stabilities
can be expressed with the pressure function again

3 L e,
LA @

and @2.20 can be written as

emgnPE-(@) _ 1
for largen. Finally we get an implicit formula for the dimensions
P@-(a-1)Dg) = qr. (22.21)

Solving this equation directly gives us the partial dimensiof the multifractal
repeller along the stable direction. We can see again tleaptéssure function
alone contains all the relevant information. Setting O in (22.21) we can prove
that the zero of the pressure function is the box-countingedision of the repeller

P(Do) = 0.
Taking the derivative 0f32.21) in q = 1 we get
P'(1)(1-D1) = .

This way we can express the information dimension with tleajes rate and the
Lyapunov exponent

Dy =1-y/A. (22.22)

If the system is boundy(= 0) the information dimension and all other dimensions
areDq = 1. Also sinceD;0 is positive 22.22) proves that the Lyapunov exponent
must be larger than the escape rate y in general.

Résum é

In this chapter we have shown that thermodynamic quanttiesvarious fractal
dimensions can be expressed in terms of the pressure fanclibie pressure
function is the leading eigenvalue of the operator whichegetes the Lyapunov
exponent. In the Lyapunov cagés just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter ighkalistribution of
locally fluctuating exponents should not be computed viaintaktatistics. We
can use cyclist formulas for determining the pressure. Therpressure can be

found using short cycles curvatures. Here the head reaches the tail of the snake.

We just argued that the statistics of long trajectories dadg(1) andP(g) can be
calculated from short cycles. To use this intimate relatietween long and short
trajectories fectively is still a research level problem.
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EXERCISES 383
Commentary

Remark 22.1 Mild phase transition. In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentione@@nlin non-hyperbolic systems
the periodic orbit expression of the measure can be

o =€"/|Aol’,

wheres can difer from 1. Usually it is 12. For suficiently negative 8 the corresponding
term 1/|Aof’ can dominateZ2.10Q while in (22.3 €"/|Aq|’ plays no dominant role. In
this case the pressure as a functiog afin have a kink at the critical poift= 5. where
BeloglAol = (Bc — 1)Kg, + Bcy. ForpB < . the pressure and the Rényi entropiebei

P@B) # (B—1)Kg + By

This phenomena is called phase transition. This is howevea nery deep problem. We
can fix the relation between pressure and the entropies kgcieg 1/|Aq| with 1/|Aol® in
(22.10.

Remark 22.2 Hard phase transition.  The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic omith [Ag] — 1 asn —

o0, Then forg > 1 the contribution of these orbits dominate bo#2.(.Q and @2.3.
Consequently the partition sum scaleZg®) — 1 and both the pressure and the entropies
are zero. In this case quantities connected With 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Liyapv exponent, escape rate,
Do andD;. This phase transition cannot be fixed. It is probably fasay that quantities
which depend on this phase transition are only of mathemlatiterest and not very
useful for characterization of realistic dynamical system

Exercises

22.1. Thermodynamics in higher dimensions. Define where the summation goes for the positi¥é-s only
Lyapunov exponents as the time averages of the eigen-  Hint: Use thed-dimensional generalization c22.9

exponents of the fundamental matdix

1
u® = lim < log|AL(xo)l

as a generalization ol6.39.
Show that ind dimensions Pesin’s formula is

d
R
k=1
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(22.23)

(22.24)

22.2.

wp =€/ [ | A,
k

where the product goes for the expanding eigenvall
the fundamental matrix gf-cycle. (G. Vatta)

Stadium billiard Kolmogorov entropy.

(Continuation of exercis&.4) Takea = 1.6 an
d = 1 in the stadium billiard figure.1, and estima
the Lyapunov exponent by averaging over a very
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trajectory. Biham and Kvalelf] estimate the discrete 22.4. Two scale map Compute all those quantities -
time Lyapunov tod ~ 1.0 + .1, the continuous time dimensions, escape rate, entropies, etc. - for the repellel
Lyapunov tod ~ 0.43 + .02, the topological entropy of the one dimensional map

(for their symbolic dynamics) ~ 1.15+ .03.

22.3. Entropy of rugged-edge billiards.  Take a semi-circle (22.25)

of diametere and replace the sides of a unit square by

|1/£] semi-circle arcs. wherea andb are larger than 2. Compute the fractal
dimension, plot the pressure and compute fi{e)
spectrum of singularities.

£(x) = l1+ax if x<0,
®=1{1-bx if x>0

22.5. Four scale map Compute the Rényi entropies ag@l)
for the four scale map

ax i
£ = (1-b)((x~ b/as)/(b-Db/as)) + b i

] ax(x-hb |
() Is the billiard ergodic as — 0? (1-b)((x—b-b/ap)/(1-b-b/ag)) +b i
(b) (hard) Show that the entropy of the billiard mapis ~ Hint: Calculate the pressure function and u22.(3.

22.6. Transfer matrix Take the unimodal mag(x) =
sin(rx) of the intervall = [0,1]. Calculate the

ase — 0. (Hint: do not write return maps.) four preimages of the intervalyy = [0,1/2] and

11 = [1/2,1]. Extrapolatef(x) with piecewise linear

functions on these intervals. Finai, a, and b of

the previous exercise. Calculate the pressure function

of this linear extrapolation. Work out higher level

2InL approximations by linearly extrapolating the map on the

K _— X
17 L 2"-th preimages of.

2
K1 — —=Ine+ const,
Ve

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, sdy, the entropy
for the flow decays as
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