Chapter 19

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

from quantum mechanics. Here we show that the classicatrapeeter-

minants factor in essentially the same way as the quanturs. olmethe
process we 1.) learn that the classical dynamics, oncetrietashe language of
evolution operators, is much closer to quantum mechanars ihapparent in the
Newtonian, ODE formulation (linear evolution operaf®BEs, group-theoretical
spectral decompositions, .), 2.) that once the symmetry group is quotiented
out, the dynamics simplifies, and 3.) it's a triple home rummper symbolic
dynamics, fewer cycles needed, much better convergencgctd expansions.
Once you master this, going back is unthinkable.

THE utiLity Of discrete symmetries in reducing spectrum calculatisfiamiliar

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the camnbof a cyclep
of multiplicity my to a dynamical zeta function factorizes into a product oler t
d.-dimensional irreducible representatidbg of the symmetry group,

(1-tp)™ =] [ det(1- Da(hﬁ)tﬁ)d” C =t

wheretj is the cycle weight evaluated on the relative periodic opbig = |G| is

the order of the groud)s is the group element relating the fundamental domain
cycle p'to a segment of the full space cygbeandm, is the multiplicity of thep

cycle. As dynamical zeta functions have particularly singjcle expansions, a
geometrical shadowing interpretation of their convergeand stfice for determination
of leading eigenvalues, we shall use them to explain theggtbeoretic factorizations;
the full spectral determinants can be factorized usingdiheestechniquesp-cycle

into a cycle weight,,.
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CHAPTER 19. DISCRETE FACTORIZATION 321

This chapter is meant to serve as a detailed guide to the datguof dynam-
ical zeta functions and spectral determinants for systeithsdiscrete symmetries.
Familiarity with basic group-theoretic notions is assumetith the definitions
relegated to appendid.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases ofay interestC, =
D1, Cay = D3 symmetriesC,, = D, x D, andCy4, = D4 Symmetries are discussed
in appendixH.

19.1 Preview

As we saw in chapteB, discrete symmetries relate classes of periodic orbits
and reduce dynamics to a fundamental domain. Such symmseirigplify and
improve the cycle expansions in a rather beautiful way; assical dynamics,
just as in quantum mechanics, the symmetrized subspacd® ganbed by linear
operators of dierent symmetries. If a linear operator commutes with thensgiry,

it can be block-diagonalized, and, as we shall now show, $keaated spectral
determinants and dynamical zeta functions factorize.

19.1.1 Reflection symmetric 1-d maps

Considerf, a map on the interval with reflection symmetif—x) = —f(x). A
simple example is the piecewise-linear sawtooth map ofdigut. Denote the
reflection operation bigx = —x. The symmetry of the map implies that{¥,} is a
trajectory, than als¢Rx,} is a trajectory becaud®x,,1 = Rf(X,) = f(Rx,). The
dynamics can be restricted to a fundamental domain, in #Ee ¢o one half of

the original interval; every time a trajectory leaves thiteival, it can be mapped
back usingR. Furthermore, the evolution operator commutes VRthL(y, X) =
L(Ry,Rx). R satisfiesR?> = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric @ates by means of
projection operators

F),/_\l = %(e+ R) s PA2 = %(e— R),
La0) = PaLR) = 5 (L0 + Ly, 9)
L0 = PaL0 =3 (L0~ L(-v,9) - (19.)

To compute the traces of the symmetrization and antisynima&tyn projection
operators 19.1), we have to distinguish three kinds of cycles: asymmetrates
a, symmetric cycless built by repeats of irreducible segmergsahd boundary
cyclesb. Now we show that the spectral determinant can be writteheaprioduct
over the three kinds of cycles: det{1/) = det (1- L) det (1- L)sdet (1- L)p.
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CHAPTER 19. DISCRETE FACTORIZATION 322

Asymmetric cycles: A periodic orbits is not symmetric {3} N {Rxa} = 0, where
{xa} is the set of periodic points belonging to the cyale ThusR generates a
second orbit with the same number of points and the samditstgiroperties.
Both orbits give the same contribution to the first term anadowatribution to the
second term inX9.1); as they are degenerate, the prefaci@ dancels. Resuming
as in the derivation of1(7.15 we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspa

~ = ta 7
det(1- £.)a = ]:[ ];[)(1 Ag)’ =

Symmetric cycles: A cycle sis reflection symmetric if operating witR on the
set of cycle points reproduces the set. The period of a syrometle is always
even (s = 2ng) and the mirror image of thes cycle point is reached by traversing
the irreducible segmerg 6f lengthng, f™(xs) = Rxs. d(x — f"(X)) picks up 2
contributions for every even traversal= rng, r even, ands(x + f"(x)) for every
odd traversaln = rng, r odd. Absorb the group-theoretic prefactor in the stability
eigenvalue by defining the stability computed for a segmétrmth ng,

AE™(x)

Az =— .
° OX  x=xs

Restricting the integration to the infinitesimal neighbmot M of the s cycle,
we obtain the contribution to #£7:

trL] - f dxz”% (6(x— (X)) = 5(x + £"(x)))

even odd
= ns{Z(snrnsl 1/Ar * Z5nrnsl 1/Ar
X (£tg)'
- §Z M /AL
Substituting all symmetric cyclesinto det (1- £.) and resuming we obtain:

det (1- L) ]:“_[(u—)

Boundary cycles:In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary oftimelamental domain,
the fixed point at the origin. Such cycle contributes simmétausly to botld(x — f"(x))
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CHAPTER 19. DISCRETE FACTORIZATION 323

ands(x + f(x)):

rr L] - dxz”} (6(x = (X)) £ o(x + (X))
Mp 2

- ot 1( 1 1 )
= nrip s =
Zr:l 2\1-1/AL ~ 1+ 1/AL

o tr oo l tr
Ll 5 ) Sy—2 L5 ) Sy — 2
: ; M1-1/A ; MALL- 1A

Boundary orbit contributions to the factorized spectraledminants follow by
resummation:

det(1- L) =] | {1 : A—Zk) o det@-L)=]] [1 - A2E+1}
b b

k=0 k=0

Only the even derivatives contribute to the symmetric sabspand only the odd
ones to the antisymmetric subspace, because the orbitnitteedoundary.

Finally, the symmetry reduced spectral determinantsvioby collecting the
above results:

=11 (1l 51 (-0

F_(z)=1:[ ﬂ(l—[t\—z)ﬂ ﬂ(ui}ﬂ 1—%) (19.2)

We shall work out the symbolic dynamics of such reflection sygtric systems in
some detail in sectl9.5 As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this exampleptetes the group-
theoretic factorization of determinants and zeta funatifor 1-d maps. We now

turn to discussion of the general case. .
[exercise 19.1]

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry gr@ug: {e,0y, ..., gg} if
the equations of motion are invariant under all symmetges G. For a map
Xn+1 = f(Xn) and the evolution operatdf(y, X) defined by {5.23 this means

g ' f(gx)
£L(gy, gx) . (19.3)

f(X)
L(Y, X)
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CHAPTER 19. DISCRETE FACTORIZATION 324

Bold face letters for group elements indicate a suitableesgntation on state
space. For example, if a 2-dimensional map has the symmetry —x1, Xo —
—X2, the symmetry grouf® consists of the identity an@, a rotation byr around
the origin. The mag must then commute with rotations fy f(Rx) = Cf(X),
with R given by the [2x 2] matrix

R:( ‘01 _01 ) (19.4)

R satisfiesR?> = e and can be used to decompose the state space into mutually
orthogonal symmetric and antisymmetric subspaces by nudg@nsjection operators
(19.7). More generally the projection operator onto thareducible subspace of
dimensiond, is given byP, = (d,/IG]) 3 x.(h)h™t, wherey,(h) = tr D, (h) are

the group characters, and the transfer operéteplits into a sum of inequivalent
irreducible subspace contributiods, tr £,

La(.%) = % h;;mmz(h-ly, X | (19.5)

The prefactod, in the above reflects the fact thatlgdimensional representation
occursd, times.

19.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler protidctd) takes the form
]_[(1 —tp) = ]—[(1 — tp)™. (19.6)
p p

The Euler productX7.19 for the C3, symmetric 3-disk problem is given in
(18.36.

19.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discre:te symmetry, th&a~$pa~cd\/l can be
completely tiled by the fundamental domahand its imagesaM, bM, ... under
the action of the symmetry grodp = {e,a,b,.. .},

M=> Ma= ) aM.

acG aeG

In the above examplel.4) with symmetry groupG = {eC}, the state space
M = {x1-X plang can be tiled by a fundamental domaih= {half-planex; > 0},
andCM = {half-planex; < 0}, its image under rotation by.
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CHAPTER 19. DISCRETE FACTORIZATION 325

If the spaceM is decomposed intg tiles, a functiong(x) over M splits into
a g-dimensional vectop,(X) defined byga(X) = ¢(X) if X € Mg, ¢a(X) = 0
otherwise. Leh = ab™ conflicts with be the symmetry operation that maps the
endpoint domairMy, into the starting point domaiivl,, and letD(h)pa, the left
regular representation, be thg ¥ g] matrix whoseb, a-th entry equals unity if
a = hb and zero otherwiseD(h)pa = dpha. Since the symmetries act on state
space as well, the operatibrenters in two guises: as g % g] matrix D(h) which
simply permutes the domain labels, and ad & [] matrix representatioh of a
discrete symmetry operation on ttetate space coordinates. For instance, in the
above examplelP.4) h € C, andD(h) can be either the identity or the interchange
of the two domain labels,

D(e):((])' (1)) D(C):((l) é) (19.7)

Note thatD(h) is a permutation matrix, mapping a tid, into a diferent tile
Mna # Mg if h # e. Consequently onl{D(€) has diagonal elements, andifh) =
Oohe. However, the state space transformationz e leaves invariant sets of
boundary points; for example, under reflectian across a symmetry axis, the
axis itself remains invariant. The boundary periodic arltitat belong to such
pointwise invariant sets will require special care i tevaluations.

One can associate to the evolution operaiér.Z3 a [g x g] matrix evolution
operator defined by

-Lba(y’ X) = D(h)baL(Ya X) >

if x € My andy € My, and zero otherwise. Now we can use the invariance
condition (L9.3 to move the starting pointinto the fundamental domai= aX,
L(y,X) = L(aly, ), and then use the relaticar'b = h™! to also relate the
endpointy to its image in the fundamental domaifi(y, %) := £L(h~1§, ). With

this operator which is restricted to the fundamental domthia global dynamics
reduces to

Loa(y, X) = D(Mpa LT, K) .

While the global trajectory runs over the full spade the restricted trajectory is
brought back into the fundamental domaihany time it crosses into adjoining
tiles; the two trajectories are related by the symmetry ajpan h which maps the

global endpoint into its fundamental domain image.

Now the traces 7.3 required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental daaitie

trl= fM dxL(x, X) = fM dx ZtrD(h) L(h™% %) (19.8)
h
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CHAPTER 19. DISCRETE FACTORIZATION 326

The fundamental domain integr§ld>~< L(h~1% %) picks up a contribution from
every global cycle (for whicth = €), but it also picks up contributions from
shorter segments of global cycles. The permutation mBifiy guarantees by the
identity trD(h) = 0, h # e, that only those repeats of the fundamental domain
cycles g'that correspond to complete global cyclesontribute. Compare, for
example, the contributions of tH2 and0 cycles of figurell.2 trD(h)£ does
not get a contribution from th@ cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, arld(tr) = 0. In
contrasto? = e, trD(c?) = 6 insures that the repeat of the fundamental domain
fixed point tr O(h)£)? = 6t§, gives the correct contribution to the global trace
tr .£2 3 2t12

Let p be the full orbit,g'the orbit in the fundamental domain ahglan element
of H,, the symmetry group ofp. Restricting the volume integrations to the
infinitesimal neighborhoods of the cycl@sand p, respectively, and performing
the standard resummations, we obtain the identity

(1-tp)™ = det(1- D(hp)tp) (19.9)

valid cycle by cycle in the Euler products4.15 for det (1- £). Here “det” refers

to the [gx g] matrix representatiod(hp); as we shall see, this determinant can be
evaluated in terms of standard characters, and no exggiesentation oD(hg)

is needed. Finally, if a cyclg is invariant under the symmetry subgro#fy € G

of orderhp, its weight can be written as a repetition of a fundamentahaio
cycle

computed on the irreducible segment that corresponds tadafental domain
cycle. For example, in figurgl.2we see by inspection thab = tg andtioz = ti”.

19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizationdyofimical zeta func-
tions for the diferent symmetries we have to discuss d#ieat that arises for
orbits that run on a symmetry line that borders a fundametaahain. In our
3-disk example, no such orbits are possible, but they axisthier systems, such
as in the bounded region of the Hénon-Heiles potential anti-d maps. For
the symmetrical 4-disk billiard, there are in principle tkimds of such orbits,
one kind bouncing back and forth between two diagonally spdalisks and the
other kind moving along the other axis of reflection symmygtng latter exists for
bounded systems only. While there are typically very fewrutauy orbits, they
tend to be among the shortest orbits, and their neglect caously degrade the
convergence of cycle expansions, as those are dominatézt Ishortest cycles.

While such orbits are invariant under some symmetry opmratitheir neighborhoods
are not. This fiects the fundamental matri,, of the linearization perpendicular
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CHAPTER 19. DISCRETE FACTORIZATION 327

to the orbit and thus the eigenvalues. Typicadly, if the symmetry is a reflection,
some eigenvalues &, change sign. This means that instead of a weigtef.(l—-
M) as for a regular orbit, boundary cycles also pick up countidms of form
1/det (1 — hMp), whereh is a symmetry operation that leaves the orbit pointwise
invariant; see for example se@®9.1.1

Consequences for the dynamical zeta function factorinatéwe that sometimes
a boundary orbit does not contribute. A derivation of a dyitahzeta function
(17.15 from a determinant like1(7.9 usually starts with an expansion of the
determinants of the Jacobian. The leading order terms queam the product of
the expanding eigenvalues and lead to the dynamical zetidan(17.15. Next
to leading order terms contain products of expanding anttacting eigenvalues
and are sensitive to their signs. Clearly, the weighten the dynamical zeta
function will then be &ected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it wasgible to implement
these éects by the following simple prescription.

If an orbit is invariant under a little grougd, = {e by,...,by}, then the
corresponding group element in9.9 will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, tthie projector is

Op =

Sl

h
LT (19.11)
i=1

In the cases that we have considered, the change of sign ntakdreinto account
by defining a sign functiosp(g) = +£1, with the “-” sign if the symmetry element
g flips the neighborhood. Thei9.1]) is replaced by

h
g =7 . clb)b. (1912)
i=1

We have illustrated the above in set®.1.1by working out the full factorization
for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta functions

In chapterd we have shown that a discrete symmetry induces degeneeani@myg
periodic orbits and decomposes periodic orbits into répas of irreducible segments;
this reduction to a fundamental domain furthermore leadsctinvenient symbolic
dynamics compatible with the symmetry, and, most impolgata a factorization

of dynamical zeta functions. This we now develop, first in aegal setting and
then for specific examples.
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CHAPTER 19. DISCRETE FACTORIZATION 328

19.4.1 Factorizations of dynamical dynamical zeta functins

According to (9.9 and (19.10, the contribution of a degenerate class of global
cycles (cyclep with multiplicity m, = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cyzle ~

(1-t5")%/" = det (1 - D(hg)tp) (19.13)

Let D(h) = @a d. D, (h) be the decomposition of the matrix representatigh)
into thed, dimensional irreducible representatiamsf a finite groupG. Such
decompositions are block-diagonal, so the corresponadingibution to the Euler
product (L7.9 factorizes as

det (1- D(h)) = [ | det (1 Da(h)) . (19.14)

where now the product extends over all distidgtdimensional irreducible representations,
each contributingl, times. For the cycle expansion purposes, it has been canteni

to emphasize that the group-theoretic factorization caeffieeted cycle by cycle,

as in (19.13; but from the transfer operator point of view, the key oladon

is that the symmetry reduces the transfer operator to a lizgonal form; this

block diagonalization implies that the dynamical zeta fioms (17.19 factorize

as

; - ;ﬂ , gi = | [ det(1- Dalhp)ts) - (19.15)
a Sa @ p

Determinants ofil-dimensional irreducible representations can be evaluate
using the expansion of determinants in terms of traces,

det(1+ M) = 1+trM+ :—ZL((tr M)? - tr M?)
+%((tr M) - 3 (tr M)(tr M?) + 2tr M?)

+"'+d_1!((trM)d_"') , (19.16)

and each factor in1@.14 can be evaluated by looking up the characier@) =
tr D, (h) in standard tables.[]]. In terms of characters, we have for the 1-dimensional
representations

det (1- Do(h)t) = 1 - xo(h)t,
for the 2-dimensional representations

det (1~ Da () = 1~ ()t + 5 (k) 1o 2
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CHAPTER 19. DISCRETE FACTORIZATION 329

and so forth.

In the fully symmetric subspacela, (h) = 1 for all orbits; hence a straightforward
fundamental domain computation (with no group theory wisigalways yields a
part of the full spectrum. In practice this is the most inséirgy subspectrum, as it

contains the leading eigenvalue of the transfer operator. .
[exercise 19.2]

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinarit/(3 proceeds in essentially the
same manner as the factorization of dynamical zeta furstautlined above.
By (19.95 and (19.8) the trace of the transfer operatdr splits into the sum of
inequivalent irreducible subspace contributignistr £, with

L, =dy Y va(h) f AR L% %)

heG

This leads by standard manipulations to the factorizatiaii .9 into
]_[ Fa(2)™
1 Xo(h5)Z®

SR e

F(2

Fo(2 (19.17)

whereMp = hsMp is the fundamental domain Jacobian. Boundary orbits requir
special treatment, discussed in s&ét.3.], with examples given in the next section
as well as in the specific factorizations discussed below.

The factorizations 9.19, (19.17 are the central formulas of this chapter.
We now work out the group theory factorizations of cycle exgians of dynam-
ical zeta functions for the cases©f andCz, symmetries. The cases of tlg,,
Cav symmetries are worked out in appendbelow.

19.5 C, factorization

As the simplest example of implementing the above schemsiadentheC,

symmetry. For our purposes, all that we need to know hereasdhch orbit
or configuration is uniquely labeled by an infinite strifgg}, s = +, — and that
the dynamics is invariant under the«<> — interchange, i.e., it i€, symmetric.
The C, symmetry cycles separate into two classes, the self-dudlgeoations
+= ++ -, +++———, + - —+ =+ +—, -+, With multiplicity m, = 1, and
the asymmetric configurations, —, + + —, — — +, - - -, with multiplicity m, = 2.
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CHAPTER 19. DISCRETE FACTORIZATION 330

For example, as there is no absolute distinction betweetugiieand the “down”

spins, or the “left” or the “right” lobet, =t ,t,,_ =t,__, and so on. fexercise 19.4]

The symmetry reduced labelipg € {0, 1} is related to the standagle {+, -}
Ising spin labeling by

If s = s.; then pi=1

If s # s.1 then pi=0 (19.18)
For example+ = --- + + + +--- maps into---111. .- = 1 (and so does),
—_F = ..._+_+...mapiinto..ooo... =0,—F4+—=-- ——F+——F 4
maps into---0101.-- = 01, and so forth. A list of such reductions is given in
table11.2

Depending on the maximal symmetry gratify that leaves an orbjpinvariant
(see sectsl9.2and19.3as well as sectl9.1.]), the contributions to the dynamical
zeta function factor as

Al A
Ho={e): (1-tp)® = (1-tp)(1-tp)
Hp=1leo): (1-1) = (1-tp)(l+tp), (19.19)

For example:

Hopo=1{e}: (1- t++—)2
Ho =leo): @Q-t.)

(1 - too1)(L — too1)
(1-to) (L+tg), t— =15

This yields two binary cycle expansions. Thgsubspace dynamical zeta function
is given by the standard binary expansiag.(). The antisymmetrié, subspace
dynamical zeta functiodia, difters fromga, only by a minus sign for cycles with
an odd number of 0's:

1/¢n, = (1+1t0)(1—1t1)(1+t10)(1 — t100)(1 + ta01)(L + t1000)
(1 = t2000)(1 + t1012)(1 — ta0000)(1 + t10002)
(1 + t10010(1 — t10012)(1 — t10100)(L + t10119) - - -
= 1+1to—t1+ (tro —tato) — (ta00 — taoto) + (tro1 — taots)
—(t1001 — titoor — t10ato + tiotots) —...... (19.20)

Note that the group theory factors do not destroy the curgatorrections (the
cycles and pseudo cycles are still arranged into shadovandpmations).

If the system under consideration has a boundary ochisgect.19.3.1) with
group-theoretic facton, = (e+ 0)/2, the boundary orbit does not contribute to
the antisymmetric subspace

AL A
boundary: (I-tp) = (1-tp)(1-0tp) (19.21)
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CHAPTER 19. DISCRETE FACTORIZATION 331

This is the X¢ part of the boundary orbit factorization of setf.1.1

19.6 Cj, factorization: 3-disk game of pinball

The next example, thés, symmetry, can be worked out by a glance at figlite?(a).
For the symmetric 3-disk game of pinball the fundamental @ors bounded by

a disk segment and the two adjacent sections of the symmedsy that act as
mirrors (see figurd 1.2 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on thedsplice can be pieced
together from bounces in the fundamental domain, with syimnmaxes replaced
by flat mirror reflections. The binarf0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collisibtyjee 0 reflects
the projectile to the disk it comes from (back—scatter), iehe after a collision
of type 1 projectile continues to the third disk. For examp@e= - - - 232323 - -
maps into- - - 000- -- = 0 (and so ddl2 and13), 123 = ---12312 -- maps into
..-111--- = 1 (and so doe&32), and so forth. A list of such reductions for short
cycles is given in tablé1.1

Csy has two 1-dimensional irreducible representations, sytmeorend antisymmetric
under reflections, denoted; and Ay, and a pair of degenerate 2-dimensional
representations of mixed symmetry, denokedrl' he contribution of an orbit with
symmetryg to the 1/¢ Euler product {9.14) factorizes according to

det (1- D()t) = (1~ ay (W) (L~ xa, () (1~ xe (Mt + xa, (W) (19.22)

with the three factors contributing to ti&;, irreducible representations;, Ay
and E, respectively, and the 3-disk dynamical zeta functiondiazes intol =
gAlgAzgé. Substituting theCs, characters10]

Cay |AL A, E
2

e 1 1
C,C?| 1 1 -1
Oy 1 -1 0

into (19.22, we obtain for the three classes of possible orbit symee{indicated
in the first column)

hp A A E
e: (1-tp)° (1-tp)(1 - tp)(1 - 2t + t5)°
C.C*: (1-t3)? 1-tp)(L - tp)(L + tp+15)?

ov: (1-t5)° (1 - tp)(1 + tp)(1 + Ot — t)°. (19.23)

whereo, stands for any one of the three reflections.
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CHAPTER 19. DISCRETE FACTORIZATION 332

The Euler product17.195 on each irreducible subspace follows from the
factorization (9.23. On the symmetricA; subspace thé&a, is given by the
standard binary curvature expansidi (/). The antisymmetridA; subspacea,
differs from¢a, only by a minus sign for cycles with an odd number of 0’s, and is
given in (19.20. For the mixed-symmetry subspaEdhe curvature expansion is
given by

(1+ 2 + Zt3)(1 - 2)(1 + Ztigo + Pt50) (1 - Z't5)
(l + Z4t1001+ Zatfooj_)(l + 25t10000+ Zlotiooo&

(l + Z5t10101+ Zlotfoj_o]_)(l - Z5t1001;|)2 -

= 142ty + 2 - ) + Pltoor — ta1d)

+7' [toon + (toor — tg)ts — tél]

+2 [t00001+ to1011— 2too111+ (too11 — thy)ts + (5 — té)t106}9-24)

1/

We have reinserted the powerszam order to group together cycles and pseudocycles
of the same length. Note that the factorized cycle expasgietain the curvature
form; long cycles are still shadowed by (somewhat less alsjicombinations of
pseudocycles.

Referring back to the topological polynomidl3.31) obtained by setting, =
1, we see that its factorization is a consequence ofCdactorization of the’
function:

Yin =1-2z, 1in=1, Yk=1+z, (19.25)

as obtained fromi(8.7), (19.20 and (19.24 for tp, = 1.
Their symmetry iK = {e o}, so according t019.11), they pick up the group-

theoretic factohp, = (e + 07)/2. If there is no sign change tp, then evaluation of
det (1- &Ztp) yields

AL A E
boundary: (:-tp)° = (L-tp)(1-0ts)(1-tp)?, tp=ts. (19.26)

However, if the cycle weight changes sign under reflectigh= —t;, the boundary
orbit does not contribute to the subspace symmetric undkection across the
orbit;

AL A E
boundary: (:-tp)° = (1-0Otp)(L-ts)(1-tp)?, tp=ts. (19.27)

Résum é

If a dynamical system has a discrete symmetry, the symmletnyld be exploited;
much is gained, both in understanding of the spectra andagdiseir evaluation.
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CHAPTER 19. DISCRETE FACTORIZATION 333

Once this is appreciated, it is hard to conceive of a calculatithout factorization;
it would correspond to quantum mechanical calculationsiauit wave—function
symmetrizations.

While the reformulation of the chaotic spectroscopy frora ttace sums to
the cycle expansions does not reduce the exponential giowihmber of cycles
with the cycle length, in practice only the short orbits asedj and for them the
labor saving is dramatic. For example, for the 3-disk gampiball there are
256 periodic points of length 8, but reduction to the fundatakdomain non-
degenerate prime cycles reduces the number of the distioktscof length 8 to
30.

In addition, cycle expansions of the symmetry reduced dycanzeta func-
tions converge dramatically faster than the unfactorizgdachical zeta func-
tions. One reason is that the unfactorized dynamical zeatatin has many
closely spaced zeros and zeros of multiplicity higher thae; since the cycle
expansion is a polynomial expansion in topological cyciegta, accommodating
such behavior requires many terms. The dynamical zetaifurscbn separate
subspaces have more evenly and widely spaced zeros, ar¢hematm not have
symmetry-induced multiple zeros, and fewer cycle expangoms (short cycle
truncations) sfiice to determine them. Furthermore, the cycles in the fundeahe
domain sample state space more densely than in the full spacexample, for
the 3-disk problem, there are 9 distinct (symmetry unrelatgcles of length 7 or
less in full space, corresponding to 47 distinct periodimizo In the fundamental
domain, we have 8 (distinct) periodic orbits up to length d #ws 22 diferent
periodic points in 16-th the state space, i.e., an increase in density by a factor
with the same numericaliert.

We emphasize that the symmetry factorizati@.23 of the dynamical zeta
function isintrinsic to the classical dynamics, and not a special property oftalian
spectra. The factorization is not restricted to the Hamidn systems, or only
to the configuration space symmetries; for example, theetissymmetry can
be a symmetry of the Hamiltonian phase sp&ade [nh conclusion, the manifold
advantages of the symmetry reduced dynamics should thubvieus; full state
space cycle expansions, such as those of exet@isk are useful only for cross
checking purposes.

Commentary

Remark 19.1 Symmetry reductions in periodic orbit theory. This chapter is based on
long collaborative gort with B. Eckhardt, ref. []. The group-theoretic factorizations of
dynamical zeta functions that we develop here were firabihtced and applied in ref/].
They are closely related to the symmetrizations introdigg@utzwiller [4] in the context
of the semiclassical periodic orbit trace formulas, pub imore general group-theoretic
context by Robbins7], whose exposition, together with Lauritzen3 freatment of the
boundary orbits, has influenced the presentation given Adéresymmetry reduced trace
formula for a finite symmetry grou = {e, 0y, ..., g} with |G| group elements, where
the integral over Haar measure is replaced by a finite gresgrete suniG| Ygec =1,

symm - 13jun2008.tex



EXERCISES 334

was derived in ref.T]. A related group-theoretic decomposition in context opésbolic
billiards was utilized in ref. 0], and for the Selberg’s zeta function in ref.l]. One of
its loftier antecedents is the Artin factorization formafaalgebraic number theory, which
expresses the zeta-function of a finite extension of a giedthdis a product df-functions
over all irreducible representations of the correspon@atpis group.

Remark 19.2 Computations.  The techniques of this chapter have been applied to
computations of the 3-disk classical and quantum spectefsn[7, 13], and to a “Zeeman
effect” pinball and they? potentials in ref.]2]. In a larger perspective, the factorizations
developed above are special cases of a general approagbiddtiay the group-theoretic
invariances in spectra computations, such as those usadiimeration of periodic geodesic<]
3, 13 for hyperbolic billiards [L7] and Selberg zeta functions].

Remark 19.3 Other symmetries. In addition to the symmetries exploited here, time
reversal symmetry and a variety of other non-trivial disesymmetries can induce further
relations among orbits; we shall point out several of exa®pf cycle degeneracies under
time reversal. We do not know whether such symmetries carxplited for further
improvements of cycle expansions.

Exercises
19.1. Sawtooth map desymmetrization.  Work out the b) Find the shortest cycle with no symmetries and
some of the shortest global cycles of fidrent factorize itasin a)

symmetries and fundamental domain cycles for the
sawtooth map of figur®.1L Compute the dynamical
zeta function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (9.2). d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorization8.(9
and (19.17.

c) Find the shortest cycle that has the property that
its time reversal is not described by the same
symbolic dynamics.

19.2. 2-d asymmetric representation. The above
expressions can sometimes be simplified further using
standard group-theoretical methods. For example, the
%((tr M)? — tr Mz) term in (19.19 is the trace of the
antisymmetric part of thél x M Kronecker product.
Show that ife is a 2-dimensional representation, this iig 4
the A; antisymmetric representation, and o

(Per Rosengvist)

C, factorizations: the Lorenz and Ising systems. In
the Lorenz systeml1] 3] the labels+ and — stand

2-dim:  det (D, (h)t) = 1—y(h)t+ya, ()2(19.28) for the left or the right lobe of the attractor and the
symmetry is a rotation by around thez-axis. Similarly,

19.3. 3-disk desymmetrization. the Ising Hamiltonian (in the absence of an external
magnetic field) is invariant under spin flip. Work out
a) Work out the 3-disk symmetry factorization for the factorizations for some of the short cycles in either

the 0 and 1 cycles, i.e. which symmetry do they system.

have, what is the degeneracy in full space and how

do they factorize (how do they look in thhg, A,  19.5. Ising model. The Ising model with two states
and theE representations). & = {+,—} per site, periodic boundary condition, and
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