Chapter 19

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

from quantum mechanics. Here we show that the classicatrapeeter-

minants factor in essentially the same way as the quanturs. olmethe
process we 1.) learn that the classical dynamics, oncetrie¢ashe language of
evolution operators, is much closer to quantum mechanars ithapparent in the
Newtonian, ODE formulation (linear evolution operaf®BEs, group-theoretical
spectral decompositions, .), 2.) that once the symmetry group is quotiented
out, the dynamics simplifies, and 3.) it's a triple home rummpder symbolic
dynamics, fewer cycles needed, much better convergencgcté expansions.
Once you master this, going back is unthinkable.

THE utiLity of discrete symmetries in reducing spectrum calculatisfemiliar

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the catibribof a cyclep
of multiplicity m,, to a dynamical zeta function factorizes into a product oler t
d.-dimensional irreducible representatiddg of the symmetry group,

(1-tp)™ = [ [det(1- Dathp)ta)" . t,=12™ .
a

wheret; is the cycle weight evaluated on the relative periodic opbig = |G| is

the order of the groughp is the group element relating the fundamental domain
cycle pto a segment of the full space cygieandm; is the multiplicity of thep

cycle. As dynamical zeta functions have particularly senpjcle expansions, a
geometrical shadowing interpretation of their convergeand stfice for determination
of leading eigenvalues, we shall use them to explain theggtbeoretic factorizations;
the full spectral determinants can be factorized usingdhgestechniquesp-cycle

into a cycle weightp,.
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This chapter is meant to serve as a detailed guide to the datigruof dynam-
ical zeta functions and spectral determinants for systeithsdiscrete symmetries.
Familiarity with basic group-theoretic notions is assumetth the definitions
relegated to appendid.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases osjglay interestC, =
D1, Csy = D3 symmetriesCy, = Dy x D, andCa, = D4 Symmetries are discussed
in appendixH.

19.1 Preview

As we saw in chapteB, discrete symmetries relate classes of periodic orbits
and reduce dynamics to a fundamental domain. Such symmsairigplify and
improve the cycle expansions in a rather beautiful way; assical dynamics,
just as in quantum mechanics, the symmetrized subspacé® ganbed by linear
operators of dierent symmetries. If a linear operator commutes with themsgtry,

it can be block-diagonalized, and, as we shall now show, sseaated spectral
determinants and dynamical zeta functions factorize.

19.1.1 Reflection symmetric 1-d maps

Considerf, a map on the interval with reflection symmetif-x) = —f(x). A
simple example is the piecewise-linear sawtooth map ofdi§ut. Denote the
reflection operation bigx = —x. The symmetry of the map implies that{i,} is a
trajectory, than als@Rx,} is a trajectory becaus®xn1 = Rf(xn) = f(Rxy). The
dynamics can be restricted to a fundamental domain, in #se ¢o one half of

the original interval; every time a trajectory leaves thiterval, it can be mapped
back usingR. Furthermore, the evolution operator commutes WthL(y, X) =
L(Ry,RX). R satisfiesR? = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric pates by means of
projection operators

1 1
F’A1 = E(e+ R), PA2=§(e—R),

Ln00) = PaLO) = 5 (L0 + LC2)

La,(y. %)

P = 5 (£0:%) = L3, %) - (19.2)

To compute the traces of the symmetrization and antisynizaétyn projection
operators 19.1), we have to distinguish three kinds of cycles: asymmetaas
a, symmetric cycless built by repeats of irreducible segmergsahd boundary
cyclesb. Now we show that the spectral determinant can be writteheproduct
over the three kinds of cycles: det{1L) = det (1— £).det (1- £)zdet (1— L)p.
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Asymmetric cycles: A periodic orbits is not symmetric {x,} N {Rxa} = 0, where
{xa} is the set of periodic points belonging to the cyele ThusR generates a
second orbit with the same number of points and the samdittgioperties.
Both orbits give the same contribution to the first term anaowtribution to the
second term in19.1); as they are degenerate, the prefacf@ dancels. Resuming
as in the derivation of1(7.15 we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspa

_ = ta 7
det(l—[i)a—U H(l F) =

Symmetric cycles: A cycle sis reflection symmetric if operating witR on the
set of cycle points reproduces the set. The period of a synmwycle is always
even (s = 2ng) and the mirror image of thes cycle point is reached by traversing
the irreducible segmerg 6f lengthng, f"™(xs) = Rxs. 6(x — f"(X)) picks up 2
contributions for every even traversal= rng, r even, andi(x + f"(x)) for every
odd traversaln = rng, r odd. Absorb the group-theoretic prefactor in the stability
eigenvalue by defining the stability computed for a segmékrmth ng,

HEMs(x)

As=—
° X

X=Xs

Restricting the integration to the infinitesimal neightmmt M; of the s cycle,
we obtain the contribution to #£7:

L] - dxz"} (6(x = (X)) £ 6(x + (X))
Ms 2

even odd
= né[zfsnmsl 1//\, j:Zanrnsl 1//\,
r=2

Substituting all symmetric cyclesinto det (1- £.) and resuming we obtain:
det(1- L£.)s = ]_[ ﬂ(u k]
Ag

Boundary cycles:In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary oftimelamental domain,
the fixed point at the origin. Such cycle contributes simmétusly to botfs(x — f"(x))
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ands(x + f"(x)):

2tr L]

l

f dx2 L (8(x = (%)) = 6(x + (X))
My 2

- soul 1,1

Z nh 2 (1—1//\' B 1+1/Af)

tr
n . n b
2Ll - E 6m1 1/A2f' 'tr LN > E (Sn,ArT/AZr.

Boundary orbit contributions to the factorized spectraledminants follow by
resummation:

- t = i
det(1- Lo =[] (1— A_gk] . det@-L)p=]] (1 - Az—tk’ﬂ]
b b

k=0 k=0

Only the even derivatives contribute to the symmetric sabepand only the odd
ones to the antisymmetric subspace, because the orbinlitsedoundary.

Finally, the symmetry reduced spectral determinants\ioliy collecting the
above results:

F_(z):l:[ ﬂ(l—%)ﬂ ﬂ[1+;—z]ﬂ(1—%) (19.2)

We shall work out the symbolic dynamics of such reflection syatric systems in
some detail in sectl9.5 As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this examplepéetes the group-
theoretic factorization of determinants and zeta funtifor 1-d maps. We now

turn to discussion of the general case. )
[exercise 19.1]

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry gr@ug {e go,...,gg} if
the equations of motion are invariant under all symmetges G. For a map
Xnr1 = F(Xy) and the evolution operataf(y, X) defined by {5.23 this means

f) = g7f(99
Ly, ¥) £(gy. 9x) . (19.3)
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CHAPTER 19. DISCRETE FACTORIZATION 324

Bold face letters for group elements indicate a suitableesgmtation on state
space. For example, if a 2-dimensional map has the symmetsy —xq, Xo —
—Xo, the symmetry grouf® consists of the identity an@, a rotation byr around
the origin. The mag must then commute with rotations by f(Rx) = Cf(X),
with R given by the [2x 2] matrix

R:( o _Ol). (19.4)

R satisfiesR? = e and can be used to decompose the state space into mutually
orthogonal symmetric and antisymmetric subspaces by nuégnsjection operators
(19.1). More generally the projection operator onto thereducible subspace of
dimensiond, is given byP, = (d,/IG]) 3 x.(h)h™, wherey,(h) = trD,(h) are

the group characters, and the transfer operéteplits into a sum of inequivalent
irreducible subspace contributiods, tr £,,

L9 = 2 3 L0 (195)

heG
The prefactod, in the above reflects the fact thatladimensional representation

occursd, times.

19.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler prodidctd takes the form

ﬂ(l—tp) = ﬂ(l—tﬁ)mﬁ. (19.6)
p

p

The Euler product(7.15 for the C3, symmetric 3-disk problem is given in
(18.39.

19.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, theesspacév can be
completely tiled by the fundamental domahand its imagesaM, bM, ... under
the action of the symmetry grop = {e a,b,.. .},

M=> M=) am.

acG aeG
In the above examplel.4) with symmetry groupG = {&C}, the state space
M = {x;-X plang can be tiled by a fundamental domah= {half-planex; > 0},

andCM = {half-planex; < 0}, its image under rotation by.
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If the spaceM is decomposed intg tiles, a functiong(x) over M splits into
a g-dimensional vectop,(x) defined byga(x) = #(X) if x € Mg, ¢a(x) = 0
otherwise. Leh = ab™* conflicts with be the symmetry operation that maps the
endpoint domairMy, into the starting point domaiivl,, and letD(h)pa, the left
regular representation, be thg g] matrix whoseb, a-th entry equals unity if
a = hb and zero otherwiseD(h)pa = dpha. Since the symmetries act on state
space as well, the operatibrenters in two guises: as g% g] matrix D(h) which
simply permutes the domain labels, and ad & ] matrix representatioh of a
discrete symmetry operation on tletate space coordinates. For instance, in the
above examplel©.4) h e C, andD(h) can be either the identity or the interchange
of the two domain labels,

D(e):(é 0), D(C):(g é) (19.7)

Note thatD(h) is a permutation matrix, mapping a tiM, into a diferent tile
Mha # M4 if h # e. Consequently onlyD(€) has diagonal elements, andith) =
O6he. However, the state space transformatfor¢ e leaves invariant sets of
boundary points; for example, under reflectian across a symmetry axis, the
axis itself remains invariant. The boundary periodic arltitat belong to such
pointwise invariant sets will require special care i tevaluations.

One can associate to the evolution operatérZ3 a [g x g] matrix evolution
operator defined by

Loa(y, ) = D(MpaL(Y, X) ,

if X € Mg andy € My, and zero otherwise. Now we can use the invariance
condition (L9.3 to move the starting pointinto the fundamental domaix= ax,
L(y,X) = L(aly,%), and then use the relaticar'b = h™ to also relate the
endpointy to its image in the fundamental domaifi(y, %) := £(h~1§, %). With

this operator which is restricted to the fundamental domtai@ global dynamics
reduces to

Lra(y. %) = D(W5aL(3. %) -

While the global trajectory runs over the full spade the restricted trajectory is
brought back into the fundamental domathany time it crosses into adjoining
tiles; the two trajectories are related by the symmetry atp@n h which maps the
global endpoint into its fundamental domain image.

Now the tracesX(7.3 required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental daaf@ie

L= j;ﬂ dXL(X, X) = fM dg 3 rD(h) £ (19.8)
h
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The fundamental domain integréld)“( £L(h™1%, %) picks up a contribution from
every global cycle (for whicth = €), but it also picks up contributions from
shorter segments of global cycles. The permutation mBfinj guarantees by the
identity trD(h) = 0, h # e, that only those repeats of the fundamental domain
cycles p'that correspond to complete global cyclesontribute. Compare, for
example, the contributions of tHe2 and0 cycles of figurel1.2 tr D(h).L does
not get a contribution from th@ cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, arf@(t) = 0. In
contrasto? = e, trD(c2) = 6 insures that the repeat of the fundamental domain
fixed point tr QI)(h).Z)2 = GtS, gives the correct contribution to the global trace
tr £2 =3 2ty,.

Let pbe the full orbit,gthe orbit in the fundamental domain ahglan element
of Hp, the symmetry group op. Restricting the volume integrations to the
infinitesimal neighborhoods of the cyclgsand p, respectively, and performing
the standard resummations, we obtain the identity

(1-tp)™ = det (1 - D(hp)tp) . (19.9)

valid cycle by cycle in the Euler productsq.19 for det (1- £). Here “det” refers

to the [gx g] matrix representatiod(hg); as we shall see, this determinant can be
evaluated in terms of standard characters, and no exgigiesentation dD(hg)

is needed. Finally, if a cyclg is invariant under the symmetry subgrotify < G

of order hp, its weight can be written as a repetition of a fundamentahaio
cycle

ty = tgp (19.10)

computed on the irreducible segment that corresponds tadafoental domain
cycle. For example, in figurgl.2we see by inspection thab = tg andtyoz = tf.

19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizationdyomical zeta func-
tions for the diferent symmetries we have to discuss #iiea that arises for
orbits that run on a symmetry line that borders a fundameddatain. In our
3-disk example, no such orbits are possible, but they existhier systems, such
as in the bounded region of the Hénon-Heiles potential antl-d maps. For
the symmetrical 4-disk billiard, there are in principle tkimds of such orbits,
one kind bouncing back and forth between two diagonally spgalisks and the
other kind moving along the other axis of reflection symmetng latter exists for
bounded systems only. While there are typically very fewrtatauy orbits, they
tend to be among the shortest orbits, and their neglect causly degrade the
convergence of cycle expansions, as those are dominatde Ishortest cycles.

While such orbits are invariant under some symmetry opsratitheir neighborhoods

are not. This fiects the fundamental matrM,, of the linearization perpendicular
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to the orbit and thus the eigenvalues. Typicadly, if the symmetry is a reflection,
some eigenvalues &, change sign. This means that instead of a weigtied(1—
Mp) as for a regular orbit, boundary cycles also pick up countiiims of form
1/det (L — hMp), whereh is a symmetry operation that leaves the orbit pointwise
invariant; see for example sed9.1.1

Consequences for the dynamical zeta function factoriaatéwe that sometimes
a boundary orbit does not contribute. A derivation of a dyitahweta function
(17.15 from a determinant like1(7.9) usually starts with an expansion of the
determinants of the Jacobian. The leading order terms queam the product of
the expanding eigenvalues and lead to the dynamical zettidan(17.15. Next
to leading order terms contain products of expanding anttactiing eigenvalues
and are sensitive to their signs. Clearly, the weightin the dynamical zeta
function will then be #&ected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it wasgible to implement
these &ects by the following simple prescription.

If an orbit is invariant under a little groug{, = {e by,....bn}, then the
corresponding group element 9.9 will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, tthis projector is

h
1
gp = H;bp (19.11)

In the cases that we have considered, the change of sign ntakdreinto account
by defining a sign functiomp(g) = +1, with the “-” sign if the symmetry element
g flips the neighborhood. Thed9.1]) is replaced by

h
Op = % Z e(bi) by . (19.12)
i=1

We have illustrated the above in set®.1.1by working out the full factorization
for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta functions

In chapterd we have shown that a discrete symmetry induces degeneeanizsy
periodic orbits and decomposes periodic orbits into répas of irreducible segments;
this reduction to a fundamental domain furthermore leadsctinvenient symbolic
dynamics compatible with the symmetry, and, most impolyatd a factorization

of dynamical zeta functions. This we now develop, first in aagal setting and
then for specific examples.
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19.4.1 Factorizations of dynamical dynamical zeta functins

According to (9.9 and (19.10, the contribution of a degenerate class of global
cycles (cyclep with multiplicity my, = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cyzle ~

(1-t2)9" = det(1- D(hg)ts) (19.13)

Let D(h) = B, d. D, (h) be the decomposition of the matrix representafih)
into thed, dimensional irreducible representatiom®f a finite groupG. Such
decompositions are block-diagonal, so the correspondingibution to the Euler
product (7.9 factorizes as

det (1- D(h)Y) = | | det (1~ Du(h))® . (19.14)

where now the product extends over all distidgtdimensional irreducible representations,
each contributingl, times. For the cycle expansion purposes, it has been camnteni

to emphasize that the group-theoretic factorization caeffieeted cycle by cycle,

as in (19.13; but from the transfer operator point of view, the key okagon

is that the symmetry reduces the transfer operator to a l@donal form; this

block diagonalization implies that the dynamical zeta fiows (17.15 factorize

as

1_ % , (—t - Ddet(l— Da(hp)ts) - (19.15)

@

Determinants ofi-dimensional irreducible representations can be evaluate
using the expansion of determinants in terms of traces,

det(1+ M) = 1+trM+= ((trM)2 tr M)
+é((trM)3—3(trM)(trM2)+2tr|v|3)

++d_1'((trM)d_) S (1916)

and each factor in1Q.14 can be evaluated by looking up the characierth) =
tr D, (h) in standard tables.[]]. In terms of characters, we have for the 1-dimensional
representations

det (1- Do(h)t) = 1 - yo(M)t
for the 2-dimensional representations

det(1- D,() = 1 xa(t+ 3 (o (0~ (9)) 2
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and so forth.

In the fully symmetric subspacela, (h) = 1 for all orbits; hence a straightforward
fundamental domain computation (with no group theory wisigalways yields a
part of the full spectrum. In practice this is the most ingéirey subspectrum, as it

contains the leading eigenvalue of the transfer operator. )
[exercise 19.2]

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinarit7(3 proceeds in essentially the
same manner as the factorization of dynamical zeta furetmurtlined above.
By (19.5 and (19.9 the trace of the transfer operatdr splits into the sum of
inequivalent irreducible subspace contributigistr £, with

Ly = > xa(h) f A% L% %).

heG

This leads by standard manipulations to the factorizatiof1©.9 into

F@ = ]_[Fa(z)d"
1 Xa(hp)Z®'

@ - exp{ ZZf|det V)|
P.

por=1

. (19.17)

whereMg = hsMj is the fundamental domain Jacobian. Boundary orbits requir
special treatment, discussed in s&éét.3.1, with examples given in the next section
as well as in the specific factorizations discussed below.

The factorizations 19.19, (19.17 are the central formulas of this chapter.
We now work out the group theory factorizations of cycle exgians of dynam-
ical zeta functions for the cases ©f andC3, symmetries. The cases of tlg,,
Cy4, symmetries are worked out in appendibelow.

19.5 C,factorization

As the simplest example of implementing the above schemsidentheC,

symmetry. For our purposes, all that we need to know hereaisehch orbit
or configuration is uniquely labeled by an infinite strifsg}, s = +, — and that
the dynamics is invariant under the - — interchange, i.e., it i€, symmetric.
The C, symmetry cycles separate into two classes, the self-dudlgtmations
+—, ++-—— +++—-——, +——+—++—, -, with multiplicity my = 1, and
the asymmetric configurations, —, + + —, — — +, - - -, with multiplicity mp = 2.
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For example, as there is no absolute distinction betweetufifeand the “down”
spins, or the “left” or the “right” lobet, =t_,t,._ =t,__, and so on.

The symmetry reduced labeling € {0, 1} is related to the standagle {+, -}
Ising spin labeling by

If s = s.1 then p=1

If s # s-1 then pi=0 (19.18)
For example+ = --- + + + +--- maps into---111... = 1 (and so does"),
== —+—+--mapsinto--000--- =0, =+ F= = ——F+——++-
maps into---0101--- = 01, and so forth. A list of such reductions is given in
table11.2

Depending on the maximal symmetry grotify that leaves an orbjpinvariant
(see sectsl9.2and19.3as well as secfl9.1.]), the contributions to the dynamical
zeta function factor as

A A
Ho=1e): (1-tp)° = (L-ts)(1-1p)
Ho={eo}: (1-15) = (I-tp)(l+tp), (19.19)

For example:

7’{++— =1{e}: (1 - t++—)2 (1 - tOOl)(l - t001)
Heo=leo}: (I-t) = (1-to) (1+tk), t-=8

This yields two binary cycle expansions. TAgsubspace dynamical zeta function
is given by the standard binary expansidg.(/). The antisymmetrié, subspace
dynamical zeta functiodia, differs from¢a, only by a minus sign for cycles with
an odd number of 0's:

1/ln, (1 + to)(1 = t)(1 + t10)(1 — t100)(1 + tr02)(1 + t1000)
(1~ t2001)(1 + t1012)(1 — t10000(1 + t10001)

(1 +t20010(1 — t1001)(1 — ta0100)(1 + t1011) - - -

= 1+1to—t1+ (tao — tato) — (taoo — taoto) + (tro1 — taots)

~(tr001 — tatoo1 — troato + taotots) — . ..... (19.20)

Note that the group theory factors do not destroy the curgatorrections (the
cycles and pseudo cycles are still arranged into shadovandpmations).

If the system under consideration has a boundary ocbitséct.19.3.7) with
group-theoretic factoh, = (e+ 0)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A Ay
boundary: (1-tp) = (1-tp)(1-0tp) (19.21)
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This is the ¢ part of the boundary orbit factorization of set.1.1

19.6 Cg, factorization: 3-disk game of pinball

The next example, th@s, symmetry, can be worked out by a glance at figure2(a).
For the symmetric 3-disk game of pinball the fundamental @ions bounded by

a disk segment and the two adjacent sections of the symmetsy/ that act as
mirrors (see figuréd 1.2 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on thedplice can be pieced
together from bounces in the fundamental domain, with symnaxes replaced
by flat mirror reflections. The binarf0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collisibtyjpe 0 reflects
the projectile to the disk it comes from (back—scatter), iwhe after a collision
of type 1 projectile continues to the third disk. For exam@le= - -- 232323 -
maps into---000- - - = 0 (and so ddl2 and13),123 = ---12312--- maps into
---111--- = 1 (and so doe&32), and so forth. A list of such reductions for short
cycles is given in tablé1.1

Cay has two 1-dimensional irreducible representations, sytricrand antisymmetric

under reflections, denoted; and Ay, and a pair of degenerate 2-dimensional
representations of mixed symmetry, denoEedlhe contribution of an orbit with
symmetryg to the 3¢ Euler product {9.14) factorizes according to

det (1-D(N) = (1 - xa, (M) (L xa (1) (1~ xe(h)t + xa,(2)” (19.22)

with the three factors contributing to ti@s, irreducible representation&;, A,
and E, respectively, and the 3-disk dynamical zeta functiondazes into =
§A1§Az§é- Substituting theCs, characters]0]

Ca |AL A, E
2

e 1 1
cc?| 1 1 -1
oy 1 -1 0

into (19.229), we obtain for the three classes of possible orbit syme{indicated
in the first column)

hs A A E
er (1-tp)° = (1-tp)d—tp)(1-2tp+13)?
cc?: (1-t)? A-tp)(L-tp)(A + tp+13)°
oy (-5 = (1-tp)(1+tp)(1+ Ot — t5)°. (19.23)

wherec, stands for any one of the three reflections.
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The Euler product {7.19 on each irreducible subspace follows from the
factorization (9.23. On the symmetricA; subspace théa, is given by the
standard binary curvature expansidi8(). The antisymmetridd, subspacea,
differs from¢a, only by a minus sign for cycles with an odd number of O's, and is
given in (19.20. For the mixed-symmetry subspaEehe curvature expansion is
given by

1/¢e

(1+ 2ty + )1 - Z2)(L + Ptigo + (1 - 2'12y)
(l + Z4t1001 + 28@001)(1 + 25t10000+ Zlotfooo&
(1+ Ptiogor+ 2200 (1 - Ptioor)?.. ..
= 142y +2(8 - 2) + Z(toor - t1t3)

+7 [toon + (toor — atd)ts — t§1]

+7 [toooo1+ too11— 2too111+ (too11 — 3 )ts + (85 - tS)t106}9-24)
We have reinserted the powerszaf order to group together cycles and pseudocycles
of the same length. Note that the factorized cycle expagsgietain the curvature

form; long cycles are still shadowed by (somewhat less als)icombinations of
pseudocycles.

Referring back to the topological polynomidl3.31) obtained by setting, =

1, we see that its factorization is a consequence ohdactorization of the,
function:

Yip=1-22, 1ip=1, YE=1+z, (19.25)

as obtained from1(8.7), (19.20 and (19.24 for t, = 1.
Their symmetry iK = {e, o}, so according to19.11), they pick up the group-

theoretic factohy = (e + ¢7)/2. If there is no sign change tp, then evaluation of
det (1- &Ztp) yields

A A E
boundary: (-tp)°® = (1-tp)(1-0ts)(1-1t5)?, tp=ts. (19.26)

However, if the cycle weight changes sign under reflectign= —t3, the boundary
orbit does not contribute to the subspace symmetric undkection across the
orbit;

A A E
boundary: (-tp)°® = (1-0p)(L-t)(1-1t5)?, tp=tp. (19.27)

Résum é

If a dynamical system has a discrete symmetry, the symmietyld be exploited;
much is gained, both in understanding of the spectra andaédieir evaluation.
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Once this is appreciated, itis hard to conceive of a calimratithout factorization;
it would correspond to quantum mechanical calculation®iouit wave—function
symmetrizations.

While the reformulation of the chaotic spectroscopy frora ttace sums to
the cycle expansions does not reduce the exponential giowihmber of cycles
with the cycle length, in practice only the short orbits ased and for them the
labor saving is dramatic. For example, for the 3-disk gampilball there are
256 periodic points of length 8, but reduction to the fundataedomain non-
degenerate prime cycles reduces the number of the distntscof length 8 to
30.

In addition, cycle expansions of the symmetry reduced dycalnzeta func-
tions converge dramatically faster than the unfactorizgdachical zeta func-
tions. One reason is that the unfactorized dynamical zatatitn has many
closely spaced zeros and zeros of multiplicity higher thae; since the cycle
expansion is a polynomial expansion in topological cycfegth, accommodating
such behavior requires many terms. The dynamical zetaifurscbn separate
subspaces have more evenly and widely spaced zeros, ar¢hemalm not have
symmetry-induced multiple zeros, and fewer cycle expangoms (short cycle
truncations) sfiice to determine them. Furthermore, the cycles in the fundtahe
domain sample state space more densely than in the full spacexample, for
the 3-disk problem, there are 9 distinct (symmetry unréjatgcles of length 7 or
less in full space, corresponding to 47 distinct periodim{so In the fundamental
domain, we have 8 (distinct) periodic orbits up to length d #ws 22 diferent
periodic points in 16-th the state space, i.e., an increase in density by a factor
with the same numericaliert.

We emphasize that the symmetry factorizati@8.23 of the dynamical zeta
function isintrinsic to the classical dynamics, and not a special property oftalian
spectra. The factorization is not restricted to the Hamilin systems, or only
to the configuration space symmetries; for example, theatiscsymmetry can
be a symmetry of the Hamiltonian phase spade [n conclusion, the manifold
advantages of the symmetry reduced dynamics should thubvieus; full state
space cycle expansions, such as those of exetéis are useful only for cross
checking purposes.

Commentary

Remark 19.1 Symmetry reductions in periodic orbit theory. This chapter is based on
long collaborative ffort with B. Eckhardt, ref. []. The group-theoretic factorizations of
dynamical zeta functions that we develop here were firstéhtced and applied in refi].
They are closely related to the symmetrizations introdibge@utzwiller [4] in the context
of the semiclassical periodic orbit trace formulas, put imore general group-theoretic
context by Robbins7], whose exposition, together with Lauritzen¥ freatment of the
boundary orbits, has influenced the presentation given Agr@symmetry reduced trace
formula for a finite symmetry grou@ = {e, gy, ..., gg} with |G| group elements, where
the integral over Haar measure is replaced by a finite grasgretie suniG|* Y =1,
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was derived in ref.]]. A related group-theoretic decomposition in context opésbolic
billiards was utilized in ref. J0], and for the Selberg’s zeta function in ref.]]. One of
its loftier antecedents is the Artin factorization formofalgebraic number theory, which
expresses the zeta-function of a finite extension of a gieddis a product df-functions

over all irreducible representations of the correspon@atpis group.

Remark 19.2 Computations.

The techniques of this chapter have been applied to

computations of the 3-disk classical and quantum spectedsn[7, 13, and to a “Zeeman
effect” pinball and the®y? potentials in ref. { 7]. In a larger perspective, the factorizations
developed above are special cases of a general approaghiddieg the group-theoretic
invariances in spectra computations, such as those usedimezation of periodic geodesics]
3, 13] for hyperbolic billiards [ 7] and Selberg zeta functionsd].

Remark 19.3 Other symmetries.

In addition to the symmetries exploited here, time

reversal symmetry and a variety of other non-trivial disesymmetries can induce further
relations among orbits; we shall point out several of exa®pf cycle degeneracies under
time reversal. We do not know whether such symmetries carxpleited for further

improvements of cycle expansions.

Exercises

19.1.

19.2.

19.3.

Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of fidrent
symmetries and fundamental domain cycles for the
sawtooth map of figur®.1 Compute the dynamical
zeta function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (9.9.

2-d asymmetric representation. The above
expressions can sometimes be simplified further using
standard group-theoretical methods. For example, the
3((rM)2 —tr M?) term in (19.19 is the trace of the
antisymmetric part of thévl x M Kronecker product.

Show that ife is a 2-dimensional representation, this iig 4

the A; antisymmetric representation, and
2-dim:  det(ED,(h)t) = 1y, (h)t+ya, (W)2.(19.28)

3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how
do they factorize (how do they look in thg, A,
and theE representations).
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19.5.

b) Find the shortest cycle with no symmetries and
factorize itasin a)

c

-

Find the shortest cycle that has the property that
its time reversal is not described by the same
symbolic dynamics.

d

=

Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizatiots.(9
and (19.179.

(Per Rosenqvist)

C, factorizations: the Lorenz and Ising systems. In

the Lorenz systeml] 3] the labels+ and - stand
for the left or the right lobe of the attractor and the
symmetry is a rotation by around the-axis. Similarly,
the Ising Hamiltonian (in the absence of an external
magnetic field) is invariant under spin flip. Work out
the factorizations for some of the short cycles in either
system.

Ising model. The Ising model with two states
& = {+,—} per site, periodic boundary condition, and



