Appendix K

Statistical mechanics recycled

(R. Mainieri)

dynamical system that isftierentiable and low-dimensional. The thermodynamic
limit quantities of the spin system are then equivalent thgltme averages

of the dynamical system. In this way the spin system averege$®e recast as the

cycle expansions. If the resulting dynamical system isyditathe convergence to

the thermodynamic limit is faster than with the standardgfer matrix techniques.

A sPIN sysTEM With long-range interactions can be converted into a chaoti

K.1 The thermodynamic limit

There are two motivations to recycle statistical mecharoog gets better control
over the thermodynamic limit and one gets detailed infoiromabn how one is
converging to it. From this information, most other quaesitof physical interst
can be computed.

In statistical mechanics one computes the averages ofvatides. These are
functions that return a number for every state of the systhay,are an abstraction
of the process of measuring the pressure or temperatureas.aldpe average of
an observable is computed in the thermodynamic limit — timé lof system with
an arbitrarily large number of particles. The thermodyr@limiit is an essential
step in the computation of averages, as it is only then thatatiserves the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamiogerties of
matter could not be derived within the framework of stat@timechanics. There
would be no extensive quantities, no equivalence of enssnland no phase
transitions. From experiments it is known that certain dgitias are extensive, that
is, they are proportional to the size of the system. Thisi$me for an interacting
set of particles. If two systems interacting via pairwisegpdials are brought close
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APPENDIX K. STATISTICAL MECHANICS RECYCLED 756

together, work will be required to join them, and the finahta@nergy will not be
the sum of the energies of each of the parts. To avoid the cob#itween the
experiments and the theory of Hamiltonian systems, onesnggstems with an
infinite number of particles. In the canonical ensemble tiobability of a state is
given by the Boltzman factor which does not impose the caasien of energy; in
the microcanonical ensemble energy is conserved but thizrBahn factor is no
longer exact. The equality between the ensembles only appethe limit of the
number of particles going to infinity at constant densitye Pihase transitions are
interpreted as points of non-analyticity of the free endrgthe thermodynamic
limit. For a finite system the patrtition function cannot haveero as a function of
the inverse temperatupk as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in gtedy of field
theories. A field theory can be first defined on a lattice and the lattice spacing
is taken to zero as the correlation length is kept fixed. Tlistinouum limit
corresponds to the thermodynamic limit. In lattice spacaings the correlation
length is going to infinity, and the interacting field theognde thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermwityhimit is slow.
If the thermodynamic limit exists for an interaction, thengergence of the free
energy per unit volumd is as an inverse power in the linear dimension of the
system.

tB) — % (K.1)

wheren is proportional tovY/4, with V the volume of thel-dimensional system.
Much better results can be obtained if the system can beideddy a transfer
matrix. A transfer matrix is concocted so that the tracesoftih power is exactly
the partition function of the system with one of the dimensigroportional to
n. When the system is described by a transfer matrix then theecgence is
exponential,

f(8) — e (K.2)

and may only be faster than that if all long-range correfetiof the system are
zero — that is, when there are no interactions. Thefammenta depends only on
the inverse correlation length of the system.

One of the dificulties in using the transfer matrix techniques is that gegm
at first limited to systems with finite range interactions. ag transitions can
happen only when the interaction is long range. One can tappyoximate the
long range interaction with a series of finite range intéoast that have an ever
increasing range. The problem with this approach is that fiormally defined
transfer matrix, not all the eigenvalues of the matrix cgpand to eigenvalues of
the system (in the sense that the rate of decay of correfatnot the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with &nsize scaling
to obtain accurate estimates of the parameters of systethgphase transitions.
(Accurate critical exponents are obtained by series expassr transfer matrices,
and infrequently by renormalization group arguments or td@@arlo.) In a phase
transition the cofficient a of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example afrectional integral.
For most interactions these integrals are ill-defined amglire some form of
normalization. In the spin models case the functional irstlets very simple,
as “space” has only two points and only “time” being infinigsho be dealt with.
The same problem occurs in the computation of the trace obfiea matrices
of systems with infinite range interactions. If one tries tonpute the partition
function Z,

Zn =1r Tn

whenT is an infinite matrix, the result may be infinite for any This is not to
say thatz, is infinite, but that the relation between the trace of an ajgerand the
partition function breaks down. We could try regulariziing expression, but as
we shall see below, that is not necessary, as there is a péitsical solution to
this problem.

What will described here solves both of these problems imé#dd context:
it regularizes the transfer operator in a physically megiuinway, and as a a
consequence, it allows for the faster than exponentialexgence to the thermodynamic
limit and complete determination of the spectrum. The steghieve this are:

e Redefine the transfer operator so that there are no limitdvied except for
the thermodynamic limit.

¢ Note that the divergences of this operator come from thetffeattit acts on
a very large space. All that is needed is the smallest subspamtaining
the eigenvector corresponding to the largest eigenvaheeGibbs state).

e Rewrite all observables as depending on a loffaltive field. The eigenvector
is like that, and the operator restricted to this space tetdass.

e Compute the spectrum of the transfer operator and obsesvadigic.

K.2 Ising models

The Ising model is a simple model to study the cooperatiteces of many small
interacting magnetic dipoles. The dipoles are placed ottiedaand their interaction
is greatly simplified. There can also be a field that includes dfects of an
external magnetic field and the averadieet of the dipoles among themselves.
We will define a general class of Ising models (also called spstems) where the

statmech - 1dec2001.tex



APPENDIX K. STATISTICAL MECHANICS RECYCLED 758

dipoles can be in one of many possible states and the intamaaxtend beyond
the nearest neighboring sites of the lattice. But before xtenel the Ising model,
we will examine the simplest model in that class.

K.2.1 Ising model

One of the simplest models in statistical mechanics is tirg Ismodel. One
imagines that one has a 1-dimensional lattice with smallmatyat each site that
can point either up or down.

c o o o O o o o O,

Each little magnet interacts only with its neighbors. [fith®th point in the same
direction, then they contribute an energy to the total energy of the system; and
if they point in opposite directions, then they contribut® The signs are chsen
so that they prefer to be aligned. Let us suppose that we maweall magnets
arranged in a line: A line is drawn between two sites to indichat there is an
interaction between the small magnets that are locatedatrsitie

O O O O O O O O O. (K.3)

(This figure can be thought of as a graph, with sites beingcesrand interacting
magnets indicated by edges.) To each of the sites we assaciatriable, that we
call a spin, that can be in either of two states: fipar down (). This represents
the two states of the small magnet on that site, and in gemexakill use the
notationXy to represent the set of possible values of a spin at any ditsites
assume the same set of values. A configuration consists ighags a value to
the spin at each site; a typical configuration is

1 1 i 1 i 1 i i 1

0—O0—0—0—0—0—0—0—0 . (K4

The set of all configurations for a lattice withsites is called2j and is formed
by the Cartesian produ€?y x Qq--- X Qq, the product repeated times. Each
configurationo € Q" is a string ofn spins

o ={00,01,...0n}, (K.5)

In the example configuratiorkK(4) there are two pairs of spins that have the
same orientation and six that have the opposite orientatidrerefore the total
energyH of the configuration is) x 6 — J x 2 = 4J. In general we can associate
an energyH to every configuration

H(@) = ) 36(01.14a). (K.6)
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where

+1 if o1 =05

8(o1,02) = { -1 if o1 # 02 e

One of the problems that was avoided when computing the gm&g what to do

at the boundaries of the 1-dimensional chain. Notice thatdten, (K.6) requires
the interaction of spim with spinn + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limit\aadvill connect
the first site to the last, implementing periodic boundanyditions.

Thermodynamic quantities are computed from the partitiomcfion Z™ as
the sizen of the system becomes very large. For example, the free epergite
f at inverse temperatugis given by

-pt(B) = lim % Inz®™ (K.8)

The partition functionZz(™ is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configomationtributes with
its Gibbs factor exp{BH (o)) and the partition functioZ™ is

zZM(pB) = Z gPHO) (K.9)

n
o€y

The partition function can be computed using transfer oedti This is a
method that generalizes to other models. At first, it is &elithysterious that
matrices show up in the study of a sum. To see where they came fve can
try and build a configuration on the lattice site by site. Thst fihing to do is to
expand out the sum for the energy of the configuration

Z(n)(ﬂ) — Z PI(1.02) Pb(2.073) |, PIb(on.or1) (K.10)

oeQn

Let us use the configuration iK(4). The first site isr1 =7. As the second site is
7, we know that the first term irk(10) is a termée®”. The third spin is|, so the
second term inK.10) is e®J. If the third spin had beef, then the term would
have beer?’ but it would not depend on the value of the first sgin This means
that the configuration can be built site by site and that tomatenthe Gibbs factor
for the configuration just requires knowing the last spineatidVe can then think
of the configuration as being a weighted random walk wherb stp of the walk
contributes according to the last spin added. The randork také place on the
Markov graph
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Choose one of the two sites as a starting point. Walk alongadlowed edge
making your choices randomly and keep track of the accuedlakight as you
perform then steps. To implement the periodic boundary conditions make s
that you return to the starting node of the Markov graph. éfwralk is carried out
in all possible 2 ways then the sum of all the weights is the partition functidm
perform the sum we consider the matrix

& el ] . (K.11)

TPB) = [ EANEY

As in chapterl0the sum of all closed walks is given by the trace of powers ef th
matrix. These powers can easily be re-expressed in ternfie dfvo eigenvalues
A1 andA, of the transfer matrix:

Z0(E) = r T(B) = 11(8)" + 12(8)" . (K.12)

K.2.2 Averages of observables

Averages of observables can be re-expressed in terms ofgéevectors of the
transfer matrix. Alternatively, one can introduce a modifieansfer matrix and
compute the averages through derivatives. Sounds fafiliar

K.2.3 General spin models

The more general version of the Ising model — the spin modelgilHbe defined
on a regular latticeZP. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by th€get

The transfer operatof was introduced by Kramers and Wanniéf][to study
the Ising model on a strip and concocted so that the traces offitpower is the
partition functionZ, of system when one of its dimensionsris The method
can be generalized to deal with any finite-range interactiénihe range of the
interaction isL, then7™ is a matrix of size 2x 2-. The longer the range, the larger
the matrix.

K.3 Fisher droplet model

In a series of articles’[]], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high teatpes, the typical
state of the system consists of droplets of all sizes floatitige gas phase. As the
temperature is lowered, the droplets coalesce, formingptattroplets, until at the
transition temperature, all droplets form one large onas &ha first order phase
transition.
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Although Fisher formulated the model in 3-dimensions, thalyic solution
of the model shows that it is equivalent to a 1-dimensioritickngas model with
long range interactions. Here we will show how the model carsdived for an
arbitrary interaction, as the solution only depends on #gyengtotic behavior of
the interaction.

The interest of the model for the study of cycle expansioritsigelation to
intermittency. By having an interaction that behaves aggtiqally as the scaling
function for intermittency, one expects that the analytiacure (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phasesiti@m [20].
Gallavotti [21] used it to show that the zeta functions cannot in generaktemded
to a meromorphic functions of the entire complex plane. Tioplét model has
also been used in dynamical systems to explain features deruzking, see
Artuso [27]. In computing the zeta function for the droplet model wd discover
that at low temperatures the cycle expansion has a limitidsaf convergence,
but it is possible to factorize the expansion into the prodéitwo functions, each
of them with a better understood radius of convergence.

K.3.1 Solution

The droplet model is a 1-dimensional lattice gas where edehcan have two
states: empty or occupied. We will represent the empty bia@eand the occupied
state by 1. The configurations of the model in this notatia then strings of
zeros and ones. Each configuration can be viewed as groupstid@ous ones
separated by one or more zeros. The contiguous ones reptieseinoplets in the
model. The droplets do not interact with each other, but midévidual particles
within each droplet do.

To determine the thermodynamics of the system we must assiggnergy
to every configuration. At very high temperatures we woulgest a gaseous
phase where there are many small droplets, and as we detheasemperature
the droplets would be expected to coalesce into larger ongisall some point
there is a phase transition and the configuration is dondniageone large drop.
To construct a solvable model and yet one with a phase tiamsite need long
range interaction among all the particles of a droplet. Om@Ece is to assign a
fixed energyé, for the interactions of the particles of a cluster of sizeln a
given droplet one has to consider all the possible clustaradd by contiguous
particles. Consider for example the configuration 0111010as two droplets,
one of size three and another of size one. The droplet of sizehas only one
cluster of size one and therefore contributes to the endripe@onfiguration with
6:. The cluster of size three has one cluster of size three, lugbers of size two,
and three clusters of size one; each cluster contributigtarm to the energy.
The total energy of the configuration is then

H(0111010)= 46, + 26, + 165. (K.13)
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If there where more zeros around the droplets in the abovégtwation the
energy would still be the same. The interaction of one sitih e others is
assumed to be finite, even in the ground state consisting wfgéesdroplet, so
there is a restriction on the sum of the cluster energiesdiye

a=> <. (K.14)

The configuration with all zeros does not contribute to thergy

Once we specify the functiafy, we can computed the energy of any configuration,
and from that determine the thermodynamics. Here we willuata the cycle
expansion for the model by first computing the generatingtion

cep =y 720 (.15

n>0

and then considering its exponential, the cycle expangach partition function
Z, must be evaluated with periodic boundary conditions. Saifwere computing
Z3 we must consider all eight binary sequences of three bitswdren computing
the energy of a configuration, say 011, we should determiaetiergy per three
sites of the long chain

...011011011011..

In this case the energy would lgg + 26;1. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the cordiipn would have
been the same. To compute the partition function we only neewnsider one
of the configurations and multiply by the length of the confadion to obtain the
contribution of all its rotated shifts. The factoyriLin the generating function
cancels this multiplicative factor. This reduction willtrtoold if the configuration
has a symmetry, as for example 0101 which has only two ro&dtificconfigurations.
To compensate this we replace thg Xactor by a symmetry factor/&(b) for
each configuratiol. The evaluation ofs is now reduced to summing over all
configurations that are not rotated shift equivalent, andcalethese the basic
configurations and the set of all of thdB We now need to evaluate

2
Gzp) =),

~_g#Hb) K.16
240) (29

The notation - | represents the cardinality of the set.

Any basic configuration can be built by considering the sedroplets that
form it. The smallest building block has size two, as we misi put a zero next
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to the one so that when twoftkrent blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets
2 01 (K.17)
3 001 011

4 0001 0011 0111

Each droplet of size contributes with energy

Wi = Z (n— K+ 1)0. (K.18)

1<k<n

So if we consider the sum

Z % (ZZe—ﬁH(Ol) + Z3(e—,8H(001) " e—,BH(Oll)) +

n>1
+ z4(9—3H(0001) 4 @AH(0011) | e—,BH(Olll)) 4. _)“ (K.19)

then the power im will generate all the configurations that are made from many
droplets, while thez will keep track of the size of the configuration. The factor
1/nis there to avoid the over-counting, as we only want the bemidigurations
and not its rotated shifts. Thegrifactor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can beft@ahply noticing
that it is a logarithmic series

—In(1- (Ze™M 4+ e+ M)+, (K.20)

where theH(b) factors have been evaluated in terms of the droplet erseViie

A proof of the equality of K.19) and (.20) can be given , but we there was not
enough space on the margin to write it down. The series thatbgracted from
one can be written as a product of two series and the logasthtten as

—-In(1-@+Z+2+ )z + e 4. ) (K.21)

The product of the two series can be directly interpreteti@génerating function
for sequences of droplets. The first series adds one or mare tmea configuration
and the second series add a droplet.

There is a whole class of configurations that is not includeitié above sum:
the configurations formed from a single droplet and the vatwonfiguration.
The vacuum is the easiest, as it has zero energy it only bokes az. The sum
of all the null configurations of all sizes is

> § : (K.22)

n>0

statmech - 1dec2001.tex



APPENDIX K. STATISTICAL MECHANICS RECYCLED 764

The factor Ynis here because the origifalhad them and the null configurations
have no rotated shifts. The single droplet configuratioss db not have rotated
shifts so their sum is

n

11...11

Zpe—ﬁH( P N 0

> - : (K.23)
n>0

Because there are no zeros in the above configuration dusftal size exist and
the energy of the configuration s}’ 6 which we denote bya.

From the three sum&(21), (K.22), and K.23) we can evaluate the generating
functionG to be

G(z8) = —In(1-2) - In(L — 2e72) - In(1 - 1%2 > 2y, (K.24)

n>1

The cycle expansiog~1(z ) is given by the exponential of the generating
functione ® and we obtain

Hep) = A=) AL+ ) ey (K.25)

n>1

To pursue this model further we need to have some assumlons the
interaction strengths,. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, thadt,is; —1/n2. With this we
can estimate that the energy of a droplet of size asymptotically

Wy~ —-n+ Inn+0(%). (K.26)

If the power chosen for the polynomially decaying interacthad been other than
inverse square we would still have the droplet term propodi ton, but there
would be no logarithmic term, and th@ term would be of a dferent power.
The term proportional ta survives even if the interactions falléf@xponentially,
and in this case the correction is exponentially small inalgmptotic formula.
To simplify the calculations we are going to assume that tiopldt energies are
exactly

W,=-n+Inn (K.27)

in a system of units where the dimensional constants are doesvaluate the
cycle expansioni.25) we need to evaluate the constanthe sum of all the),.
One can write a recursion for tifg

On = W — Z (n—K+ 1)8« (K.28)

1<k<n
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and with an initial choice fop, evaluate all the others. It can be verified that
independent of the choice éf the constandis equal to the number that multiplies
thenterm in (K.27). In the units used

a=-1. (K.29)

For the choice of droplet energil 27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch trartemale, . It is defined

by

2
$L(z s C) = Z m , (K.30)

n>0

excluding from the sum any term that has a zero denominatm.L€rch function
converges foifZ < 1. The series can be analytically continued to the complex
plane and it will have a branch point at= 1 with a cut chosen along the
positive real axis. In terms of Lerch transcendental fuomctive can write the
cycle expansionK.25) using K.27) as

2P = (1-2) (1- 21+ ou(z.5.1) (K.31)

This serves as an example of a zeta function that cannot eedad to a meromorphic
function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the Isstaloot of
(K.31). The root can come from any of the two factors. For largeeavalip (low
temperatures) the smallest root is determined from thezéd) factor, which gave
the contribution of a single large drop. For sm@&{large temperatures) the root is
determined by the zero of the other factor, and it correspaadhe contribution
from the gas phase of the droplet model. The transition cosiren the smallest
root of each of the factors become numerically equal. Thisrdgnes the critical
temperaturgs. through the equation

1-eP(1+R(B)) =0 (K.32)

which can be solved numerically. One finds tifat = 1.40495. The phase
transition occurs because the roots from twideslent factors get swapped in their
roles as the smallest root. This in general leads to a firgrgsase transition.
For largeg the Lerch transcendental is being evaluated at the branicit, pomd
therefore the cycle expansion cannot be an analytic fumetidow temperatures.
For large temperatures the smallest root is within the sadiuconvergence of
the series for the Lerch transcendental, and the cycle sigrahas a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a functiog tife smallest
root and the branch point get closer together until at exdb# phase transition
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they collide. This is a dticient condition for the existence of a first order phase
transitions. In the literature of zeta function<] there have been speculations on
how to characterize a phase transition within the formali3ine solution of the
Fisher droplet model suggests that for first order phaseitians the factorized
cycle expansion will have its smallest root within the radidi convergence of one
of the series except at the phase transition when the rdaesivith a singularity.
This does not seem to be the case for second order phas¢idresisi

The analyticity of the cycle expansion can be restored if ares@er separate
cycle expansions for each of the phases of the system. Ifpaate the two terms
of £71in (K.31), each of them is an analytic function and contains the sstibot
within the radius of convergence of the series for the relegavalues.

K.4 Scaling functions

There is a relation between general spin models and dynhsystem. If one
thinks of the boxes of the Markov partition of a hyperbolistgyn as the states
of a spin system, then computing averages in the dynamisaésyis carrying
out a sum over all possible states. One can even construnatbeal measure of
the dynamical system from a translational invariant “iat¢ion function” call the
scaling function.

There are many routes that lead to an explanation of whatlmgdanction
is and how to compute it. The shortest is by breaking away fiteenhistorical
development and considering first the presentation funatiba fractal. The
presentation function is a simple chaotic dynamical sysfleyperbolic, unlike
the circle map) that generates the fractal and is closetaelto the definition
of fractals of Hutchinson43] and the iterated dynamical systems introduced by
Barnsley and collaboratord f]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegéashion, rather we
will develop the formalism in a form that is directly applia to the experimental
data.

In the upper part of figur&.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction asel in levels, each
level being formed by a collection of segments. From onel levehe next, each
“parent” segment produces smaller “children” segmentseoyaving the middle
section. As the construction proceeds, the segments befeoximate the Cantor
set. In the figure not all the segments are the same size, senwger and some
are smaller, as is the case with multifractals. In the midhdiel Cantor set, the
ratio between a segment and the one it was generated fromaglyeg/3, but in
the case shown in the figure the ratiofeli from 1/3. If we went through the last
level of the construction and made a plot of the segment numuie its ratio to
its parent segment we would have a scaling function, asaieficin the figure.
A function giving the ratios in the construction of a fracisthe basic idea for a
scaling function. Much of the formalism that we will introcki is to be able to
give precise names to every segments and to arrange thadgéhef segments
so that the children segments have the correct parent. Ifoveod take these
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Figure K.1: Construction of the steps of the scaling
function from a Cantor set. From one level to the

next in the construction of the Cantor set the covers -
are shrunk, each parent segment into two children,
segments. The shrinkage of the last level of thg
construction is plotted and by removing the gaps orie o
has an approximation to the scaling function of the °* _
Cantor set. ! positon

Figure K.2: A Cantor set presentation function. The /:
Cantor set is the set of all points that under iteration do-#;
not leave the interval [A]. This set can be found by ° j
backwards iterating the gap between the two branches—
of the map. The dotted lines can be used to find these: | |
backward images. At each step of the construction one§ P
is left with a set of segments that form a cover of the — —
Cantor set. S

cover set

%

%

0%

precautions, the scaling function would be a “wild functiorarying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the gaidmap that
appears in the theory of period doubling. This is becausedhwinatorial manipulations
are much simpler for this map than they are for the circle ma@jpe scaling
function will be described for a one dimensional nfa@as shown in figure<.2.

Drawn is the map

F(X) = 5x(1 - X) (K.33)

restricted to the unit interval. We will see that this map [soaa presentation
function.

It has two branches separated by a gap: one over the lefoparfithe unit
interval and one over the right. If we choose a potrdit random in the unit
interval and iterate it under the action of the nig{K.33), it will hop between the
branches and eventually get mapped to minus infinity. At @dint is guaranteed
to go to minus infinity if it lands in the gap. The hopping of {ha@nt defines the
orbit of the initial pointx: X — X1 — X2 — ---. For each orbit of the map we
can associate a symbolic code. The code for this map is fofroedOs and 1s
and is found from the orbit by associating a &if< 1/2 and a 1 ifx; > 1/2, with
t=012,...

Most initial points will end up in the gap region between th® toranches.
We then say that the orbit point has escaped the unit intella points that do
not escape form a Cantor s€et(or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describingthé points that do not
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escape, the malp can be used as a presentation of the Canta sehd has been
called a presentation function by Feigenbaurd.[

How does the majp- “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escapenihénterval in one
iteration of the map. These are the points that are not péneajap. These points
determine two segments, which are an approximation to th@o€aet. In the
next step we determine the points that do not escape in twatigas. These are
the points that get mapped into the gap in one iteration, dlsemext iteration
they will escape; these points form the two segme&ﬁ)& and A(ll) atlevel 1 in
figure K.2. The processes can be continued for any number of iteratibwge
observe carefully what is being done, we discover that dt stp the pre-images
of the gap (backward iterates) are being removed from theinterval. As the
map has two branches, every point in the gap has two pre-snagel therefore
the whole gap has two pre-images in the form of two smallesg@p generate all
the gaps in the Cantor set one just has to iterate the gap bad&wEach iteration
of the gap defines a set of segments, with iitteiterate defining the segments
A(k”) at leveln. For this map there will be™segments at leved, with the first few
drawn in figureK.2. Asn — oo the segments that remain for at leasterates
converge to the Cantor set

The segments at one level form a cover for the Cantor set @fidaim a cover
that all the invariant information about the set is extrdcfne cover generated
from the backward iterates of the gap form a Markov partifienthe map as a
dynamical system). The segmem&(”)} at leveln are a refinement of the cover
formed by segments at level- 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalinfg), and the generalized
dimensions.

To define the scaling function we must give labels (hameshacsegments.
The labels are chosen so that the definition of the scalingtifum allows for
simple approximations. As each segment is generated fromvanse image
of the unit interval, we will consider the inverse of the metion functionF.
Becausd- does not have a unique inverse, we have to consider restigctif .

Its restriction to the first half of the segment, from 0 #21has a unique inverse,
which we will call Fgl, and its restriction to the second half, fronlto 1, also
has a unique inverse, which we will c&lll’l. For example, the segment labeled
A®)(0,1) in figureK.2 is formed from the inverse image of the unit interval by
mappingA©, the unit interval, withF;* and therF 2, so that the segment

AD(0,1) = Fg* (F1*(A9)) . (K.34)

The mapping of the unit interval into a smaller interval isavlletermines its
label. The sequence of the labels of the inverse maps islleédéthe segment:

A(n)(el, €,...,6n) = FE_1 oF1lo... Fe—nl (A(O)) )

1 €

The scaling function is formed from a set of ratios of segmésrigth. We use
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| - | around a segmemt" (¢) to denote its size (length), and define

A (e, e, ..., &)l
A-D(e, ..., 6)

Ve, e,....6) =

We can then arrange the ratio$) (1, e, . . ., €,) next to each other as piecewise
constant segments in increasing order of their binary lahe, . . ., &, so that the
collection of steps scan the unit interval. As— o this collection of steps will
converge to the scaling function.

K.5 Geometrization

The £ operator is a generalization of the transfer matrix. It gadse by considering
less of the matrix: instead of considering the whole matiixpossible to consider
just one of the rows of the matrix. The operator also makes explicit the vector
space in which it acts: that of the observable functions.e@lables are functions
that to each configuration of the system associate a numiber.energy, the
average magnetization, the correlation between two sitess in the average
of observables that one is interested in. Like the transtatriry the £ operator
considers only semi-infinite systems, that is, only the pfttie interaction between
spins to the right is taken into account. This may sound umrsgtric, but it
is a simple way to count each interaction only once, even sesavhere the
interaction includes three or more spin couplings. To detieel operator one
needs the interaction energy between one spin and all theorésright, which is
given by the functior. The £ operators defined as

Lg(0) = ) gooo)e .

00€Q

To each possible value i€ that the spinog can assume, an average of the
observableg is computed weighed by the Boltzmann faceof?. The formal
relations that stem from this definition are its relation lte free energy when
applied to the observabldahat returns one for any configuration:

— h 1 n
~p1(B) = lim ~In||L"|
and the thermodynamic average of an observable

1Ll

= lim —/—.
<g> Mo 00 ||-£nt||
Both relations hold for almost all configurations. Thesetiehs are part of
theorem of Ruelle that enlarges the domain of the Perrobdfias theorem and
sharpens its results. The theorem shows that just as trsfdranatrix, the largest
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eigenvalue of thel operator is related to the free-energy of the spin systeatsat
hows that there is a formula for the eigenvector related éddlgest eigenvalue.
This eigenvectojp) (or the corresponding one for the adjoifit of £) is the Gibbs
state of the system. From it all averages of interest instieél mechanics can be
computed from the formula

(9) = {pldlp) -

The Gibbs state can be expressed in an explicit form in tefihednteractions,
but itis of little computational value as it involves the Ggbstate for a related spin
system. Even then it does have an enormous theoretical. iadter we will see
how the formula can be used to manipulate the space of olidesvinto a more
convenient space.

The geometrization of a spin system converts the shift dyceufmecessary
to define the Ruelle operator) into a smooth dynamics. Thésgjisvalent to the
mathematical problem in ergodic theory of finding a smoottbedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set o Rgpsuch that

Fs(0)=0

and

FoyoFgy,0:--0F4 (0)=¢(+,01,02,....,0n,—,—,...).

This is a formal relation that expresses how the interadgida be converted into
a dynamical systems. In most examples is a collection of maps from a subset
of RP to itself.

If the interaction is complicated, then the dimension of $be of maps may
be infinite. If the resulting dynamical system is infinite bave gained anything
from the transformation? The gain in this case is not in teofredded speed of
convergence to the thermodynamic limit, but in the fact thatRuelle operator
is of trace-class and all eigenvalues are related to thesystem and not artifacts
of the computation.

The construction of the higher dimensional system is donbdryowing the
state space reconstruction technique from dynamicalmsgst8tate space reconstruction
can be done in several ways: by using delay coordinates, ibg derivatives of
the position, or by considering the value of several inddpah observables of
the system. All these may be used in the construction of th&valent dynamics.
Just as in the study of dynamical systems, the exact methesl miat matter for
the determination of the thermodynamidg«) spectra, generalized dimension),
also in the construction of the equivalent dynamics the testaaice of observable
does not matter.
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We will only consider configurations for the half line. Ths because for
translational invariant interactions the thermodynanmaitlon half line is the
same as in the whole line. One can prove this by consideriagliference in
a thermodynamic average in the line and in the semiline anthace the two as
the size of the system goes to infinity.

When the interactions are long range in principle one hagdoify the boundary
conditions to be able to compute the interaction energy obrdiguration in
a finite box. If there are no phase transitions for the int@wac then which
boundary conditions are chosen is irrelevant in the thegmanhic limit. When
computing quantities with the transfer matrix, the longgamteraction is truncated
at some finite range and the truncated interaction is thetouaaluate the transfer
matrix. With the Ruelle operator the interaction is neventated, and the boundary
must be specified.

The interactions(o) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

O EDIN ()

n>0

with different choices od(n) leading to diferent models. 18(n) = Lonly ifn=1
and ) otherwise, then one has the nearest neighbor Isinglnibdén) = n~2, then
one has the inverse square model relevant in the study ofdhdd<problem.

Let us say that each site of the lattice can assume two valuesnd the set
of all possible configurations of the semiline is the QetThen an observablg
is a function from the set of configuratioisto the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to thinkhef tonfiguration as
a string of spins. One can append a spjrto its beginningy Vv o, in which case
n is at site Owq at site 1, and so on.

The Ruelle operatar’ is defined as

Lo = ) dlwoV n)e o).

woeRo

This is a positive and bounded operator over the space ofdesliobservables.
There is a generalization of the Perron-Frobenius theoseRulelle that establishes
that the largest eigenvalue #fis isolated from the rest of the spectrum and gives
the thermodynamics of the spin system just as the largesiheadue of the transfer
matrix does. Ruelle also gave a formula for the eigenvedated to the largest
eigenvalue.

The dfficulty with it is that the relation between the partition ftinoo and the
trace of itsnth power, trL" = Z, no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observalilego),. .., X1(o)}. The idea
is to choose the observables in such a way that from theiesabm a particular
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configurationo the configuration can be reconstructed. We also introduee th
interaction observablds;,.

To geometrize spin systems, the interactions are assuniegittanslationally
invariant. The spinsg will only assume a finite number of values. For simplicity,
we will take the interactiog among the spins to depend only on pairwise interactions,

8(0) = (00, 01,02,...) = JoT0+ ) Sy M), (K.35)

n>0

and limito to be in{+, —}. For the 1-dimensional Ising mode), is the external
magnetic field andly(n) = 1 if n = 1 and 0 otherwise. For an exponentially
decaying interactiod;(n) = e *". Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spinslok co with helical boundary
conditions is modeled by the potentil(n) = 5p1 + on.L-

The transfer operatof was introduced by Kramers and Wanni&¥?][to study
the Ising model on a strip and concocted so that the traces oftitpower is the
partition functionZ, of system when one of its dimensionsisThe method can be
generalized to deal with any finite-range interaction. & thnge of the interaction
is L, then7™ is a matrix of size 2x 2-. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to defiegt operator by
its action on an observablg Just as the observables in quantum mechaugics,
is a function that associates a number to every state (caafign of spins). The
energy density and the average magnetization are exanfpdeservables. From
this equivalent definition one can recover the usual tramafgrix by making all
quantities finite range. For a semi-infinite configuratioe: {0, o1, .. .}:

T9(0) = g+ vV 0)e PV 4 g(— v 0)e PV (K.36)

By + Vv o we mean the configuration obtained by prepending the beginning

of o resulting in the configuration+, 0g,01,...}. When the range becomes
infinite, tr7™" is infinite and there is no longer a connection between theetra
and the partition function for a system of sizéhis is a case where matrices give
the wrong intuition). Ruellell3] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactiom$atigest eigenvalue of
the7 operator is related to the free-energy of the spin systenttencbrresponding
eigenvector is related to the Gibbs state. By applyintp the constant observable
u, which returns 1 for any configuration, the free energy perfsis computed as

-Bf(p) = r!mo % Inf|7"u||. (K.37)

To construct a smooth dynamical system that reproduces ritygegiies of
7, one uses the phase space reconstruction technique ofr@atlkad. [6] and
Takens [], and introduces a vector of state observables = {xi(0), ..., Xp(c)}.
To avoid complicated notation we will limit the discussianthe example(o) =
{X, (o), X_(0)}, with X, () = ¢(+ Vv o) andx_(0) = ¢(— V o); the more general
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case is similar and used in a later example. The observaldessiricted to those

g for which, for all configurationsr, there exist an analytic functio@ such that
G(x1(0), ..., xp(0)) = g(o). This at first seems a severe restriction as it may
exclude the eigenvector corresponding to the Gibbs statanlbe checked that
this is not the case by using the formula given by Ruellg for this eigenvector.

A simple example where this formalism can be carried outighe interaction
¢(o) with pairwise exponentially decaying potentialn) = a" (with |a] < 1). In

this cases(o) = Yn-0900.0,@" @and the state observables atgo) = X105 o, @"
andx_(0) = Yn00-,,a". In this case the observabige gives the energy of
spin at the origin, and_ the energy of & spin.

Using the observables. andx_, the transfer operator can be re-expressed as

TG (x(0)) = Z G (npVo),x (nvo))er), (K.38)

ne{+.-}

In this equation the only reference to the configuratiors when computing the
new observable values (n v o) andx_(n Vv o). The iteration of the function that
gives these values in terms »f(o") andx_(o) is the dynamical system that will
reproduce the properties of the spin system. For the simxplereentially decaying
potential this is given by two mapk,, andF_. The mapF, takes{x, (o), x; (o)}
into {x, (+ Vo), x_(+Vvo)} whichis{a(1+ x,), ax_} and the map-_ takes{x,, x_}
into {ax,,a(1 + x_)}. In a more general case we have mépghat takex(o) to
X(n Vv o).

We can now define a new operatgr

£6() E'Te(x0) = Y G(F,x)e, (K.39)
nef+,—}

where all dependencies orhave disappeared — if we know the value of the state
observables, the action of£ onG can be computed.

A dynamical system is formed out of the maps. They are chosen so
that one of the state variables is the interaction energye € consider the
two mapsF, and F_ as the inverse branches of a hyperbolic nfaphat is,
f~1(x) = {F.(X),F_(xX)}. Studying the thermodynamics of the interactipris
equivalent to studying the long term behavior of the orbithe mapf, achieving
the transformation of the spin system into a dynamical syste

Unlike the original transfer operator, thé operator — acting in the space
of observables that depend only on the state variables — tgaoé-class (its
trace is finite). The finite trace gives us a chance to reladrtice ofL" to the
partition function of a system of size We can do better. As most properties of
interest (thermodynamics, fallfoof correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholmmuiett det (£ zL)
by the technique of cycle expansions developed for dyndrsigstems P]. A
cycle expansion consists of finding a power series exparieraie determinant
by writing det (1- z£) = exp(tr In(1- z£)). The logarithm is expanded into a
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power series and one is left with terms of the fornfrto evaluate. For evaluating
the trace, theL operator is equivalent to

LG(X) = fR ) dys(y — f(x)e™G(y) (K.40)

from which the trace can be computed:

=y e (K.41)
x:f(on)(x) |det (1 - aXf(on)(x)) | '

with the sum running over all the fixed points Bf" (all spin configurations of a
given length). Herd " is f composed with itselfi times, andH (X) is the energy
of the configuration associated with the poiatIn practice the mag is never

constructed and the energies are obtained directly froraghmneconfigurations.

To compute the value of #£" we must compute the value &ff©"; this
involves a functional derivative. To any degree of accuraayumberx in the
range of possible interaction energies can be represegtadifite string of spins
€, such ax = ¢(+, €, €1,...,—, —,...). By choosing the sequeneeto have a
large sequence of spinrs the numberx can be made as small as needed, so in
particular we can represent a small variationglfy). As x,(e) = ¢(+ V €), from
the definition of a derivative we have:

(e vn™) — ¢(e)
S T gy

(K.42)

wheren(™ is a sequence of spin strings that make™) smaller and smaller. By
substituting the definition o in terms of its pairwise interactiod(n) = nsa™
and taking the limit for the sequence®” = {+,—, —, ..., 7m1s Jms2, ...} ONE
computes that the limitigif y = 1, 1ify < 1, and 0 ify > 1. It does not
depend on the positive value sf Wheny < 1 the resulting dynamical system is
not hyperbolic and the construction for the operafofails, so one cannot apply
it to potentials such as (2)V". One may solve this problem by investigating the
behavior of the formal dynamical systemyas» 0.

The manipulations have up to now assumed that the mepsmooth. If
the dimensionD of the embedding space is too smdil,may not be smooth.
Determining under which conditions the embedding is sma®# complicated
question [5]. But in the case of spin systems with pairwise interactignis
possible to give a simple rule. If the interaction is of thatio

H(T) =) b ), P (K.43)

n>1 k

where px are polynomials anday| < 1, then the state observables to use are
Xsk(o) = 3 6+,Unnsak”. For eachk one usesy, X1k - - - up to the largest power
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@(+v+vo)

05 -
Figure K.3: The spin adding map. for the potential )
Jin) = Y r?a™. The action of the map takes the

value of the interaction energy betweeand the semi-

infinite configuration{o-1, 0,073, ...} and returns the
interaction energy betweem and the configuration % 0%5 — i
{+,O'1,O'2,O'3,...}. @(+vo)
Orge 1 T T ]
[ ~®x ]
2L Tex ]
. [ ) X
-4 . X -
[%) B X 1
I ST
6 . * b
Figure K.4: Number of digits for the Fredholm 81 * ]
method ¢) and the transfer function methodk)( r .
The size refers to the largest cycle considered in the l L el ]
Fredholm expansions, and the truncation length in the '100 5 10 15 20
case of the transfer matrix. size

in the polynomialpy. An example is the interaction withy(n) = n?(3/10)". It

leads to a 3-dimensional system with variablgg, x10, and x2o. The action

of the mapF, for this interaction is illustrated figurg.3. Plotted are the pairs
{p(+Vo), p(+V+Vo)}. This can be seen as the strange attractor of a chaotic system
for which the variables o, X1,0, andxy,o provide a good (analytic) embedding.

The added smoothness and trace-class offlloperator translates into faster
convergence towards the thermodynamic limit. As the recooted dynamics is
analytic, the convergence towards the thermodynamic igfédster than exponential |,
16]. We will illustrate this with the polynomial-exponenti@iteractions K.43)
with y = 1, as the convergence is certainly faster than exponeftial 3 1,
and the case d" has been studied in terms of another Fredholm determinant by
Gutzwiller [1L7]. The convergence is illustrated in figuke4 for the interaction
n?(3/10)". Plotted in the graph, to illustrate the transfer matrixvagence, are
the number of decimal digits that remain unchanged as tlgerafithe interaction
is increased. Also in the graph are the number of decimatditiat remain
unchanged as the largest power offr considered. The plot isfiectively a
logarithmic plot and straight lines indicate exponenyiddst convergence. The
curvature indicates that the convergence is faster thaonexpial. By fitting, one
can verify that the free energy is converging to its limitvajue as exp{n*/3)).
Cvitanovit [L7] has estimated that the Fredholm determinant of a map bn a
dimensional space should converge as erf(/®)), which is confirmed by these
numerical simulations.
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Résum é

The geometrization of spin systems strengthens the cdondmttween statistical
mechanics and dynamical systems. It also further estaslighe value of the
Fredholm determinant of th€ operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and sassiclal mechanics. The
example above emphasizes the high accuracy that can beeyditéy computing
the shortest 14 periodic orbits of period 5 or less it is gaedo obtain three digit
accuracy for the free energy. For the same accuracy withnafeamatrix one
has to consider a 256 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark K.1 Presentation functions.  The best place to read about Feigenbaum’s
work is in his review article published ihos Alamos Science (reproduced in various
reprint collections and conference proceedings, suchfagsfe Feigenbaum’sournal

of Statistical Physicsarticle [L3] is the easiest place to learn about presentation functions

Remark K.2 Interactions are smooth In most computational schemes for thermodynamic
quantities the translation invariance and the smoothrfase dvasic interaction are never
used. In Monte Carlo schemes, aside from the periodic bayrdaditions, the interaction

can be arbitrary. In principle for each configuration it @bbe possible to have aftkrent
energy. Schemes such as the Sweneson-Wang cluster fliggoviitam use the fact that
interaction is local and are able to obtain dramatic spgediuthe equilibration time for

the dynamical Monte Carlo simulation. In the geometrizapioogram for spin systems,

the interactions are assumed translation invariant ancdb#maorhe smoothness means
that any interaction can be decomposed into a series of thiahdepend only on the spin
arrangement and the distance between spins:

¢(00,01,02,...) = Jooo + Z 8(o0, on)d1(n) + Z 8(0r0, oy 0, ) J2(N1, N2) + -+

where theJy are symmetric functions of their arguments anddtege arbitrary discrete
functions. This includes external constant fields (but it excludes site dependent fields
such as a random external magnetic field.

Exercises

K.1. Not all Banach spaces are also Hilbert. If we are to find an inner produgt, - ) (so thatB is also a Hilbert
given a norn|-|| of a Banach spadg, it may be possible
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K.2.

K.3.

K.4.

spaceH) such that for all vector$ € B, we have
IFIl = ¢f, £

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that
we just are not being clever enough? By checking the

77

U/ (% (Y (4 (Y (Y \
Assume that whenever there is a bond connecting two
sites, there is a contributiaid(c, ;) to the energy.

made into a Hilbert space if and only if the norm satisfies
the parallelogram law. The parallelogram law says that
for any two vectord andg the equality

If +gl?+IIf —gll? = 21flI* + 2lgl?,

must hold.

Consider the space of bounded observables with the
norm given byllall = sup,.qr la(o)l. Show that there
is no scalar product that will induce this norm.

Automaton for a droplet. Find the Markov
graph and the weights on the edges so that the energies
of configurations for the droplet model are correctly
generated. For any string starting in zero and ending
in zero your diagram should yield a configuration the
weighte™(@), with H computed along the lines ok (13)

and K.18).

Hint: the Markov graph is infinite.

Spectral determinant for a" interactions  Compute
the spectral determinant for 1-dimensional Ising model
with the interaction

() = Y d6(co, o).

k>0

Takea as a number smaller tha2.

(a) Whatis the dynamical system this generates? That
is, find F, andF_ as used inK.39).

(b) Show that

d

a o
&FH or-} =

0 a

Ising model on a thin strip Compute the transfer
matrix for the Ising model defined on the graph

References

returns zero or one for every infinite binary string::

{0, 1) — {0, 1}. Its value is represented by(er, e, . . .)
where theg are either 0 or 1. We will now define an
operator7” that acts on observables on the space of
binary strings. A functiora is an observable if it has
bounded variation, that is, if

llall = supla(er, ez, ...)| < o0

(&}
For these functions
Ta(er, e,...)=a(0,e,e,...)0(0, e, e,...)+a(l, e,

The functiono is assumed such that anydfs “matrix
representations” in (a) have the Markov property (the
matrix, if read as an adjacency graph, corresponds to
a graph where one can go from any node to any other
node).

(a) (easy) Consider a finite versidp of the operator

T
Thaler, e,...,6) =
a0, €1, €,...,6-1)0(0, €1, €, ..., 61-1) +
a(l, e, e,....en-1)0L, €1, €,...,61-1).

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent. of

(b) (medium) With the operator norm induced by the
function norm, show thaf is a bounded operator.

(c) (hard) Show thal is nottrace-class. (Hint: check
if 7 is compact).

Classes of operators are nested; trace-gtassmpact
bounded.
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