
Appendix K

Statistical mechanics recycled

(R. Mainieri)

A   with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The thermodynamic
limit quantities of the spin system are then equivalent to long time averages

of the dynamical system. In this way the spin system averagescan be recast as the
cycle expansions. If the resulting dynamical system is analytic, the convergence to
the thermodynamic limit is faster than with the standard transfer matrix techniques.

K.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better control
over the thermodynamic limit and one gets detailed information on how one is
converging to it. From this information, most other quantities of physical interst
can be computed.

In statistical mechanics one computes the averages of observables. These are
functions that return a number for every state of the system;they are an abstraction
of the process of measuring the pressure or temperature of a gas. The average of
an observable is computed in the thermodynamic limit — the limit of system with
an arbitrarily large number of particles. The thermodynamic limit is an essential
step in the computation of averages, as it is only then that one observes the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamic properties of
matter could not be derived within the framework of statistical mechanics. There
would be no extensive quantities, no equivalence of ensembles, and no phase
transitions. From experiments it is known that certain quantities are extensive, that
is, they are proportional to the size of the system. This is not true for an interacting
set of particles. If two systems interacting via pairwise potentials are brought close
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together, work will be required to join them, and the final total energy will not be
the sum of the energies of each of the parts. To avoid the conflict between the
experiments and the theory of Hamiltonian systems, one needs systems with an
infinite number of particles. In the canonical ensemble the probability of a state is
given by the Boltzman factor which does not impose the conservation of energy; in
the microcanonical ensemble energy is conserved but the Boltzmann factor is no
longer exact. The equality between the ensembles only appears in the limit of the
number of particles going to infinity at constant density. The phase transitions are
interpreted as points of non-analyticity of the free energyin the thermodynamic
limit. For a finite system the partition function cannot havea zero as a function of
the inverse temperatureβ, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in thestudy of field
theories. A field theory can be first defined on a lattice and then the lattice spacing
is taken to zero as the correlation length is kept fixed. This continuum limit
corresponds to the thermodynamic limit. In lattice spacingunits the correlation
length is going to infinity, and the interacting field theory can be thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermodynamic limit is slow.
If the thermodynamic limit exists for an interaction, the convergence of the free
energy per unit volumef is as an inverse power in the linear dimension of the
system.

f (β)→ 1
n

(K.1)

wheren is proportional toV1/d, with V the volume of thed-dimensional system.
Much better results can be obtained if the system can be described by a transfer
matrix. A transfer matrix is concocted so that the trace of its nth power is exactly
the partition function of the system with one of the dimensions proportional to
n. When the system is described by a transfer matrix then the convergence is
exponential,

f (β)→ e−αn (K.2)

and may only be faster than that if all long-range correlations of the system are
zero — that is, when there are no interactions. The coefficientα depends only on
the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that theyseem
at first limited to systems with finite range interactions. Phase transitions can
happen only when the interaction is long range. One can try toapproximate the
long range interaction with a series of finite range interactions that have an ever
increasing range. The problem with this approach is that in aformally defined
transfer matrix, not all the eigenvalues of the matrix correspond to eigenvalues of
the system (in the sense that the rate of decay of correlations is not the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with finite size scaling
to obtain accurate estimates of the parameters of systems with phase transitions.
(Accurate critical exponents are obtained by series expansions or transfer matrices,
and infrequently by renormalization group arguments or Monte Carlo.) In a phase
transition the coefficient α of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example of a functional integral.
For most interactions these integrals are ill-defined and require some form of
normalization. In the spin models case the functional integral is very simple,
as “space” has only two points and only “time” being infinite has to be dealt with.
The same problem occurs in the computation of the trace of transfer matrices
of systems with infinite range interactions. If one tries to compute the partition
functionZn

Zn = tr T n

whenT is an infinite matrix, the result may be infinite for anyn. This is not to
say thatZn is infinite, but that the relation between the trace of an operator and the
partition function breaks down. We could try regularizing the expression, but as
we shall see below, that is not necessary, as there is a betterphysical solution to
this problem.

What will described here solves both of these problems in a limited context:
it regularizes the transfer operator in a physically meaningful way, and as a a
consequence, it allows for the faster than exponential convergence to the thermodynamic
limit and complete determination of the spectrum. The stepsto achieve this are:

• Redefine the transfer operator so that there are no limits involved except for
the thermodynamic limit.

• Note that the divergences of this operator come from the factthat it acts on
a very large space. All that is needed is the smallest subspace containing
the eigenvector corresponding to the largest eigenvalue (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The eigenvector
is like that, and the operator restricted to this space is trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

K.2 Ising models

The Ising model is a simple model to study the cooperative effects of many small
interacting magnetic dipoles. The dipoles are placed on a lattice and their interaction
is greatly simplified. There can also be a field that includes the effects of an
external magnetic field and the average effect of the dipoles among themselves.
We will define a general class of Ising models (also called spin systems) where the
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dipoles can be in one of many possible states and the interactions extend beyond
the nearest neighboring sites of the lattice. But before we extend the Ising model,
we will examine the simplest model in that class.

K.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One
imagines that one has a 1-dimensional lattice with small magnets at each site that
can point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in the same
direction, then they contribute an energy−J to the total energy of the system; and
if they point in opposite directions, then they contribute+J. The signs are chsen
so that they prefer to be aligned. Let us suppose that we haven small magnets
arranged in a line: A line is drawn between two sites to indicate that there is an
interaction between the small magnets that are located on that site

. (K.3)

(This figure can be thought of as a graph, with sites being vertices and interacting
magnets indicated by edges.) To each of the sites we associate a variable, that we
call a spin, that can be in either of two states: up (↑) or down (↓). This represents
the two states of the small magnet on that site, and in generalwe will use the
notationΣ0 to represent the set of possible values of a spin at any site; all sites
assume the same set of values. A configuration consists of assigning a value to
the spin at each site; a typical configuration is

↓
 ↑
↑
 ↑
 ↓
 ↑
 ↑
 ↓
↓


. (K.4)

The set of all configurations for a lattice withn sites is calledΩn
0 and is formed

by the Cartesian productΩ0 × Ω0 · · · × Ω0, the product repeatedn times. Each
configurationσ ∈ Ωn is a string ofn spins

σ = {σ0, σ1, . . . σn} , (K.5)

In the example configuration (K.4) there are two pairs of spins that have the
same orientation and six that have the opposite orientation. Therefore the total
energyH of the configuration isJ × 6− J × 2 = 4J. In general we can associate
an energyH to every configuration

H(σ) =
∑

i

Jδ(σi, σi+1) , (K.6)
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where

δ(σ1, σ2) =

{

+1 if σ1 = σ2
−1 if σ1 , σ2

. (K.7)

One of the problems that was avoided when computing the energy was what to do
at the boundaries of the 1-dimensional chain. Notice that aswritten, (K.6) requires
the interaction of spinn with spin n + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limit andwe will connect
the first site to the last, implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function Z(n) as
the sizen of the system becomes very large. For example, the free energy per site
f at inverse temperatureβ is given by

− β f (β) = lim
n→∞

1
n

ln Z(n) . (K.8)

The partition functionZ(n) is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configuration contributes with
its Gibbs factor exp(−βH(σ)) and the partition functionZ(n) is

Z(n)(β) =
∑

σ∈Ωn
0

e−βH(σ) . (K.9)

The partition function can be computed using transfer matrices. This is a
method that generalizes to other models. At first, it is a little mysterious that
matrices show up in the study of a sum. To see where they come from, we can
try and build a configuration on the lattice site by site. The first thing to do is to
expand out the sum for the energy of the configuration

Z(n)(β) =
∑

σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn ,σ1) . (K.10)

Let us use the configuration in (K.4). The first site isσ1 =↑. As the second site is
↑, we know that the first term in (K.10) is a termeβJ. The third spin is↓, so the
second term in (K.10) is e−βJ. If the third spin had been↑, then the term would
have beeneβJ but it would not depend on the value of the first spinσ1. This means
that the configuration can be built site by site and that to compute the Gibbs factor
for the configuration just requires knowing the last spin added. We can then think
of the configuration as being a weighted random walk where each step of the walk
contributes according to the last spin added. The random walk take place on the
Markov graph

↓
 ↑
eβJ


e−βJ


e−βJ


eβJ


.
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Choose one of the two sites as a starting point. Walk along anyallowed edge
making your choices randomly and keep track of the accumulated weight as you
perform then steps. To implement the periodic boundary conditions make sure
that you return to the starting node of the Markov graph. If the walk is carried out
in all possible 2n ways then the sum of all the weights is the partition function. To
perform the sum we consider the matrix

T (β) =

[

eβJ e−βJ

e−βJ eβJ

]

. (K.11)

As in chapter10 the sum of all closed walks is given by the trace of powers of the
matrix. These powers can easily be re-expressed in terms of the two eigenvalues
λ1 andλ2 of the transfer matrix:

Z(n)(β) = tr T n(β) = λ1(β)n
+ λ2(β)n . (K.12)

K.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of the
transfer matrix. Alternatively, one can introduce a modified transfer matrix and
compute the averages through derivatives. Sounds familiar?

K.2.3 General spin models

The more general version of the Ising model — the spin models —will be defined
on a regular lattice,ZD. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by the setΩ0.

The transfer operatorT was introduced by Kramers and Wannier [12] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition functionZn of system when one of its dimensions isn. The method
can be generalized to deal with any finite-range interaction. If the range of the
interaction isL, thenT is a matrix of size 2L×2L. The longer the range, the larger
the matrix.

K.3 Fisher droplet model

In a series of articles [20], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high temperatures, the typical
state of the system consists of droplets of all sizes floatingin the gas phase. As the
temperature is lowered, the droplets coalesce, forming larger droplets, until at the
transition temperature, all droplets form one large one. This is a first order phase
transition.
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Although Fisher formulated the model in 3-dimensions, the analytic solution
of the model shows that it is equivalent to a 1-dimensional lattice gas model with
long range interactions. Here we will show how the model can be solved for an
arbitrary interaction, as the solution only depends on the asymptotic behavior of
the interaction.

The interest of the model for the study of cycle expansions isits relation to
intermittency. By having an interaction that behaves asymptotically as the scaling
function for intermittency, one expects that the analytic structure (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phase transition [20].
Gallavotti [21] used it to show that the zeta functions cannot in general be extended
to a meromorphic functions of the entire complex plane. The droplet model has
also been used in dynamical systems to explain features of mode locking, see
Artuso [22]. In computing the zeta function for the droplet model we will discover
that at low temperatures the cycle expansion has a limited radius of convergence,
but it is possible to factorize the expansion into the product of two functions, each
of them with a better understood radius of convergence.

K.3.1 Solution

The droplet model is a 1-dimensional lattice gas where each site can have two
states: empty or occupied. We will represent the empty stateby 0 and the occupied
state by 1. The configurations of the model in this notation are then strings of
zeros and ones. Each configuration can be viewed as groups of contiguous ones
separated by one or more zeros. The contiguous ones represent the droplets in the
model. The droplets do not interact with each other, but the individual particles
within each droplet do.

To determine the thermodynamics of the system we must assignan energy
to every configuration. At very high temperatures we would expect a gaseous
phase where there are many small droplets, and as we decreasethe temperature
the droplets would be expected to coalesce into larger ones until at some point
there is a phase transition and the configuration is dominated by one large drop.
To construct a solvable model and yet one with a phase transition we need long
range interaction among all the particles of a droplet. One choice is to assign a
fixed energyθn for the interactions of the particles of a cluster of sizen. In a
given droplet one has to consider all the possible clusters formed by contiguous
particles. Consider for example the configuration 0111010.It has two droplets,
one of size three and another of size one. The droplet of size one has only one
cluster of size one and therefore contributes to the energy of the configuration with
θ1. The cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing aθn term to the energy.
The total energy of the configuration is then

H(0111010)= 4θ1 + 2θ2 + 1θ3 . (K.13)
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If there where more zeros around the droplets in the above configuration the
energy would still be the same. The interaction of one site with the others is
assumed to be finite, even in the ground state consisting of a single droplet, so
there is a restriction on the sum of the cluster energies given by

a =
∑

n>0

θn < ∞ . (K.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the functionθn we can computed the energy of any configuration,
and from that determine the thermodynamics. Here we will evaluate the cycle
expansion for the model by first computing the generating function

G(z, β) =
∑

n>0

zn Zn(β)
n

(K.15)

and then considering its exponential, the cycle expansion.Each partition function
Zn must be evaluated with periodic boundary conditions. So if we were computing
Z3 we must consider all eight binary sequences of three bits, and when computing
the energy of a configuration, say 011, we should determine the energy per three
sites of the long chain

. . .011011011011. . .

In this case the energy would beθ2 + 2θ1. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the configuration would have
been the same. To compute the partition function we only needto consider one
of the configurations and multiply by the length of the configuration to obtain the
contribution of all its rotated shifts. The factor 1/n in the generating function
cancels this multiplicative factor. This reduction will not hold if the configuration
has a symmetry, as for example 0101 which has only two rotatedshift configurations.
To compensate this we replace the 1/n factor by a symmetry factor 1/s(b) for
each configurationb. The evaluation ofG is now reduced to summing over all
configurations that are not rotated shift equivalent, and wecall these the basic
configurations and the set of all of themB. We now need to evaluate

G(z, β) =
∑

b∈B

z|b|

s(b)
e−βH(b) . (K.16)

The notation| · | represents the cardinality of the set.

Any basic configuration can be built by considering the set ofdroplets that
form it. The smallest building block has size two, as we must also put a zero next
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to the one so that when two different blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(K.17)

Each droplet of sizen contributes with energy

Wn =

∑

1≤k≤n

(n − k + 1)θk . (K.18)

So if we consider the sum

∑

n≥1

1
n

(

z2e−βH(01)
+ z3(e−βH(001)

+ e−βH(011)) +

+ z4(e−βH(0001)
+ e−βH(0011)

+ e−βH(0111)) + · · ·
)n

(K.19)

then the power inn will generate all the configurations that are made from many
droplets, while thez will keep track of the size of the configuration. The factor
1/n is there to avoid the over-counting, as we only want the basicconfigurations
and not its rotated shifts. The 1/n factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can be simplified by noticing
that it is a logarithmic series

− ln
(

1− (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·
)

, (K.20)

where theH(b) factors have been evaluated in terms of the droplet energies Wn.
A proof of the equality of (K.19) and (K.20) can be given , but we there was not
enough space on the margin to write it down. The series that issubtracted from
one can be written as a product of two series and the logarithmwritten as

− ln
(

1− (z1
+ z2
+ z3
+ · · ·)(ze−βW1 + z2e−βW2 + · · ·)

)

(K.21)

The product of the two series can be directly interpreted as the generating function
for sequences of droplets. The first series adds one or more zeros to a configuration
and the second series add a droplet.

There is a whole class of configurations that is not included in the above sum:
the configurations formed from a single droplet and the vacuum configuration.
The vacuum is the easiest, as it has zero energy it only contributes az. The sum
of all the null configurations of all sizes is

∑

n>0

zn

n
. (K.22)
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The factor 1/n is here because the originalG had them and the null configurations
have no rotated shifts. The single droplet configurations also do not have rotated
shifts so their sum is

∑

n>0

zne−βH(

n
︷   ︸︸   ︷

11. . . 11)

n
. (K.23)

Because there are no zeros in the above configuration clusters of all size exist and
the energy of the configuration isn

∑

θk which we denote byna.

From the three sums (K.21), (K.22), and (K.23) we can evaluate the generating
functionG to be

G(z, β) = − ln(1− z) − ln(1− ze−βa) − ln(1− z
1− z

∑

n≥1

zne−βWn ) . (K.24)

The cycle expansionζ−1(z, β) is given by the exponential of the generating
functione−G and we obtain

ζ−1(z, β) = (1− ze−βa)(1− z(1+
∑

n≥1

zne−βWn )) (K.25)

To pursue this model further we need to have some assumptionsabout the
interaction strengthsθn. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, that is,θn = −1/n2. With this we
can estimate that the energy of a droplet of sizen is asymptotically

Wn ∼ −n + ln n + O(
1
n

) . (K.26)

If the power chosen for the polynomially decaying interaction had been other than
inverse square we would still have the droplet term proportional ton, but there
would be no logarithmic term, and theO term would be of a different power.
The term proportional ton survives even if the interactions falls off exponentially,
and in this case the correction is exponentially small in theasymptotic formula.
To simplify the calculations we are going to assume that the droplet energies are
exactly

Wn = −n + ln n (K.27)

in a system of units where the dimensional constants are one.To evaluate the
cycle expansion (K.25) we need to evaluate the constanta, the sum of all theθn.
One can write a recursion for theθn

θn = Wn −
∑

1≤k<n

(n − k + 1)θk (K.28)
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and with an initial choice forθ1 evaluate all the others. It can be verified that
independent of the choice ofθ1 the constanta is equal to the number that multiplies
then term in (K.27). In the units used

a = −1 . (K.29)

For the choice of droplet energy (K.27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch transcendentalφL. It is defined
by

φL(z, s, c) =
∑

n≥0

zn

(n + c)s , (K.30)

excluding from the sum any term that has a zero denominator. The Lerch function
converges for|z| < 1. The series can be analytically continued to the complex
plane and it will have a branch point atz = 1 with a cut chosen along the
positive real axis. In terms of Lerch transcendental function we can write the
cycle expansion (K.25) using (K.27) as

ζ−1(z, β) =
(

1− zeβ
) (

1− z(1+ φL(zeβ, β, 1))
)

(K.31)

This serves as an example of a zeta function that cannot be extended to a meromorphic
function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root of
(K.31). The root can come from any of the two factors. For large value ofβ (low
temperatures) the smallest root is determined from the (1− zeβ) factor, which gave
the contribution of a single large drop. For smallβ (large temperatures) the root is
determined by the zero of the other factor, and it corresponds to the contribution
from the gas phase of the droplet model. The transition occurs when the smallest
root of each of the factors become numerically equal. This determines the critical
temperatureβc through the equation

1− e−βc(1+ ζR(βc)) = 0 (K.32)

which can be solved numerically. One finds thatβc = 1.40495. The phase
transition occurs because the roots from two different factors get swapped in their
roles as the smallest root. This in general leads to a first order phase transition.
For largeβ the Lerch transcendental is being evaluated at the branch point, and
therefore the cycle expansion cannot be an analytic function at low temperatures.
For large temperatures the smallest root is within the radius of convergence of
the series for the Lerch transcendental, and the cycle expansion has a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a function ofβ the smallest
root and the branch point get closer together until at exactly the phase transition
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they collide. This is a sufficient condition for the existence of a first order phase
transitions. In the literature of zeta functions [19] there have been speculations on
how to characterize a phase transition within the formalism. The solution of the
Fisher droplet model suggests that for first order phase transitions the factorized
cycle expansion will have its smallest root within the radius of convergence of one
of the series except at the phase transition when the root collides with a singularity.
This does not seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider separate
cycle expansions for each of the phases of the system. If we separate the two terms
of ζ−1 in (K.31), each of them is an analytic function and contains the smallest root
within the radius of convergence of the series for the relevant β values.

K.4 Scaling functions

There is a relation between general spin models and dynamical system. If one
thinks of the boxes of the Markov partition of a hyperbolic system as the states
of a spin system, then computing averages in the dynamical system is carrying
out a sum over all possible states. One can even construct thenatural measure of
the dynamical system from a translational invariant “interaction function” call the
scaling function.

There are many routes that lead to an explanation of what a scaling function
is and how to compute it. The shortest is by breaking away fromthe historical
development and considering first the presentation function of a fractal. The
presentation function is a simple chaotic dynamical system(hyperbolic, unlike
the circle map) that generates the fractal and is closely related to the definition
of fractals of Hutchinson [23] and the iterated dynamical systems introduced by
Barnsley and collaborators [12]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegantfashion, rather we
will develop the formalism in a form that is directly applicable to the experimental
data.

In the upper part of figureK.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction is done in levels, each
level being formed by a collection of segments. From one level to the next, each
“parent” segment produces smaller “children” segments by removing the middle
section. As the construction proceeds, the segments betterapproximate the Cantor
set. In the figure not all the segments are the same size, some are larger and some
are smaller, as is the case with multifractals. In the middlethird Cantor set, the
ratio between a segment and the one it was generated from is exactly 1/3, but in
the case shown in the figure the ratios differ from 1/3. If we went through the last
level of the construction and made a plot of the segment number and its ratio to
its parent segment we would have a scaling function, as indicated in the figure.
A function giving the ratios in the construction of a fractalis the basic idea for a
scaling function. Much of the formalism that we will introduce is to be able to
give precise names to every segments and to arrange the “lineage” of segments
so that the children segments have the correct parent. If we do not take these
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Figure K.1: Construction of the steps of the scaling
function from a Cantor set. From one level to the
next in the construction of the Cantor set the covers
are shrunk, each parent segment into two children
segments. The shrinkage of the last level of the
construction is plotted and by removing the gaps one
has an approximation to the scaling function of the
Cantor set.
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Figure K.2: A Cantor set presentation function. The
Cantor set is the set of all points that under iteration do
not leave the interval [0,1]. This set can be found by
backwards iterating the gap between the two branches
of the map. The dotted lines can be used to find these
backward images. At each step of the construction one
is left with a set of segments that form a cover of the
Cantor set.
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precautions, the scaling function would be a “wild function,” varying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the quadratic map that
appears in the theory of period doubling. This is because thecombinatorial manipulations
are much simpler for this map than they are for the circle map.The scaling
function will be described for a one dimensional mapF as shown in figureK.2.
Drawn is the map

F(x) = 5x(1− x) (K.33)

restricted to the unit interval. We will see that this map is also a presentation
function.

It has two branches separated by a gap: one over the left portion of the unit
interval and one over the right. If we choose a pointx at random in the unit
interval and iterate it under the action of the mapF, (K.33), it will hop between the
branches and eventually get mapped to minus infinity. An orbit point is guaranteed
to go to minus infinity if it lands in the gap. The hopping of thepoint defines the
orbit of the initial pointx: x 7→ x1 7→ x2 7→ · · ·. For each orbit of the mapF we
can associate a symbolic code. The code for this map is formedfrom 0s and 1s
and is found from the orbit by associating a 0 ifxt < 1/2 and a 1 ifxt > 1/2, with
t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two branches.
We then say that the orbit point has escaped the unit interval. The points that do
not escape form a Cantor setC (or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describing all the points that do not
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escape, the mapF can be used as a presentation of the Cantor setC, and has been
called a presentation function by Feigenbaum [13].

How does the mapF “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escape the unit interval in one
iteration of the map. These are the points that are not part ofthe gap. These points
determine two segments, which are an approximation to the Cantor set. In the
next step we determine the points that do not escape in two iterations. These are
the points that get mapped into the gap in one iteration, as inthe next iteration
they will escape; these points form the two segments∆(1)

0 and∆(1)
1 at level 1 in

figure K.2. The processes can be continued for any number of iterations. If we
observe carefully what is being done, we discover that at each step the pre-images
of the gap (backward iterates) are being removed from the unit interval. As the
map has two branches, every point in the gap has two pre-images, and therefore
the whole gap has two pre-images in the form of two smaller gaps. To generate all
the gaps in the Cantor set one just has to iterate the gap backwards. Each iteration
of the gap defines a set of segments, with thenth iterate defining the segments
∆

(n)
k at leveln. For this map there will be 2n segments at leveln, with the first few

drawn in figureK.2. As n → ∞ the segments that remain for at leastn iterates
converge to the Cantor setC.

The segments at one level form a cover for the Cantor set and itis from a cover
that all the invariant information about the set is extracted (the cover generated
from the backward iterates of the gap form a Markov partitionfor the map as a
dynamical system). The segments{∆(n)

k } at leveln are a refinement of the cover
formed by segments at leveln − 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalingsf (α), and the generalized
dimensions.

To define the scaling function we must give labels (names) to the segments.
The labels are chosen so that the definition of the scaling function allows for
simple approximations. As each segment is generated from aninverse image
of the unit interval, we will consider the inverse of the presentation functionF.
BecauseF does not have a unique inverse, we have to consider restrictions ofF.
Its restriction to the first half of the segment, from 0 to 1/2, has a unique inverse,
which we will call F−1

0 , and its restriction to the second half, from 1/2 to 1, also
has a unique inverse, which we will callF−1

1 . For example, the segment labeled
∆

(2)(0, 1) in figureK.2 is formed from the inverse image of the unit interval by
mapping∆(0), the unit interval, withF−1

1 and thenF−1
0 , so that the segment

∆
(2)(0, 1) = F−1

0

(

F−1
1

(

∆
(0)
))

. (K.34)

The mapping of the unit interval into a smaller interval is what determines its
label. The sequence of the labels of the inverse maps is the label of the segment:

∆
(n)(ǫ1, ǫ2, . . . , ǫn) = F−1

ǫ1
◦ F−1
ǫ2
◦ · · · F−1

ǫn

(

∆
(0)
)

.

The scaling function is formed from a set of ratios of segments length. We use
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| · | around a segment∆(n)(ǫ) to denote its size (length), and define

σ(n)(ǫ1, ǫ2, . . . , ǫn) =
|∆(n)(ǫ1, ǫ2, . . . , ǫn)|
|∆(n−1)(ǫ2, . . . , ǫn)| .

We can then arrange the ratiosσ(n)(ǫ1, ǫ2, . . . , ǫn) next to each other as piecewise
constant segments in increasing order of their binary labelǫ1, ǫ2, . . . , ǫn so that the
collection of steps scan the unit interval. Asn → ∞ this collection of steps will
converge to the scaling function.

K.5 Geometrization

TheL operator is a generalization of the transfer matrix. It getsmore by considering
less of the matrix: instead of considering the whole matrix it is possible to consider
just one of the rows of the matrix. TheL operator also makes explicit the vector
space in which it acts: that of the observable functions. Observables are functions
that to each configuration of the system associate a number: the energy, the
average magnetization, the correlation between two sites.It is in the average
of observables that one is interested in. Like the transfer matrix, theL operator
considers only semi-infinite systems, that is, only the partof the interaction between
spins to the right is taken into account. This may sound un-symmetric, but it
is a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To definetheL operator one
needs the interaction energy between one spin and all the rest to its right, which is
given by the functionφ. TheL operators defined as

Lg(σ) =
∑

σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value inΩ0 that the spinσ0 can assume, an average of the
observableg is computed weighed by the Boltzmann factore−βφ. The formal
relations that stem from this definition are its relation to the free energy when
applied to the observableι that returns one for any configuration:

−β f (β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞
‖Lng‖
‖Lnι‖ .

Both relations hold for almost all configurations. These relations are part of
theorem of Ruelle that enlarges the domain of the Perron-Frobenius theorem and
sharpens its results. The theorem shows that just as the transfer matrix, the largest
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eigenvalue of theL operator is related to the free-energy of the spin system. Italso
hows that there is a formula for the eigenvector related to the largest eigenvalue.
This eigenvector|ρ〉 (or the corresponding one for the adjointL∗ ofL) is the Gibbs
state of the system. From it all averages of interest in statistical mechanics can be
computed from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the interactions,
but it is of little computational value as it involves the Gibbs state for a related spin
system. Even then it does have an enormous theoretical value. Later we will see
how the formula can be used to manipulate the space of observables into a more
convenient space.

The geometrization of a spin system converts the shift dynamics (necessary
to define the Ruelle operator) into a smooth dynamics. This isequivalent to the
mathematical problem in ergodic theory of finding a smooth embedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk such that

Fσk(0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interactionis to be converted into
a dynamical systems. In most examplesFσk is a collection of maps from a subset
of RD to itself.

If the interaction is complicated, then the dimension of theset of maps may
be infinite. If the resulting dynamical system is infinite have we gained anything
from the transformation? The gain in this case is not in termsof added speed of
convergence to the thermodynamic limit, but in the fact thatthe Ruelle operator
is of trace-class and all eigenvalues are related to the spinsystem and not artifacts
of the computation.

The construction of the higher dimensional system is done byborrowing the
state space reconstruction technique from dynamical systems. State space reconstruction
can be done in several ways: by using delay coordinates, by using derivatives of
the position, or by considering the value of several independent observables of
the system. All these may be used in the construction of the equivalent dynamics.
Just as in the study of dynamical systems, the exact method does not matter for
the determination of the thermodynamics (f (α) spectra, generalized dimension),
also in the construction of the equivalent dynamics the exact choice of observable
does not matter.
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We will only consider configurations for the half line. This is because for
translational invariant interactions the thermodynamic limit on half line is the
same as in the whole line. One can prove this by considering the difference in
a thermodynamic average in the line and in the semiline and compare the two as
the size of the system goes to infinity.

When the interactions are long range in principle one has to specify the boundary
conditions to be able to compute the interaction energy of a configuration in
a finite box. If there are no phase transitions for the interaction, then which
boundary conditions are chosen is irrelevant in the thermodynamic limit. When
computing quantities with the transfer matrix, the long range interaction is truncated
at some finite range and the truncated interaction is then useto evaluate the transfer
matrix. With the Ruelle operator the interaction is never truncated, and the boundary
must be specified.

The interactionφ(σ) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

φ(σ) =
∑

n>0

δσ0,σn J(n)

with different choices ofJ(n) leading to different models. IfJ(n) = 1 only if n = 1
and ) otherwise, then one has the nearest neighbor Ising model. If J(n) = n−2, then
one has the inverse square model relevant in the study of the Kondo problem.

Let us say that each site of the lattice can assume two values+,− and the set
of all possible configurations of the semiline is the setΩ. Then an observableg
is a function from the set of configurationsΩ to the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to think of the configuration as
a string of spins. One can append a spinη0 to its beginning,η ∨ σ, in which case
η is at site 0,ω0 at site 1, and so on.

The Ruelle operatorL is defined as

Lg(η) =
∑

ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observables.
There is a generalization of the Perron-Frobenius theorem by Ruelle that establishes
that the largest eigenvalue ofL is isolated from the rest of the spectrum and gives
the thermodynamics of the spin system just as the largest eigenvalue of the transfer
matrix does. Ruelle also gave a formula for the eigenvector related to the largest
eigenvalue.

The difficulty with it is that the relation between the partition function and the
trace of itsnth power, trLn

= Zn no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables{x1(σ), . . . , x1(σ)}. The idea
is to choose the observables in such a way that from their values on a particular
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configurationσ the configuration can be reconstructed. We also introduce the
interaction observableshσ0.

To geometrize spin systems, the interactions are assumed tobe translationally
invariant. The spinsσk will only assume a finite number of values. For simplicity,
we will take the interactionφ among the spins to depend only on pairwise interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +

∑

n>0

δσ0,σn J1(n) , (K.35)

and limitσk to be in{+,−}. For the 1-dimensional Ising model,J0 is the external
magnetic field andJ1(n) = 1 if n = 1 and 0 otherwise. For an exponentially
decaying interactionJ1(n) = e−αn. Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spins ofL × ∞ with helical boundary
conditions is modeled by the potentialJ1(n) = δn,1 + δn,L.

The transfer operatorT was introduced by Kramers and Wannier [12] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition functionZn of system when one of its dimensions isn. The method can be
generalized to deal with any finite-range interaction. If the range of the interaction
is L, thenT is a matrix of size 2L×2L. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to define theT operator by
its action on an observableg. Just as the observables in quantum mechanics,g
is a function that associates a number to every state (configuration of spins). The
energy density and the average magnetization are examples of observables. From
this equivalent definition one can recover the usual transfer matrix by making all
quantities finite range. For a semi-infinite configurationσ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ)
+ g(− ∨ σ)e−βφ(−∨σ) . (K.36)

By + ∨ σ we mean the configuration obtained by prepending+ to the beginning
of σ resulting in the configuration{+, σ0, σ1, . . .}. When the range becomes
infinite, trT n is infinite and there is no longer a connection between the trace
and the partition function for a system of sizen (this is a case where matrices give
the wrong intuition). Ruelle [13] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactions the largest eigenvalue of
theT operator is related to the free-energy of the spin system andthe corresponding
eigenvector is related to the Gibbs state. By applyingT to the constant observable
u, which returns 1 for any configuration, the free energy per site f is computed as

− β f (β) = lim
n→∞

1
n

ln ‖T nu‖ . (K.37)

To construct a smooth dynamical system that reproduces the properties of
T , one uses the phase space reconstruction technique of Packard et al. [6] and
Takens [7], and introduces a vector of state observablesx(σ) = {x1(σ), . . . , xD(σ)}.
To avoid complicated notation we will limit the discussion to the examplex(σ) =
{x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ) andx−(σ) = φ(− ∨ σ); the more general
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case is similar and used in a later example. The observables are restricted to those
g for which, for all configurationsσ, there exist an analytic functionG such that
G(x1(σ), . . . , xD(σ)) = g(σ). This at first seems a severe restriction as it may
exclude the eigenvector corresponding to the Gibbs state. It can be checked that
this is not the case by using the formula given by Ruelle [14] for this eigenvector.
A simple example where this formalism can be carried out is for the interaction
φ(σ) with pairwise exponentially decaying potentialJ1(n) = an (with |a| < 1). In
this caseφ(σ) =

∑

n>0 δσ0,σnan and the state observables arex+(σ) =
∑

n>0 δ+,σn an

and x−(σ) =
∑

n>0 δ−,σnan. In this case the observablex+ gives the energy of+
spin at the origin, andx− the energy of a− spin.

Using the observablesx+ andx−, the transfer operator can be re-expressed as

TG (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (K.38)

In this equation the only reference to the configurationσ is when computing the
new observable valuesx+(η ∨ σ) andx−(η ∨ σ). The iteration of the function that
gives these values in terms ofx+(σ) andx−(σ) is the dynamical system that will
reproduce the properties of the spin system. For the simple exponentially decaying
potential this is given by two maps,F+ andF−. The mapF+ takes{x+(σ), x+(σ)}
into {x+(+∨σ), x−(+∨σ)} which is{a(1+ x+), ax−} and the mapF− takes{x+, x−}
into {ax+, a(1 + x−)}. In a more general case we have mapsFη that takex(σ) to
x(η ∨ σ).

We can now define a new operatorL

LG (x)
def
= TG(x(σ)) =

∑

η∈{+,−}
G
(

Fη(x)
)

e−βxη , (K.39)

where all dependencies onσ have disappeared — if we know the value of the state
observablesx, the action ofL onG can be computed.

A dynamical system is formed out of the mapsFη. They are chosen so
that one of the state variables is the interaction energy. One can consider the
two mapsF+ and F− as the inverse branches of a hyperbolic mapf , that is,
f −1(x) = {F+(x), F−(x)}. Studying the thermodynamics of the interactionφ is
equivalent to studying the long term behavior of the orbits of the mapf , achieving
the transformation of the spin system into a dynamical system.

Unlike the original transfer operator, theL operator — acting in the space
of observables that depend only on the state variables — is oftrace-class (its
trace is finite). The finite trace gives us a chance to relate the trace ofLn to the
partition function of a system of sizen. We can do better. As most properties of
interest (thermodynamics, fall-off of correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholm determinant det (1−zL)
by the technique of cycle expansions developed for dynamical systems [2]. A
cycle expansion consists of finding a power series expansionfor the determinant
by writing det (1− zL) = exp(tr ln(1− zL)). The logarithm is expanded into a
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power series and one is left with terms of the form trLn to evaluate. For evaluating
the trace, theL operator is equivalent to

LG(x) =
∫

RD
dy δ(y − f (x))e−βyG(y) (K.40)

from which the trace can be computed:

trLn
=

∑

x= f (◦n)(x)

e−βH(x)

|det
(
1− ∂x f (◦n)(x)

) | (K.41)

with the sum running over all the fixed points off (◦n) (all spin configurations of a
given length). Heref (◦n) is f composed with itselfn times, andH(x) is the energy
of the configuration associated with the pointx. In practice the mapf is never
constructed and the energies are obtained directly from thespin configurations.

To compute the value of trLn we must compute the value of∂x f (◦n); this
involves a functional derivative. To any degree of accuracya numberx in the
range of possible interaction energies can be represented by a finite string of spins
ǫ, such asx = φ(+, ǫ0, ǫ1, . . . ,−, −, . . .). By choosing the sequenceǫ to have a
large sequence of spins−, the numberx can be made as small as needed, so in
particular we can represent a small variation byφ(η). As x+(ǫ) = φ(+ ∨ ǫ), from
the definition of a derivative we have:

∂x f (x) = lim
m→∞

φ(ǫ ∨ η(m)) − φ(ǫ)
φ(η(m))

, (K.42)

whereη(m) is a sequence of spin strings that makeφ(η(m)) smaller and smaller. By
substituting the definition ofφ in terms of its pairwise interactionJ(n) = nsanγ

and taking the limit for the sequencesη(m)
= {+,−,−, . . . , ηm+1, ηm+2, . . .} one

computes that the limit isa if γ = 1, 1 if γ < 1, and 0 ifγ > 1. It does not
depend on the positive value ofs. Whenγ < 1 the resulting dynamical system is
not hyperbolic and the construction for the operatorL fails, so one cannot apply
it to potentials such as (1/2)

√
n. One may solve this problem by investigating the

behavior of the formal dynamical system asγ→ 0.

The manipulations have up to now assumed that the mapf is smooth. If
the dimensionD of the embedding space is too small,f may not be smooth.
Determining under which conditions the embedding is smoothis a complicated
question [15]. But in the case of spin systems with pairwise interactionsit is
possible to give a simple rule. If the interaction is of the form

φ(σ) =
∑

n≥1

δσ0,σn

∑

k

pk(n)anγ
k (K.43)

where pk are polynomials and|ak | < 1, then the state observables to use are
xs,k(σ) =

∑
δ+,σnnsan

k . For eachk one usesx0,k, x1,k, . . . up to the largest power
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Figure K.3: The spin adding mapF+ for the potential
J(n) =

∑
n2aαn. The action of the map takes the

value of the interaction energy between+ and the semi-
infinite configuration{σ1, σ2, σ3, . . .} and returns the
interaction energy between+ and the configuration
{+, σ1, σ2, σ3, . . .}.
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Figure K.4: Number of digits for the Fredholm
method (•) and the transfer function method (×).
The size refers to the largest cycle considered in the
Fredholm expansions, and the truncation length in the
case of the transfer matrix.
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in the polynomialpk. An example is the interaction withJ1(n) = n2(3/10)n. It
leads to a 3-dimensional system with variablesx0,0, x1,0, and x2,0. The action
of the mapF+ for this interaction is illustrated figureK.3. Plotted are the pairs
{φ(+∨σ), φ(+∨+∨σ)}. This can be seen as the strange attractor of a chaotic system
for which the variablesx0,0, x1,0, andx2,0 provide a good (analytic) embedding.

The added smoothness and trace-class of theL operator translates into faster
convergence towards the thermodynamic limit. As the reconstructed dynamics is
analytic, the convergence towards the thermodynamic limitis faster than exponential [17,
16]. We will illustrate this with the polynomial-exponentialinteractions (K.43)
with γ = 1, as the convergence is certainly faster than exponential if γ > 1,
and the case ofan has been studied in terms of another Fredholm determinant by
Gutzwiller [17]. The convergence is illustrated in figureK.4 for the interaction
n2(3/10)n. Plotted in the graph, to illustrate the transfer matrix convergence, are
the number of decimal digits that remain unchanged as the range of the interaction
is increased. Also in the graph are the number of decimal digits that remain
unchanged as the largest power of trLn considered. The plot is effectively a
logarithmic plot and straight lines indicate exponentially fast convergence. The
curvature indicates that the convergence is faster than exponential. By fitting, one
can verify that the free energy is converging to its limitingvalue as exp(−n(4/3)).
Cvitanović [17] has estimated that the Fredholm determinant of a map on aD
dimensional space should converge as exp(−n(1+1/D)), which is confirmed by these
numerical simulations.
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Résum é

The geometrization of spin systems strengthens the connection between statistical
mechanics and dynamical systems. It also further establishes the value of the
Fredholm determinant of theL operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and semiclassical mechanics. The
example above emphasizes the high accuracy that can be obtained: by computing
the shortest 14 periodic orbits of period 5 or less it is possible to obtain three digit
accuracy for the free energy. For the same accuracy with a transfer matrix one
has to consider a 256× 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark K.1 Presentation functions. The best place to read about Feigenbaum’s
work is in his review article published inLos Alamos Science (reproduced in various
reprint collections and conference proceedings, such as ref. [5]). Feigenbaum’sJournal
of Statistical Physics article [13] is the easiest place to learn about presentation functions.

Remark K.2 Interactions are smooth In most computational schemes for thermodynamic
quantities the translation invariance and the smoothness of the basic interaction are never
used. In Monte Carlo schemes, aside from the periodic boundary conditions, the interaction
can be arbitrary. In principle for each configuration it could be possible to have a different
energy. Schemes such as the Sweneson-Wang cluster flipping algorithm use the fact that
interaction is local and are able to obtain dramatic speed-ups in the equilibration time for
the dynamical Monte Carlo simulation. In the geometrization program for spin systems,
the interactions are assumed translation invariant and smooth. The smoothness means
that any interaction can be decomposed into a series of termsthat depend only on the spin
arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +

∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1, σn2)J2(n1, n2) + · · ·

where theJk are symmetric functions of their arguments and theδ are arbitrary discrete
functions. This includes external constant fields (J0), but it excludes site dependent fields
such as a random external magnetic field.

Exercises

K.1. Not all Banach spaces are also Hilbert. If we are
given a norm‖·‖ of a Banach spaceB, it may be possible

to find an inner product〈· , · 〉 (so thatB is also a Hilbert
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spaceH) such that for all vectorsf ∈ B, we have

‖ f ‖ = 〈 f , f 〉1/2 .

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that
we just are not being clever enough? By checking the
parallelogram law for the norm. A Banach space can be
made into a Hilbert space if and only if the norm satisfies
the parallelogram law. The parallelogram law says that
for any two vectorsf andg the equality

‖ f + g‖2 + ‖ f − g‖2 = 2‖ f ‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the
norm given by‖a‖ = supσ∈ΩN |a(σ)|. Show that there
is no scalar product that will induce this norm.

K.2. Automaton for a droplet. Find the Markov
graph and the weights on the edges so that the energies
of configurations for the droplet model are correctly
generated. For any string starting in zero and ending
in zero your diagram should yield a configuration the
weighteH(σ), with H computed along the lines of (K.13)
and (K.18).

Hint: the Markov graph is infinite.

K.3. Spectral determinant for an interactions Compute
the spectral determinant for 1-dimensional Ising model
with the interaction

φ(σ) =
∑

k>0

akδ(σ0, σk) .

Takea as a number smaller than 1/2.

(a) What is the dynamical system this generates? That
is, findF+ andF− as used in (K.39).

(b) Show that

d
dx

F{+ or−} =

[

a 0
0 a

]

K.4. Ising model on a thin strip Compute the transfer
matrix for the Ising model defined on the graph

Assume that whenever there is a bond connecting two
sites, there is a contributionJδ(σi, σ j) to the energy.

K.5. Infinite symbolic dynamics Let σ be a function that
returns zero or one for every infinite binary string:σ :
{0, 1}N → {0, 1}. Its value is represented byσ(ǫ1, ǫ2, . . .)
where theǫi are either 0 or 1. We will now define an
operatorT that acts on observables on the space of
binary strings. A functiona is an observable if it has
bounded variation, that is, if

‖a‖ = sup
{ǫi}
|a(ǫ1, ǫ2, . . .)| < ∞ .

For these functions

T a(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .) + a(1, ǫ1,

The functionσ is assumed such that any ofT ’s “matrix
representations” in (a) have the Markov property (the
matrix, if read as an adjacency graph, corresponds to
a graph where one can go from any node to any other
node).

(a) (easy) Consider a finite versionTn of the operator
T :

Tna(ǫ1, ǫ2, . . . , ǫn) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show thatTn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent ofn.

(b) (medium) With the operator norm induced by the
function norm, show thatT is a bounded operator.

(c) (hard) Show thatT is not trace-class. (Hint: check
if T is compact).

Classes of operators are nested; trace-class≤ compact≤
bounded.
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