Appendix K

Statistical mechanics recycled

(R. Mainieri)

sPIN sYsTEM With long-range interactions can be converted into a chaoti
dynamical system that isftierentiable and low-dimensional. The thermodynamic

limit quantities of the spin system are then equivalent tglbme averages
of the dynamical system. In this way the spin system averegiebe recast as the
cycle expansions. If the resulting dynamical system isyditakthe convergence to
the thermodynamic limit is faster than with the standardgfer matrix techniques.

K.1 The thermodynamic limit

There are two motivations to recycle statistical mechargog gets better control
over the thermodynamic limit and one gets detailed inforomabn how one is
converging to it. From this information, most other quaesitof physical interst
can be computed.

In statistical mechanics one computes the averages ofwvatides. These are
functions that return a number for every state of the systkay,are an abstraction
of the process of measuring the pressure or temperatureasd.altpe average of
an observable is computed in the thermodynamic limit — timé lof system with
an arbitrarily large number of particles. The thermodyrlimit is an essential
step in the computation of averages, as it is only then thataliserves the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamioperties of
matter could not be derived within the framework of statetimechanics. There
would be no extensive quantities, no equivalence of ensesnland no phase
transitions. From experiments it is known that certain gjtias are extensive, that
is, they are proportional to the size of the system. Thisigme for an interacting
set of particles. If two systems interacting via pairwiségptials are brought close
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together, work will be required to join them, and the finaht@nergy will not be
the sum of the energies of each of the parts. To avoid the cobfilitween the
experiments and the theory of Hamiltonian systems, onesnggstems with an
infinite number of particles. In the canonical ensemble tiobgbility of a state is
given by the Boltzman factor which does not impose the coasien of energy; in
the microcanonical ensemble energy is conserved but thizrBahn factor is no
longer exact. The equality between the ensembles only eppethe limit of the
number of particles going to infinity at constant densitye phiase transitions are
interpreted as points of non-analyticity of the free endrgshe thermodynamic
limit. For a finite system the partition function cannot haveero as a function of
the inverse temperatugk as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in #tedy of field
theories. A field theory can be first defined on a lattice and the lattice spacing
is taken to zero as the correlation length is kept fixed. Thistiouum limit
corresponds to the thermodynamic limit. In lattice spacings the correlation
length is going to infinity, and the interacting field theognde thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermmityhanit is slow.
If the thermodynamic limit exists for an interaction, theneergence of the free
energy per unit volumé is as an inverse power in the linear dimension of the
system.

f(8) — % (K.1)

wheren is proportional tovY/d, with V the volume of thed-dimensional system.
Much better results can be obtained if the system can beideddoy a transfer
matrix. A transfer matrix is concocted so that the traceifitih power is exactly
the partition function of the system with one of the dimensigproportional to
n. When the system is described by a transfer matrix then theecgence is
exponential,

f(8) - e (K.2)

and may only be faster than that if all long-range correfatiof the system are
zero — that is, when there are no interactions. Thefment« depends only on
the inverse correlation length of the system.

One of the dfficulties in using the transfer matrix techniques is that tesm
at first limited to systems with finite range interactions. af transitions can
happen only when the interaction is long range. One can tapfwoximate the
long range interaction with a series of finite range intéoast that have an ever
increasing range. The problem with this approach is that fiormally defined
transfer matrix, not all the eigenvalues of the matrix cgpand to eigenvalues of
the system (in the sense that the rate of decay of correfatfonot the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with &nglize scaling
to obtain accurate estimates of the parameters of systethphéase transitions.
(Accurate critical exponents are obtained by series expasisr transfer matrices,
and infrequently by renormalization group arguments or dd@arlo.) In a phase
transition the coficient « of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example afrectional integral.
For most interactions these integrals are ill-defined amglire some form of
normalization. In the spin models case the functional irstiegs very simple,
as “space” has only two points and only “time” being infinigesho be dealt with.
The same problem occurs in the computation of the trace offiea matrices
of systems with infinite range interactions. If one tries éonpute the partition
functionZ,

Zn=tr T"

whenT is an infinite matrix, the result may be infinite for any This is not to
say thaiz, is infinite, but that the relation between the trace of an ajperand the
partition function breaks down. We could try regularizitng texpression, but as
we shall see below, that is not necessary, as there is a péitsical solution to
this problem.

What will described here solves both of these problems imédd context:
it regularizes the transfer operator in a physically megfuinway, and as a a
consequence, it allows for the faster than exponentialegence to the thermodynamic
limit and complete determination of the spectrum. The steshieve this are:

Redefine the transfer operator so that there are no limitdvied except for
the thermodynamic limit.

Note that the divergences of this operator come from thetfedttit acts on
a very large space. All that is needed is the smallest subspattaining
the eigenvector corresponding to the largest eigenvaheeGibbs state).

Rewrite all observables as depending on a loffakgive field. The eigenvector
is like that, and the operator restricted to this space ¢etrdass.

Compute the spectrum of the transfer operator and obsegvaaigic.

K.2 Ising models

The Ising model is a simple model to study the cooperatiieces of many small
interacting magnetic dipoles. The dipoles are placed ottiedand their interaction
is greatly simplified. There can also be a field that includes dfects of an
external magnetic field and the averageet of the dipoles among themselves.
We will define a general class of Ising models (also called spstems) where the
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dipoles can be in one of many possible states and the intemaatxtend beyond
the nearest neighboring sites of the lattice. But before xtenel the I1sing model,
we will examine the simplest model in that class.

K.2.1 Ising model

One of the simplest models in statistical mechanics is theglsmodel. One
imagines that one has a 1-dimensional lattice with smallmatsgat each site that
can point either up or down.

©) (©) o @) o O @) o O.

Each little magnet interacts only with its neighbors. Ifitl®th point in the same
direction, then they contribute an energy to the total energy of the system; and
if they point in opposite directions, then they contributg. The signs are chsen
so that they prefer to be aligned. Let us suppose that we haweall magnets
arranged in a line: A line is drawn between two sites to indi¢hat there is an
interaction between the small magnets that are locatedatrsite

0—0—0—0—0—0—0—0—0. (3

(This figure can be thought of as a graph, with sites beindgoesriand interacting
magnets indicated by edges.) To each of the sites we assaciatriable, that we
call a spin, that can be in either of two states: fipdr down (). This represents
the two states of the small magnet on that site, and in gemerakill use the
notation to represent the set of possible values of a spin at any ditsites
assume the same set of values. A configuration consists ighags a value to
the spin at each site; a typical configuration is

0—0—0—0—0—0—0—0—0 . (K4

The set of all configurations for a lattice withsites is called2j and is formed
by the Cartesian produ€g x Qq--- x Qo, the product repeated times. Each
configurations € Q" is a string ofn spins

o= (00,01 On)s (K.5)

In the example configuratiork(4) there are two pairs of spins that have the
same orientation and six that have the opposite orientatidrerefore the total
energyH of the configuration is) x 6 — J x 2 = 4J. In general we can associate
an energyH to every configuration

H(@) = ) 35(o.01a). (K.6)
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where

+1 if g1=072

6(o1,02) = { -1 ifoi#os e

One of the problems that was avoided when computing the gmeg what to do

at the boundaries of the 1-dimensional chain. Notice thetrdten, (K.6) requires
the interaction of spim with spinn + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limitwaadvill connect
the first site to the last, implementing periodic boundamditions.

Thermodynamic quantities are computed from the partitiomcfion 2" as
the sizen of the system becomes very large. For example, the free epergite
f at inverse temperatugis given by

1
p— — i —_ (n)
1) = lim ~InZ®. (K.8)

The partition functionz®™ is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configumationtributes with
its Gibbs factor exp{BH(c")) and the partition functioZ™ is

z0(g) = Z gPH() (K.9)

n
oeQp

The partition function can be computed using transfer mesti This is a
method that generalizes to other models. At first, it is gelithysterious that
matrices show up in the study of a sum. To see where they camg fve can
try and build a configuration on the lattice site by site. Thst fihing to do is to
expand out the sum for the energy of the configuration

Z0(g) = Y Hlenrdgiraca) . oony (K.10)

oeQn

Let us use the configuration ii(4). The first site isr; =1. As the second site is
1, we know that the first term ink(10) is a terme®”. The third spin ig|, so the
second term ink.10) is €Y. If the third spin had been, then the term would
have beer? but it would not depend on the value of the first spin This means
that the configuration can be built site by site and that topuienthe Gibbs factor
for the configuration just requires knowing the last spineatid\Ve can then think
of the configuration as being a weighted random walk wherk st&p of the walk
contributes according to the last spin added. The randork také place on the
Markov graph
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Choose one of the two sites as a starting point. Walk alongadioywed edge
making your choices randomly and keep track of the accumdlatight as you
perform then steps. To implement the periodic boundary conditions make s
that you return to the starting node of the Markov graph. éfiralk is carried out
in all possible 2 ways then the sum of all the weights is the partition functitm
perform the sum we consider the matrix

J a8
T(B) = :—BﬁJ eeeJ

(K.11)

As in chapterl0the sum of all closed walks is given by the trace of powers ef th
matrix. These powers can easily be re-expressed in ternfedivo eigenvalues
A1 andA, of the transfer matrix:

Z0@E) = r T(B) = 1@B)" + 128)". (K.12)

K.2.2 Averages of observables

Averages of observables can be re-expressed in terms ofghevectors of the
transfer matrix. Alternatively, one can introduce a modifieansfer matrix and
compute the averages through derivatives. Sounds fafiliar

K.2.3 General spin models

The more general version of the Ising model — the spin modelgit-be defined
on a regular latticeZP. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by th&@get

The transfer operatof was introduced by Kramers and Wanniér][to study
the Ising model on a strip and concocted so that the traces oftitpower is the
partition functionZ, of system when one of its dimensionsris The method
can be generalized to deal with any finite-range interactiérthe range of the
interaction isl, then7™ is a matrix of size 2x 2-. The longer the range, the larger
the matrix.

K.3 Fisher droplet model

In a series of articles?[J], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high teatpess, the typical
state of the system consists of droplets of all sizes floatitige gas phase. As the
temperature is lowered, the droplets coalesce, formimgtadroplets, until at the
transition temperature, all droplets form one large onds ®ha first order phase
transition.

statmech - 1dec2001.tex



APPENDIX K. STATISTICAL MECHANICS RECYCLED 761

Although Fisher formulated the model in 3-dimensions, thalytic solution
of the model shows that it is equivalent to a 1-dimensioriickagas model with
long range interactions. Here we will show how the model carsdived for an
arbitrary interaction, as the solution only depends on 8yentotic behavior of
the interaction.

The interest of the model for the study of cycle expansiorissiselation to
intermittency. By having an interaction that behaves agptigally as the scaling
function for intermittency, one expects that the analytiocture (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phaseiti@m [20].
Gallavotti [21] used it to show that the zeta functions cannot in generaktemded
to a meromorphic functions of the entire complex plane. Tioplét model has
also been used in dynamical systems to explain features derfazking, see
Artuso [22]. In computing the zeta function for the droplet model we digcover
that at low temperatures the cycle expansion has a limitidsaf convergence,
but it is possible to factorize the expansion into the prodfiewo functions, each
of them with a better understood radius of convergence.

K.3.1 Solution

The droplet model is a 1-dimensional lattice gas where edehcan have two
states: empty or occupied. We will represent the empty btafeand the occupied
state by 1. The configurations of the model in this notatiamthen strings of
zeros and ones. Each configuration can be viewed as groupsitiguous ones
separated by one or more zeros. The contiguous ones reptieselioplets in the
model. The droplets do not interact with each other, but tidé/idual particles
within each droplet do.

To determine the thermodynamics of the system we must assiggnergy
to every configuration. At very high temperatures we woulgest a gaseous
phase where there are many small droplets, and as we detheatssmperature
the droplets would be expected to coalesce into larger ontisati some point
there is a phase transition and the configuration is dorrdriayeone large drop.
To construct a solvable model and yet one with a phase ti@msite need long
range interaction among all the particles of a droplet. Crace is to assign a
fixed energy#d, for the interactions of the particles of a cluster of sizeln a
given droplet one has to consider all the possible clustaradd by contiguous
particles. Consider for example the configuration 011101@as two droplets,
one of size three and another of size one. The droplet of sieehas only one
cluster of size one and therefore contributes to the endriyea@onfiguration with
6,. The cluster of size three has one cluster of size three, lwaters of size two,
and three clusters of size one; each cluster contributidgtarm to the energy.
The total energy of the configuration is then

H(0111010)= 461 + 20, + 163. (K.13)
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If there where more zeros around the droplets in the abovégtmation the
energy would still be the same. The interaction of one sitth wie others is
assumed to be finite, even in the ground state consisting ofgéesdroplet, so
there is a restriction on the sum of the cluster energiesdiye

a=) fh<w. (K.14)

n>0

The configuration with all zeros does not contribute to thergy

Once we specify the functiafh, we can computed the energy of any configuration,

and from that determine the thermodynamics. Here we willuata the cycle
expansion for the model by first computing the generatingtfon

cep =y 720 (.15)

n>0

and then considering its exponential, the cycle expan&ach partition function
Z, must be evaluated with periodic boundary conditions. Sceifwere computing
Z3 we must consider all eight binary sequences of three bitswdren computing
the energy of a configuration, say 011, we should determi@etiergy per three
sites of the long chain

...011011011011..

In this case the energy would le + 26,. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the conrditipn would have
been the same. To compute the partition function we only neednsider one
of the configurations and multiply by the length of the configion to obtain the
contribution of all its rotated shifts. The factoyrlin the generating function
cancels this multiplicative factor. This reduction willtrtmld if the configuration
has a symmetry, as for example 0101 which has only two rosdtificconfigurations.
To compensate this we replace theTactor by a symmetry factor/&(b) for
each configuratio. The evaluation of5 is now reduced to summing over all
configurations that are not rotated shift equivalent, andcalethese the basic
configurations and the set of all of theBa We now need to evaluate

COEDY j(—;‘)e*ﬂ”b’ : (K-16)
beB

The notation - | represents the cardinality of the set.

Any basic configuration can be built by considering the sedroplets that
form it. The smallest building block has size two, as we missi put a zero next
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to the one so that when twoftBrent blocks get put next to each other they do not

coalesce. The first few building blocks are

size droplets
3 001 011

4 0001 0011 0111
Each droplet of size contributes with energy

Wy = Z (N=k+ 1)f. (K.18)

1<k<n

So if we consider the sum

Z % (ZZE—ﬁH(Ol) + B(ePHO0D | gpHOLY) |

n>1
+ (g PHO00L) | BH(O0LD) | oHOLID) . .)” (K.19)

then the power im will generate all the configurations that are made from many

droplets, while thez will keep track of the size of the configuration. The factor
1/nis there to avoid the over-counting, as we only want the bemnfigurations
and not its rotated shifts. Thegri factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can befghply noticing
that it is a logarithmic series

—In(1- (e + e+ ey 4., (K.20)

where theH(b) factors have been evaluated in terms of the droplet ereVigie

A proof of the equality of K.19) and K.20) can be given , but we there was not
enough space on the margin to write it down. The series thaibtacted from
one can be written as a product of two series and the logasithitten as

“In(1-@F+Z2+2+ Yze™M + PeM 4. ) (K.21)

The product of the two series can be directly interpreteti@génerating function
for sequences of droplets. The first series adds one or mare wea configuration
and the second series add a droplet.

There is a whole class of configurations that is not includettié above sum:
the configurations formed from a single droplet and the vactweonfiguration.
The vacuum is the easiest, as it has zero energy it only bates az. The sum
of all the null configurations of all sizes is

> % (K.22)

n>0
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The factor Xnis here because the originalhad them and the null configurations
have no rotated shifts. The single droplet configuratioss b not have rotated
shifts so their sum is

n

a1...13
—sH11...
z"e— (K.23)

n>0 n

Because there are no zeros in the above configuration dusital size exist and
the energy of the configuration is); 6« which we denote bya.

From the three sum&(21), (K.22), and K.23) we can evaluate the generating
functionG to be

Gz p) = —In(L-2) — In(1 - 272 — In(1 - 1%2 Sl Zety. (K.24)

n>1

The cycle expansiog~1(z B) is given by the exponential of the generating
functione ¢ and we obtain

CHap) = - -A1+ )y D) (K.25)

n>1

To pursue this model further we need to have some assumpiomst the
interaction strengths,. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, thai,is; —1/n2. With this we
can estimate that the energy of a droplet of sizeasymptotically

Wh ~ —n+ Inn+()(%). (K.26)

If the power chosen for the polynomially decaying interacthad been other than
inverse square we would still have the droplet term propoéi ton, but there
would be no logarithmic term, and th@ term would be of a dferent power.
The term proportional ta survives even if the interactions fall§§@xponentially,
and in this case the correction is exponentially small ina&gmptotic formula.
To simplify the calculations we are going to assume that topldt energies are
exactly

Wh=-n+Inn (K.27)

in a system of units where the dimensional constants are daesvaluate the
cycle expansionK{.25) we need to evaluate the constanthe sum of all the,,.
One can write a recursion for thig

O = Wh — Z (n—Kk+ 1) (K.28)

1<k<n
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and with an initial choice fop; evaluate all the others. It can be verified that
independent of the choice éf the constandis equal to the number that multiplies
thenterm in K.27). In the units used

a=-1. (K.29)

For the choice of droplet energi{ 27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch trargsealg, . Itis defined
by

z
¢L(zsc) = Z hros’ (K.30)
n=0

excluding from the sum any term that has a zero denominabe.L€rch function
converges fotz < 1. The series can be analytically continued to the complex
plane and it will have a branch point at= 1 with a cut chosen along the
positive real axis. In terms of Lerch transcendental fuorctive can write the
cycle expansionK.25) using K.27) as

Hep) = (1-2) (1- AL+ o2 5.0)) (K.31)

This serves as an example of a zeta function that cannot &eded to a meromorphic
function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the Isstaioot of
(K.31). The root can come from any of the two factors. For largeeaifg (low
temperatures) the smallest root is determined from thezéd) factor, which gave
the contribution of a single large drop. For sng{large temperatures) the root is
determined by the zero of the other factor, and it correspaadhe contribution
from the gas phase of the droplet model. The transition sostnen the smallest
root of each of the factors become numerically equal. Thisrd@nes the critical
temperaturgg; through the equation

1-e?(1+r(Bc) = 0 (K.32)

which can be solved numerically. One finds titat = 1.40495. The phase
transition occurs because the roots from twidedent factors get swapped in their
roles as the smallest root. This in general leads to a firgrgoase transition.
For largep the Lerch transcendental is being evaluated at the branich, pod
therefore the cycle expansion cannot be an analytic fumetidow temperatures.
For large temperatures the smallest root is within the sadiuconvergence of
the series for the Lerch transcendental, and the cycle sigpahas a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a functiog tife smallest
root and the branch point get closer together until at exdb# phase transition
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they collide. This is a dficient condition for the existence of a first order phase
transitions. In the literature of zeta functions] there have been speculations on
how to characterize a phase transition within the formalidine solution of the
Fisher droplet model suggests that for first order phassitrans the factorized
cycle expansion will have its smallest root within the radidfi convergence of one
of the series except at the phase transition when the rd@eslvith a singularity.
This does not seem to be the case for second order phaséidresi

The analyticity of the cycle expansion can be restored if aresiler separate
cycle expansions for each of the phases of the system. Ifpaate the two terms
of £~1in (K.31), each of them is an analytic function and contains the srsialbot
within the radius of convergence of the series for the relegavalues.

K.4 Scaling functions

There is a relation between general spin models and dynasystem. If one
thinks of the boxes of the Markov partition of a hyperbolistgm as the states
of a spin system, then computing averages in the dynamisaisyis carrying
out a sum over all possible states. One can even construnatheal measure of
the dynamical system from a translational invariant “iatgion function” call the
scaling function.

There are many routes that lead to an explanation of whatlmgdanction

is and how to compute it. The shortest is by breaking away fileenhistorical
development and considering first the presentation funatiba fractal. The
presentation function is a simple chaotic dynamical sysfieyperbolic, unlike
the circle map) that generates the fractal and is closefteelto the definition

of fractals of Hutchinson43] and the iterated dynamical systems introduced by
Barnsley and collaboratord J]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegéaghion, rather we
will develop the formalism in a form that is directly appliia to the experimental
data.

In the upper part of figur&.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction ésel in levels, each
level being formed by a collection of segments. From onel levthe next, each
“parent” segment produces smaller “children” segmentsdoyaving the middle
section. As the construction proceeds, the segments bepeoximate the Cantor
set. In the figure not all the segments are the same size, sentseger and some
are smaller, as is the case with multifractals. In the middiel Cantor set, the
ratio between a segment and the one it was generated fronaglyeg/3, but in
the case shown in the figure the ratiofei from /3. If we went through the last
level of the construction and made a plot of the segment nuiauhe: its ratio to
its parent segment we would have a scaling function, asatelicin the figure.
A function giving the ratios in the construction of a fracisithe basic idea for a
scaling function. Much of the formalism that we will intrackiis to be able to
give precise names to every segments and to arrange thedéhef segments
so that the children segments have the correct parent. Ifaveot take these
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Figure K.1: Construction of the steps of the scaling

function from a Cantor set. From one level to the

next in the construction of the Cantor set the covers - = -
are shrunk, each parent segment into two children
segments. The shrinkage of the last level of thg -
construction is plotted and by removing the gaps ong **[ T~ -

has an approximation to the scaling function of the °° _

Cantor set. ! positon

Figure K.2: A Cantor set presentation function. The \
Cantor set is the set of all points that under iteration do-/ S
not leave the interval [@]. This set can be found by iy oo
backwards iterating the gap between the two branches
of the map. The dotted lines can be used to find these_ | : | IR Py
backward images. At each step of the construction one: :

is left with a set of segments that form a cover of the = — — = @
Cantor set. ‘

%

precautions, the scaling function would be a “wild functiorarying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the gatidmap that
appears in the theory of period doubling. This is becausedh#inatorial manipulations
are much simpler for this map than they are for the circle mape scaling
function will be described for a one dimensional nfagas shown in figureé<.2.

Drawn is the map

F(X) =5x(1-x) (K.33)

restricted to the unit interval. We will see that this map lsoaa presentation
function.

It has two branches separated by a gap: one over the lefopasfithe unit
interval and one over the right. If we choose a potnat random in the unit
interval and iterate it under the action of the nia{K.33), it will hop between the
branches and eventually get mapped to minus infinity. Art@dint is guaranteed
to go to minus infinity if it lands in the gap. The hopping of {ha&int defines the
orbit of the initial pointx: X > X; > Xp + ---. For each orbit of the map we
can associate a symbolic code. The code for this map is fofmed0s and 1s
and is found from the orbit by associating a &if< 1/2 and a 1 ifx; > 1/2, with
t=012...

Most initial points will end up in the gap region between the toranches.
We then say that the orbit point has escaped the unit intefta points that do
not escape form a Cantor set(or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describingthé points that do not
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escape, the malp can be used as a presentation of the Cantaf sahd has been
called a presentation function by Feigenbauiri [

How does the maj “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escapenthénterval in one
iteration of the map. These are the points that are not paéneaap. These points
determine two segments, which are an approximation to thrgo€aet. In the
next step we determine the points that do not escape in twnatidas. These are
the points that get mapped into the gap in one iteration, @semext iteration
they will escape; these points form the two segmeﬂﬁé andA(ll) at level 1 in
figure K.2. The processes can be continued for any number of iteratibmse
observe carefully what is being done, we discover that dt etep the pre-images
of the gap (backward iterates) are being removed from theinteirval. As the
map has two branches, every point in the gap has two pre-snagel therefore
the whole gap has two pre-images in the form of two smallesg@p generate all
the gaps in the Cantor set one just has to iterate the gap bad&wEach iteration
of the gap defines a set of segments, with iitieiterate defining the segments
Af(”) at leveln. For this map there will be™segments at level, with the first few
drawn in figureK.2. Asn — o the segments that remain for at leadterates
converge to the Cantor sét

The segments at one level form a cover for the Cantor set @&@fidgim a cover
that all the invariant information about the set is extrdcfne cover generated
from the backward iterates of the gap form a Markov partifienthe map as a
dynamical system). The segmel{m{(”)} at leveln are a refinement of the cover
formed by segments at level- 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalinfe), and the generalized
dimensions.

To define the scaling function we must give labels (nhameshdéosegments.
The labels are chosen so that the definition of the scalingtifum allows for
simple approximations. As each segment is generated fromvanse image
of the unit interval, we will consider the inverse of the gnettion functionF.
Becaused- does not have a unique inverse, we have to consider restsctifF.

Its restriction to the first half of the segment, from 0 #21has a unique inverse,
which we will call F51, and its restriction to the second half, fron2lto 1, also
has a unique inverse, which we will cmgl. For example, the segment labeled
A®)(0,1) in figureK.2 is formed from the inverse image of the unit interval by
mappingA©, the unit interval, withF;* and therF;2, so that the segment

A2, 1) = Fg* (F;* (A)) . (K.34)

The mapping of the unit interval into a smaller interval isavldetermines its
label. The sequence of the labels of the inverse maps islteédfthe segment:

AV e, ..., 6) = Fgll oF1to...F ! (A(O)) .

€ €n

The scaling function is formed from a set of ratios of segmésigth. We use
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| - | around a segmem (¢) to denote its size (length), and define

A (e, e, ..., &)l

e e = AOD(ey, .. en)l

We can then arrange the ratiof)(e1, e, . . . , &) next to each other as piecewise
constant segments in increasing order of their binary labhe), . . ., &, so that the
collection of steps scan the unit interval. As— o this collection of steps will
converge to the scaling function.

K.5 Geometrization

The L operator is a generalization of the transfer matrix. It getse by considering
less of the matrix: instead of considering the whole matiipossible to consider
just one of the rows of the matrix. The operator also makes explicit the vector
space in which it acts: that of the observable functions.e@lables are functions
that to each configuration of the system associate a number:energy, the
average magnetization, the correlation between two sitess in the average
of observables that one is interested in. Like the transfarir) the £ operator
considers only semi-infinite systems, that is, only the pittie interaction between
spins to the right is taken into account. This may sound umrsgtric, but it
is a simple way to count each interaction only once, even gesavhere the
interaction includes three or more spin couplings. To detfieel operator one
needs the interaction energy between one spin and all theriésright, which is
given by the functior. The £ operators defined as

Ly(@) = ) gloor)e o).

T0eQo

To each possible value i)y that the spinocg can assume, an average of the
observableg is computed weighed by the Boltzmann fac®f?. The formal
relations that stem from this definition are its relation lte free energy when
applied to the observablehat returns one for any configuration:

1 n
-pfB) = n'm@ n In L%
and the thermodynamic average of an observable

g
@=Jm m

Both relations hold for almost all configurations. Theseatiehs are part of
theorem of Ruelle that enlarges the domain of the Perrobefias theorem and
sharpens its results. The theorem shows that just as trsfdramatrix, the largest
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eigenvalue of theC operator is related to the free-energy of the spin systeaisdt
hows that there is a formula for the eigenvector related éddhgest eigenvalue.
This eigenvectojp) (or the corresponding one for the adjoifit of £) is the Gibbs
state of the system. From it all averages of interest insstesii mechanics can be
computed from the formula

(@) = <pldlo) -

The Gibbs state can be expressed in an explicit form in tefth@anteractions,
but it is of little computational value as it involves the Gébstate for a related spin
system. Even then it does have an enormous theoretical. viadter we will see
how the formula can be used to manipulate the space of olidesvento a more
convenient space.

The geometrization of a spin system converts the shift dyceifmecessary
to define the Ruelle operator) into a smooth dynamics. Thégjisvalent to the
mathematical problem in ergodic theory of finding a smoottbedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set o§ gpsuch that

Fs(0)=0

and

FoioFg,0--0F; (0) = ¢p(+.01,02,...,0n, = —,...).

This is a formal relation that expresses how the interadida be converted into
a dynamical systems. In most examples is a collection of maps from a subset
of RP to itself.

If the interaction is complicated, then the dimension of ke of maps may
be infinite. If the resulting dynamical system is infinite Bave gained anything
from the transformation? The gain in this case is not in teofredded speed of
convergence to the thermodynamic limit, but in the fact thatRuelle operator
is of trace-class and all eigenvalues are related to thesygtem and not artifacts
of the computation.

The construction of the higher dimensional system is donbdsyowing the

state space reconstruction technique from dynamicalmgst8tate space reconstruction

can be done in several ways: by using delay coordinates, ihg derivatives of
the position, or by considering the value of several indepan observables of
the system. All these may be used in the construction of thevalgnt dynamics.
Just as in the study of dynamical systems, the exact methesl miot matter for
the determination of the thermodynamid¥«) spectra, generalized dimension),
also in the construction of the equivalent dynamics the textaaice of observable
does not matter.
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We will only consider configurations for the half line. Ths because for
translational invariant interactions the thermodynanmiaitlon half line is the
same as in the whole line. One can prove this by consideriegitterence in
a thermodynamic average in the line and in the semiline antghaoe the two as
the size of the system goes to infinity.

When the interactions are long range in principle one haseoify the boundary
conditions to be able to compute the interaction energy obrfiguration in
a finite box. If there are no phase transitions for the intevac then which
boundary conditions are chosen is irrelevant in the theymachic limit. When
computing quantities with the transfer matrix, the longgamteraction is truncated
at some finite range and the truncated interaction is thetols@luate the transfer
matrix. With the Ruelle operator the interaction is neventated, and the boundary
must be specified.

The interactionp(c) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

$0) = D Sror, I0)

n>0

with different choices od(n) leading to diferent models. 18(n) = Lonlyifn=1
and ) otherwise, then one has the nearest neighbor Isinglnibdén) = n=2, then
one has the inverse square model relevant in the study ofdhddproblem.

Let us say that each site of the lattice can assume two valuesind the set
of all possible configurations of the semiline is the QetThen an observableg
is a function from the set of configuratiofsto the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to thinkhef tonfiguration as
a string of spins. One can append a spjio its beginningy V o, in which case
7 is at site Ogwy at site 1, and so on.

The Ruelle operatal is defined as

£y = " glwo v n)e o).

wpeQo

This is a positive and bounded operator over the space ofdealiobservables.
There is a generalization of the Perron-Frobenius theoseRukelle that establishes
that the largest eigenvalue #fis isolated from the rest of the spectrum and gives
the thermodynamics of the spin system just as the largesteadue of the transfer
matrix does. Ruelle also gave a formula for the eigenveetiated to the largest
eigenvalue.

The dfificulty with it is that the relation between the partition ftioo and the
trace of itsnth power, trL" = Z, no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observalego), ..., xi(o)}. The idea
is to choose the observables in such a way that from theiesabm a particular
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configurationo the configuration can be reconstructed. We also introduee th
interaction observablds;,.

To geometrize spin systems, the interactions are assuntetittanslationally
invariant. The spins- will only assume a finite number of values. For simplicity,
we will take the interactiogp among the spins to depend only on pairwise interactions,

$(0) = $00,01,02,.) = Joo0+ ) Sy I1(1), (K.35)

n>0

and limitog to be in{+, —}. For the 1-dimensional Ising modek is the external
magnetic field andly(n) = 1 if n = 1 and 0 otherwise. For an exponentially
decaying interactiod;(n) = e *". Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spinslok co with helical boundary
conditions is modeled by the potenti&l(n) = 61 + dn.

The transfer operatdf was introduced by Kramers and Wanni&F][to study
the Ising model on a strip and concocted so that the traces oftitpower is the
partition functionZ, of system when one of its dimensionsisThe method can be
generalized to deal with any finite-range interaction. ¢ tange of the interaction
is L, then7™ is a matrix of size 2x 2. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to defiegt operator by
its action on an observablg Just as the observables in quantum mechaugics,
is a function that associates a number to every state (coafign of spins). The
energy density and the average magnetization are exanfpeservables. From
this equivalent definition one can recover the usual tramagrix by making all
quantities finite range. For a semi-infinite configuratioe: {oo, o1, ...}

T9(0) = g+ Vv 0)e PV 4 g(— v o)e V) | (K.36)

By + vV oo we mean the configuration obtained by prepending the beginning

of o resulting in the configuration+, 0o,01,...}. When the range becomes
infinite, tr7 ™" is infinite and there is no longer a connection between theetra
and the partition function for a system of sizéthis is a case where matrices give
the wrong intuition). Ruelle]3] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactioatatigest eigenvalue of
the7 operator is related to the free-energy of the spin systentrencbrresponding
eigenvector is related to the Gibbs state. By applyin the constant observable
u, which returns 1 for any configuration, the free energy pterfsis computed as

-Bt(p) = lim % In17"ul. (K.37)

To construct a smooth dynamical system that reproduces rispegties of
7, one uses the phase space reconstruction technique ofré&tlah [6] and
Takens [], and introduces a vector of state observables = {x1(c), ..., Xo(0)}.
To avoid complicated notation we will limit the discussianthe example(c) =
{X,(0), Xx_(0)}, with x,.(0) = ¢(+ V o) andx_(o) = ¢(- V o); the more general
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case is similar and used in a later example. The observatdesstricted to those

g for which, for all configurationsr, there exist an analytic functiod such that
G(x1(0),...,xp(0)) = g(o). This at first seems a severe restriction as it may
exclude the eigenvector corresponding to the Gibbs statanlbe checked that
this is not the case by using the formula given by Ruel!g for this eigenvector.

A simple example where this formalism can be carried outtigte interaction
¢(c) with pairwise exponentially decaying potentii(n) = a" (with |a] < 1). In

this casep(c) = Yns0dop.0n@ and the state observables atgo) = 3100 o, @"

andx (o) = Yne06-0,a" In this case the observable gives the energy of
spin at the origin, and_ the energy of a spin.

Using the observables, andx_, the transfer operator can be re-expressed as

TGN = Y} G 1V o). x (7o) e, (K-38)
nel+—)

In this equation the only reference to the configuratiors when computing the
new observable values. (7 vV o) andx_(n v o). The iteration of the function that
gives these values in terms xf(c) andx_(o) is the dynamical system that will
reproduce the properties of the spin system. For the sicxplerentially decaying
potential this is given by two mapB,. andF_. The mapF, takes{x, (o), X (o)}
into {X, (+ Vo), x_(+ VvV o)} which is{a(1+ x,),ax_} and the mag-_ takes{x,, x_}
into {ax,,a(1 + x_)}. In a more general case we have mépshat takex(o) to
X(n Vv o).

We can now define a new operatgr

£6() €760 = > G(F,(0)e, (K.39)

nel+.-)

where all dependencies orhave disappeared — if we know the value of the state
observables, the action of£ on G can be computed.

A dynamical system is formed out of the mapg. They are chosen so
that one of the state variables is the interaction energye €m consider the
two mapsF, and F_ as the inverse branches of a hyperbolic nfaphat is,
f1(x) = {F.+(x).F_(X)}. Studying the thermodynamics of the interactipris
equivalent to studying the long term behavior of the orbitthe mapf, achieving
the transformation of the spin system into a dynamical syste

Unlike the original transfer operator, th€ operator — acting in the space
of observables that depend only on the state variables — tsacé-class (its
trace is finite). The finite trace gives us a chance to relaertéte ofL" to the
partition function of a system of size We can do better. As most properties of
interest (thermodynamics, fallfcof correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholmmaietant det (1 z£)
by the technique of cycle expansions developed for dyndmsicstems P]. A
cycle expansion consists of finding a power series exparisicihe determinant
by writing det (1- z£) = exp(tr In(1- z£)). The logarithm is expanded into a

statmech - 1dec2001.tex

APPENDIX K. STATISTICAL MECHANICS RECYCLED 774

power series and one is left with terms of the fornfrto evaluate. For evaluating
the trace, thel operator is equivalent to

£6(9 = [ ayoty - 100) 60 (K.40)

from which the trace can be computed:

eBHX)
trL" = _— K.41
o B BTG (e4n

with the sum running over all the fixed points #f" (all spin configurations of a
given length). Herd ©" is f composed with itseli imes, andH(x) is the energy
of the configuration associated with the pointIn practice the mag is never

constructed and the energies are obtained directly frorsghmeconfigurations.

To compute the value of #£" we must compute the value & f©"; this
involves a functional derivative. To any degree of accuraayumberx in the
range of possible interaction energies can be represewtaditite string of spins
€, such asx = ¢(+, e, €1,...,—, —,...). By choosing the sequeneeto have a
large sequence of spins the numberx can be made as small as needed, so in
particular we can represent a small variationgfy). As x.(e) = ¢(+ Vv ¢€), from
the definition of a derivative we have:

m
8% = tim HEVI™) —0(0) (K.42)
moe (™)
where;(™ is a sequence of spin strings that makg™) smaller and smaller. By
substituting the definition of in terms of its pairwise interactiod(n) = na"™
and taking the limit for the sequence®” = {+,—,—.....0%me1 Tms2s ...} ONE
computes that the limitisif y = 1, 1ify < 1, and 0 ify > 1. It does not
depend on the positive value af Wheny < 1 the resulting dynamical system is
not hyperbolic and the construction for the operafofails, so one cannot apply
it to potentials such as (2)Y". One may solve this problem by investigating the
behavior of the formal dynamical systemjas» 0.

The manipulations have up to now assumed that the mspsmooth. If
the dimensionD of the embedding space is too smdil,may not be smooth.
Determining under which conditions the embedding is smaéoth complicated
question [5]. But in the case of spin systems with pairwise interactidris
possible to give a simple rule. If the interaction is of thenfo

$) =D Sooan ) PN (K.43)

n>1 k

where py are polynomials andey| < 1, then the state observables to use are
Xsk(o) = X 6+Jnnsaﬂ. For eachk one usesqy, X1k, - - . Up to the largest power
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Q+v+va)

05 1
Figure K.3: The spin adding map.. for the potential

J(n) = Y rPa™. The action of the map takes the
value of the interaction energy betweeand the semi-
infinite configuration{c1, 0, o3, ...} and returns the

. . . . 0 1 1
interaction energy between and the configuration o 05 T
{+,01,02,03,...}. o)

Orwe T

X & x
oL *ex " 1
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o x
4 - . x |
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Figure K.4: Number of digits for the Fredholm
method ¢) and the transfer function methodk)(
The size refers to the largest cycle considered in the ‘ el
Fredholm expansions, and the truncation length in the %, 5 10 15 20
case of the transfer matrix. size

N

in the polynomialpy. An example is the interaction withy(n) = n?(3/10). It

leads to a 3-dimensional system with variablgg, x10, andxzo. The action

of the mapF, for this interaction is illustrated figurk.3. Plotted are the pairs
{¢p(+Vo), p(+V+Vo)}. This can be seen as the strange attractor of a chaotic system
for which the variablesq, X1.0, andx, o provide a good (analytic) embedding.

The added smoothness and trace-class offloperator translates into faster
convergence towards the thermodynamic limit. As the retcooed dynamics is
analytic, the convergence towards the thermodynamic ifnféister than exponential [,
16]. We will illustrate this with the polynomial-exponentiatteractions K.43)
with y = 1, as the convergence is certainly faster than exponerftial s 1,
and the case af” has been studied in terms of another Fredholm determinant by
Gutzwiller [17]. The convergence is illustrated in figuke4 for the interaction
n?(3/10)". Plotted in the graph, to illustrate the transfer matrixvegence, are
the number of decimal digits that remain unchanged as tfgerafthe interaction
is increased. Also in the graph are the number of decimatgdipiat remain
unchanged as the largest power offr considered. The plot isfiectively a
logarithmic plot and straight lines indicate exponenyidiist convergence. The
curvature indicates that the convergence is faster thaonextial. By fitting, one
can verify that the free energy is converging to its limitwejue as exp{n*/3)).
Cvitanovi¢ [L7] has estimated that the Fredholm determinant of a map bn a
dimensional space should converge as erff(/®)), which is confirmed by these
numerical simulations.
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Résumé

The geometrization of spin systems strengthens the cdondmtween statistical
mechanics and dynamical systems. It also further estaslishe value of the
Fredholm determinant of th& operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and sassicial mechanics. The
example above emphasizes the high accuracy that can beeditédy computing
the shortest 14 periodic orbits of period 5 or less it is gaedio obtain three digit
accuracy for the free energy. For the same accuracy withnafemmatrix one
has to consider a 256 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark K.1 Presentation functions.  The best place to read about Feigenbaum’s
work is in his review article published ihos Alamos Science (reproduced in various
reprint collections and conference proceedings, suchfaf-ie Feigenbaum’slournal

of Satistical Physicsarticle [1L3] is the easiest place to learn about presentation functions

Remark K.2 Interactions are smooth Inmost computational schemes for thermodynamic
quantities the translation invariance and the smoothrfes® dasic interaction are never
used. In Monte Carlo schemes, aside from the periodic bayedaditions, the interaction

can be arbitrary. In principle for each configuration it @bbe possible to have aftérent
energy. Schemes such as the Sweneson-Wang cluster fliggorgtam use the fact that
interaction is local and are able to obtain dramatic spgesituthe equilibration time for

the dynamical Monte Carlo simulation. In the geometrizapoogram for spin systems,

the interactions are assumed translation invariant ando8morhe smoothness means
that any interaction can be decomposed into a series of thahdepend only on the spin
arrangement and the distance between spins:

¢(0‘0, 01,072,.. ) = J()O'g + Zﬁ(ag,o'n)Jl(n) + Z&(ag,a'nl,o—nQ)Jz(nl, nz) + -

where theJx are symmetric functions of their arguments and dtege arbitrary discrete
functions. This includes external constant fields) (but it excludes site dependent fields
such as a random external magnetic field.

Exercises

K.1. Not all Banach spaces are also Hilbert.  If we are to find an inner produgt , - ) (so thatB is also a Hilbe

given a nornj|-|| of a Banach spads, it may be possible
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K.2.

K.3.

spaceH) such that for all vector$ € B, we have
£l = ¢F, HHY2.

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that
we just are not being clever enough? By checking the o ) ) .
parallelogram law for the norm. A Banach space can b§-5- Infinite symbolic dynamics L_et_¢r_ be afunctlo_n that
made into a Hilbert space if and only if the norm satisfies ~ réturns zero or one for every infinite binary string::

the parallelogram law. The parallelogram law says that {0, " - {01} Its value is represented byer, e, . . )
for any two vectors andg the equality where theg are either 0 or 1. We will now define an

operator7” that acts on observables on the space of
binary strings. A functiora is an observable if it has
bounded variation, that is, if

Assume that whenever there is a bond connecting two
sites, there is a contributiai(c, oj) to the energy.

IF -+ gl + 11 = gi? = 20111 + 2lgli?,

must hold.

Consider the space of bounded observables with the
norm given byllall = sup,.q-la(o)l. Show that there
is no scalar product that will induce this norm.

Automaton for a droplet. Find the Markov
graph and the weights on the edges so that the energies
of configurations for the droplet model are correctly
generated. For any string starting in zero and ending
in zero your diagram should yield a configuration the
weighte™@, with H computed along the lines ok(13)

and K.18).

Hint: the Markov graph is infinite.

lall = supla(er, €, . . )| < .
&}

For these functions
Tale, e,...)=a0,e,e,...)00€e,e,...)+al, e,

The functiono is assumed such that anydfs “matrix
representations” in (a) have the Markov property (the
matrix, if read as an adjacency graph, corresponds to
a graph where one can go from any node to any other
node).

Spectral determinant for a" interactions ~ Compute (a) (easy) Consider a finite versidp of the operator
the spectral determinant for 1-dimensional Ising model 7
with the interaction

Tha(en, €,....6) =
(o) = Z a6(oo, k) - a0, e, €,...,6-1)0(0, €1, &, ..., 1) +
k0 a(le,e,....e-1)0(l e ... 6-1).

Takea as a number smaller thar2. Show thatT, is a 2' x 2" matrix. Show that its

(a) Whatis the dynamical system this generates? That trace is bounded by a number independent of

is, findF, andF_ as used inK.39).
(b) Show that

(b) (medium) With the operator norm induced by the
function norm, show thaf” is a bounded operator.

(c) (hard) Show thal is not trace-class. (Hint: check

d iy
d_xF“ or-} = 8 2 if 7~ is compact).
K.4. Ising model on a thin strip Compute the transfer Classes of operators are nested; trace-classmpact
matrix for the Ising model defined on the graph bounded.
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