Chapter 4

Local stability

(R. Mainieri and P. Cvitanovit)

point. Our next task is to define and determine the sizerwighborhood

of x(t). We shall do this by assuming that the flow is locally smoaifd
describe the local geometry of the neighborhood by studghiegflow linearized
aroundx(t). Nearby points aligned along the stable (contractingadions remain
in the neighborhood of the trajectorft) = f!(xo); the ones to keep an eye on are
the points which leave the neighborhood along the unstatdetbns. As we shall
demonstrate in chaptés, in hyperbolic systems what matters are the expanding
directions. The repercussion are far-reaching: As londq@sitmber of unstable
directions is finite, the same theory applies to finite-disi@emal ODES, state
space volume preserving Hamiltonian flows, and dissipatisgkime contracting
infinite-dimensional PDEs.

S FAR We have concentrated on description of the trajectory ohglsiinitial

4.1 Flows transport neighborhoods

AN
neighborhoods. The deformation of an infinitesimal neighbod is best understood
by considering a trajectory originating negy = x(0) with an initial infinitesimal

displacemen#x(0), and letting the flow transport the displacem&x(t) along the
trajectoryx(xg, t) = f'(xo).

As a swarm of representative points moves along, it carli@sgaand distorts

4.1.1 Instantaneous shear

The system of lineaequations of variationfor the displacement of the infinitesimally
close neighbox + 6x follows from the flow equations2(6) by Taylor expanding
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5t

Figure 4.1: A swarm of neighboring points of(t) is
instantaneously sheared by the action of the stabili
matrix A - a bit hard to draw.

to linear order

. : oV
X + 6% = Vi(X+ 6X) ~ Vi(X) + Z a—x'_éxj .
j

The infinitesimal displacemeni is thus transported along the trajectou(o, t),
with time variation given by

5Xj(Xo, t). (4.2)

d v
%000 =3 =)
j X=X(Xo.t)

0X;

As both the displacement and the trajectory depend on ttialipoint xg and the
time t, we shall often abbreviate the notationx(,t) — X(t) — X, 6% (Xo,t) —
6%i(t) — oxin what follows. Taken together, the set of equations

X =w(x), ox = ZAij(X)5Xj (4.2)
j

governs the dynamics in the tangent bunddgSk) € T M obtained by adjoining
the d-dimensional tangent spadx € TyM to every pointx € M in the d-
dimensional state spagel c RY. Thestability matrix(velocity gradients matrix)

oVi(X)

J

Aj() = 4.3)

describes the instantaneous rate of shearing of the irdimig neighborhood of
X(t) by the flow, figured.1

Example 4.1 Rdéssler and Lorenz flows, linearized: For the Réssler (2.17) and
Lorenz (2.12) flows the stability matrices are, respectively

0O -1 -1 -c o 0
ARoss:[ 1 a 0 ] > ALor :[ p-z -1 X } . (4.4)
z 0 x-c y X -b
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x(t) o 0X(t) = 35 x(0)

Figure 4.2: The fundamental matrixd® maps an
infinitesimal displacement at, into a displacement X(O)
rotated and sheared by the linearized flow fundamental
matrix J'(xo) finite timet later. OX(

4.1.2 Linearized flow

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

Taylor expanding dinite timeflow to linear order,

af!(x)

(%0 +6%) = () + ) o OXj + -+ (4.5)

J

one finds that the linearized neighborhood is transported by

a%(t)
an

ox(t) = J(x0)ox0,  J(%0) = (4.6)

X=Xo

This Jacobian matrix has inherited the naomedamental solution matrier simply
fundamental matri¥rom the theory of linear ODEs. It is often denot&xdf,
but for our needs (we shall have to sort through a plethoraelated Jacobian
matrices) matrix notatiord is more economical.J describes the deformation of
an infinitesimal neighborhood at finite tinhén the co-moving frame ox(t).

As this is a deformation in the linear approximation, one tlank of it as
a linear deformation of an infinitesimal sphere envelopikggnto an ellipsoid
aroundx(t), described by the eigenvectors and eigenvalues of theafuadtal
matrix of the linearized flow, figurd.2. Nearby trajectories separate along the
unstable directionsapproach each other along thable directionsand change
their distance along thenarginal directionsat a rate slower than exponential,
corresponding to the eigenvalues of the fundamental mattixmagnitude larger
than, smaller than, or equal 1. In the literature adjecthastral or indifferentare
often used instead of ‘marginal, (attracting) stable cliens are sometimes called
‘asymptotically stable,” and so on.

One of the preferred directions is what one might expectditection of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xo = f%(xg) — Xo = V(Xo)dt. By the semigroup
property of the flow,ft* = fo%*! where

o (%) = f(f t+ZjTV(X(T)) = stv(x(t) + Fi(xo).
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Figure 4.3: For a periodic orbitp, any two points x> e
along the cycle are mapped into themselves after one

cycle periodT, hencesx = v(Xo)dt is mapped into itself

by the cycle fundamental matri,.

Expanding both sides dff(f%(xg)) = f%(f!(xo)), keeping the leading term it,
and using the definition of the fundamental matdxgj, we observe thaf'(xo)
transports the velocity vector & to the velocity vector ax(t) at timet:

V(X()) = J(x0) V(x0) - (4.7)

In nomenclature of pagé3, the fundamental matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinatenféa

The velocity at pointx(t) in general does not point in the same direction
as the velocity at poinkg, so this is not an eigenvalue condition fay, the
fundamental matrix computed for an arbitrary segment ofraitrary trajectory
has no invariant meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chagierHowever, already at this
stage we see that if the orbit is periodi§T ,) = x(0), at any point along cyclp
the velocityv is an eigenvector of the fundamental matfix = JTe with a unit
eigenvalue,

Jp(X)V(X) = V(X), XEPp. (4.8)
Two successive points along the cycle separatedixpyhave the same separation

after a completed period@k(Tp) = o, see figuret.3, hence eigenvalue 1.

As we started by assuming that we know the equations of mdtiom (4.3)
we also know stability matri¥, the instantaneous rate of shear of an infinitesimal
neighborhoodx; (t) of the trajectoryx(t). What we do not know is the finite time
deformation 4.6).

Our next task is to relate the stability matxto fundamental matrixt. On
the level of diferential equations the relation follows by taking the tineeieative
of (4.6) and replacingx by (4.2)

ox(t) = J'oxg = Asx(t) = A 6xg.
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Hence thel” matrix elements of fundamental matrix satisfy the linesdlizquation
4.7

dEtJt(x) = A(X) J'(x), initial condition J°(x) = 1. (4.9)

Given a numerical routine for integrating the equations attiom, evaluation
of the fundamental matrix requires minimal additional peogming éfort; one
simply extends the-dimensional integration routine and integrates conailye
with fY(x) thed? elements of)'(x).

The qualifier ‘simply’ is perhaps too glib. Integration waliork for short finite
times, but for exponentially unstable flows one quickly rumie numerical over-
andor underflow problems, so further thought will have to go imtplementation
this calculation.

So now we know how to compute fundamental mattixgiven the stability
matrix A, at least when thd? extra equations are not too expensive to compute.
Mission accomplished.

fast track:
W chapter 7, p. 108
And yet... there are mopping up operations left to do. Weigewmtil we

derive the integral formulad(43 for the fundamental matrix, an analogue of the
finite-time “Green function” or “path integral” solutiong other linear problems.

We are interested in smooth,fidirentiable flows. If a flow is smooth, in a
suficiently small neighborhood it is essentially linear. Heltice next section,
which might seem an embarrassment (what is a sectiohnear flows doing
in a book onnorlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalaed eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 71
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described glirditerential equations
which can be solved explicitly, with solutions that are géadall times. The state
space for linear dierential equations i = RY, and the equations of motion
(2.6) are written in terms of a vectorand a constant stability matrik as

X =V(X) = AX. (4.10)
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Solving this equation means finding the state space trajecto

X(t) = (xa(t), X2(t), . . ., Xa(t))

passing through the poing. If x(t) is a solution withx(0) = xo andy(t) another
solution withy(0) = yp, then the linear combinatioax(t) + by(t) with a,b € R is

also a solution, but now starting at the podn + byg. At any instant in time, the
space of solutions is@dimensional vector space, which means that one can find
a basis ofl linearly independent solutions.

How do we solve the linear fierential equation4.10)? If instead of a matrix
equation we have a scalar ones Ax, the solution is

x(t) = e'xg. (4.11)

In order to solve the-dimensional matrix case, it is helpful to rederive the ol
(4.1 by studying what happens for a short time sép If at timet = 0O the
position isx(0), then

x(6t) — x(0)

= = x(0)., (4.12)

which we iteratentimes to obtain Euler’s formula for compounding interest
t m
X(t) ~ (1 + 54) X(0). (4.13)

The term in parentheses acts on the initial conditi(® and evolves it tx(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equatieghl(?):

x(6t) — x(0)

= = AX0). (4.14)

A representative poink is now a vector inRY acted on by the matri, as in
(4.10). Denoting byl the identity matrix, and repeating the stepsl@ and @.13
we obtain Euler’'s formula for the exponential of a matrix:

x(t) = %),  J=é?= lim (1 + %A)m . (4.15)

m—oo

We will find this definition the exponential of a matrix helpfo the general case,
where the matriXA = A(x(t)) varies along a trajectory.

How do we compute the exponentidl. {5?

W fast track:
sect. 4.3, p. 71
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Example 4.2 Fundamental matrix eigenvalues, diagonalizable case: Should we
be so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A9, 2@, ... 1@),
the exponential is simply

Y .. 0
J=¢g = . (4.16)
o ... @

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U~AU. Then J can also be brought to a diagonal form (insert

factors 1 = UU~! between the terms of the product (4.15)): )
[exercise 4.2]

J=er=udhut, (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of both A and Jt, and under the
flow the neighborhood is deformed by a multiplication by an eigenvalue factor for each
coordinate axis.

In generalJd! is neither diagonal, nor diagonalizable, nor constant galihie
trajectory. As any matrix)! can also be expressed in the singular value decomposition
form

J=UDV'

whereD is diagonal, andJ, V are orthogonal matrices. The diagonal elements
o1, 09, ..., 04 0f D are called theingular valueof J, namely the square root of
the eigenvalues ad’J, which is a Hermitian, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). Fronoangéric point of view,
when all singular values are non-zetbmaps the unit sphere into an ellipsoid:

the singular values are then the lengths of the semiaxessoélitipsoid. _
[section 5.1.2]

We recapitulate the basic facts of linear algebra in appeBdA 2-d example
serves well to highlight the most important types of lineaws:

Example 4.3 Linear stability of 2 —d flows:  For a 2-d flow the eigenvalues 1AM, 1@ of

A are either real, leading to a linear motion along their eigenvectors, x;(t) = x;(0) exp¢a),
or a form a complex conjugate pair A0 = y +iw,A1® = u - iw, leading to a circular or
spiral motion in the [x1, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case AY) > 0, 1@ < 0, x; grows exponentially with time,
and Xy contracts exponentially. This behavior, called a saddle, is sketched in figure 4.4,
as are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when u > 0, and contracts into
(0, 0) when the u < 0, whereas the phase velocity w controls its oscillations.

If eigenvalues A0 = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.2.

stability - 13jun2008.tex



CHAPTER 4. LOCAL STABILITY 68

Figure 4.4:  Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

e

saddle outnode innode

Figure 4.5: Qualitatively distinct types of

exponents of a [2] fundamental matrix. . . .
center outspiral in spiral

X X

X X

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symba\k will always denote thekth eigenvalue(in
literature sometimes referred to as tmltiplier or Floquet!multiplie) of the
finite time fundamental matrid'. SymbolA® will be reserved for th&th Floquet

or characteristicexponent, ocharacteristic valuewith real partu® and phase
(K-
w'7.

Ay = et = gl+ia), (4.18)

JY(xo) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general

A = Ak = Ak(x0, 1), 1= 2900,1), w=0w®(x,1),- etc.,

depend on both the trajectory traversed and the choice oflic@ies.

However, as we shall see in segt, if the stability matrixA or the fundamental
matrix J is computed on a flow-invariant s@t(,, such as an equilibrium or a
periodic orbitp of period T,

Aq = A(Xg) , Jo(X) =3"P(x), xe Moy, (4.19)
(xis any point on the cycle) its eigenvalues

K
AP = AM(xg), Apk = Ak(% Tp)
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are flow-invariant, independent of the choice of coordisated the initial point
in the cyclep, so we label them by thegq or p label.

We number eigenvaluesy in order of decreasing magnitude
A1l = |A2] = ... > |Agl. (4.20)
SincelA|| = é«? this is the same as labeling by
> @ > >0 (4.21)

In dynamics the expanding directionig,¢ > 1, have to be taken care of first,
while the contracting directionig\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria padodic orbits is forded
by projection operators

M -1
Pi = 1;[ FOROR (4.22)

where matrixM is typically either equilibrium stability matriA, or periodic orbit
fundamental matrixJ restricted to a Poincaré section, as4rb6). While usually
not phrased in language of projection operators, the ri¢guisear algebra is
standard, and relegated here to appefdix

Once the distinct non-zero eigenvalyg®} are computed, projection operators
are polynomials itM which need no further diagonalizations or orthogonalezi
For each distinct eigenvalu#) of M, the columgows of P;

M - aDpP; = P;M - aW1) = 0, (4.23)

are the righteft eigenvectore®, ey of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and @evanient starting
seed for tracing out the global unstagktable manifolds.

MatricesP; areorthogonalandcomplete

r
PP; = 6;P;, (nosum onj), ZP‘ =1. (4.24)
-1
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with the dimension of théh subspace given by = tr P; . Completeness relation
substituted intdVl = M 1 yields

M = APy + 1@P, 4 ... 4 2OP, (4.25)

As any matrix functionf(M) takes the scalar valug(a”)) on theP; subspace,
f(M)P; = f(AD)P; , it is easily evaluated through ispectral decomposition

f(M) = Z fMP; . (4.26)

As M has only real entries, it will in general have either realeaigplues
(over-damped oscillator, for example), or complex conjagzirs of eigenvalues
(under-damped oscillator, for example). That is not ssipg, but also the corresponding
eigenvectors can be either real or complex. All coordinated in defining the
flow are real numbers, so what is the meaning cbmplexeigenvector?

If two eigenvalues form a complex conjugate paifd, A& DY = (4 + iw, u —
iw}, they are in a sense degenerate: while a r#l characterizes a motion
along a line, a complex® characterizes a spiralling motion in a plane. We
determine this plane by replacing the corresponding caxgtenvectors by their
real and imaginary part&®, ey — (Ree®), Im e}, or, in terms of projection
operators:

1 . "
Py = E(R +iQ), Pii1 = Py,

whereR = Py + Py, 1 is the subspace decomposed byktrecomplex eigenvalue
pair, andQ = (Px — Px+1)/i, both matrices with real elements. Substitution

(o) =21 5)(o):

brings thet® P, +1&+*Dp, ., ; complex eigenvalue pair in the spectral decomposition
(4.25 into the real form,

Jem o G e

(P Pk”)(g /?*)(Pkﬂ u/\Q

where we have dropped the supersctiptor notational brevity.

To summarize, spectrally decomposed malix(4.25 acts along lines on
subspaces corresponding to real eigenvalues, and aRprf#ation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to dméimear case.
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4.3 Stability of flows .

X

How do you determine the eigenvalues of the finite time loedbanation Jt
for a general nonlinear smooth flow? The fundamental masrigomputed by
integrating the equations of variationk2)

X(t) = f'(x0), X(Xo,t) = J(X0)5X(X0, 0). (4.28)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

For a start, consider the case wheres an equilibrium point%.8). Expanding
around the equilibrium pointg, using the fact that the stability matrik = A(Xg)
in (4.2) is constant, and integrating,

i) = X+ &M (x=xg) + -+, (4.29)

we verify that the simple formulad(15) applies also to the fundamental matrix of
an equilibrium point,

Nxg) =M, Ag=Ax). (4.30)

Example 4.4 In-out spirals. Consider a 2-d equilibrium whose stability eigenvalues
{AD, 2@} = {u +iw, u — iw} form a complex conjugate pair. The corresponding complex
eigenvectors can be replaced by their real and imaginary parts, (€, €@} — (Ree®, Im e®)}.
The 2d real representation (4.27),

(5 W)=nlo 2)+e(i )

consists of the identity and the generator of S Q2) rotations. Trajectories x(t) = J'x(0),
where

It = At = etﬂ(c‘?s‘”t —sin “’t) , (4.31)
Sinwt  coswt

spiral infout around (x,y) = (0,0), see figure 4.4, with the rotation period T, and
contraction/expansion radially by the multiplier Aradiai, @nd by the multiplier Aj along
the ) eigendirection per a turn of the spiral: .

[exercise B.1]

T=21/w, Arda=€*, Aj=e"’. (4.32)
We learn that the typical turnover time scale in the neighborhood of the equilibrium

(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 10-2T). A multipliers give
us estimates of strange-set thickness.
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40
Figure 4.6: Two trajectories of the Rossler flow
initiated in the neighborhood of thet+* or ‘outer’
equilibrium point 2.19. (R. PaSkauskas)

Example 4.5 Stability of equilibria of the R  6ssler flow. The Roésler system
(2.17) has two equilibrium points (2.18), the inner equilibrium (x_,y-,z_), and the %)f?trepfse 4.4]
equilibrium point (X*,y*, z"). Together with their exponents (eigenvalues of the st%ﬂfﬁ}se 2.8]
matrix) the two equilibria now yield quite detailed information about the flow. Figure 4.6
shows two trajectories which start in the neighborhood of the ‘+’ equilibrium point.
Trajectories to the right of the outer equilibrium point ‘+’ escape, and those to the left
spiral toward the inner equilibrium point ‘-’, where they seem to wander chaotically
for all times. The stable manifold of outer equilibrium point thus serves as a attraction

basin boundary. Consider now the eigenvalues of the two equilibria

W, u? £ i0?) = (-5686 0.0970+ i0.9951)
o @, @) 6, (4.33)

W7, ) iws’)= (01929 -4596x 10° +i5.428)

Outer equilibrium: The ,u(f)i i w(f) complex eigenvalue pair implies that that neighborhood

of the outer equilibrium point rotates with angular period T, = |27r/a)£r2)| = 1.1575

The multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts

in the stable manifold plane is the excrutiatingly slow A} ~ exp(u(f)TJr) = 0.9999947

per rotation. For each period the point of the stable manifold moves away along the

unstable eigen-direction by factor A = expcl(f)TJr) = 1.2497 Hence the slow spiraling

on both sides of the ‘+’ equilibrium point.

Inner equilibrium:  The u(,z) +iw® complex eigenvalue pair tells us that neighborhood
of the ' equilibrium point rotates with angular period T_ =~ [2r/0®| = 6.313
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by which

a trajectory that starts near the ‘-’ equilibrium point spirals away per one rotation is
Aradial ~ exp(u(_z)T,) = 1.84. The ,u(_l) eigenvalue is essentially the z expansion
correcting parameter ¢ introduced in (2.16). For each Poincaré section return, the
trajectory is contracted into the stable manifold by the amazing factor of A1 = expcl(,l)T_) =
107156 (,)

Suppose you start with a 1. mm interval pointing in the A1 eigen-direction. After
one Poincaré return the interval is of order of 107* fermi, the furthest we will get into
subnuclear structure in this book. Of course, from the mathematical point of view, the
flow is reversible, and the Poincaré return map is invertible. (R. PaSkauskas)

Example 4.6 Stability of Lorenz flow equilibria: (Continued from example 3.5.) A
glance at figure 3.7 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

Lorenz flow is volume contracting (4.47),

3
ovi=Y A0xt)=-c-b-1, (4.34)
i=1

at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —13.66.
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Figure 4.7: (a) A perspective view of the z
linearized Lorenz flow neaEQ; equilibrium,
see figure3.7 (a). The unstable eigenplane of A

EQ, is spanned by R&Y and Ime®. The - 1

stable eigenvectoe®. (b) Lorenz flow near tr

EQ, equilibrium: unstable eigenvectet’, stabli 3

eigenvectorse®, €. Trajectories initiated o

distances 16 --- 102, 1023 away from th ¢
N - 0.5

z-axis exit finite distance fronEQ, along th 10
10~ i
IO_IO\J

(M, e?) eigenvectors plane. Due to the str
1071[

A0 expansion, theEQ, equilibrium is, for al
ye——
3

practical purposes, unreachable, and B®@, —
EQ, heteroclinic connection never observec
simulations such as figure.4. (E. Siminos
continued in figurel0.7) Im eV

10713

The symmetry of Lorenz flow leads to a block-diagonal form for the EQ,
equilibrium stability matrix, explicit in (4.4) evaluated at xgeqo = (0,0,0). The z-axis
is an eigenvector with a contracting eigenvalue A®) = —b. From (4.34) it follows that all
[x,y] areas shrink at rate —o- — b. Indeed, the [X,y] submatrix

A =( ‘p" 7 ) (4.35)

has a real expanding/contracting eigenvalue pair A3 = —(o+1)/2+ /(o — 1)2/4 + po,
with the right eigenvectors 1), ) in the [x,y] plane, given by (either) column of the
projection operator

A - 01 1 (o= & o

A0 0 T 20 -0 ( p —1-a0 ) - 1#ell3). (436)
EQ , equilibria have no symmetry, so their eigenvalues are given by the roots

of a cubic equation, the secular determinant det(A — A1) = O:

B+ 220 +b+1)+ Ab(o +p) + 20b(p — 1) = 0. (4.37)

For p > 2474, EQ,, have one stable real eigenvalue and one unstable complex
conjugate pair, leading to a spiral-out instability and the strange attractor depicted in
figure 2.4.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice o = 10,b = 8/3,p = 28, we note the values of these eigenvalues for
future reference,

EQ: (AM, 1@ Q) = (1183, —2.666, -2283) (4.38)
EQ : (u®P +iw® 2®) = (0.094+i1019, -1385), )

as well as the_ rotation period Teq = 2n/ oW about EQy, and the associated expansion/contraction
multipliers AV = expuVTeq) per a spiral-out turn:

Teo1 = 06163,  (A®,A®) = (1.060,1.957x 107*). (4.39)
We learn that the typical turnover time scale in this problem is of order T = Tgo1 = 1
(and not, let us say, 1000, or 10-2). Combined with the contraction rate (4.34), this tells

us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 107* per
mean turnover time.
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In the EQ, neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier A® ~ 1.06, and very strong contraction
multiplier A® =~ 10* onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface
evident in the section figure 3.7.

In the xgqo = (0,0,0) equilibrium neighborhood the extremely strong A® =~
—23 contraction along the €2 direction confines the hyperbolic dynamics near EQ, to
the plane spanned by the unstable eigenvector b, with A0 ~ 12, and the slowest
contraction rate eigenvector €@ along the z-axis, with A® ~ —3. In this plane the strong
expansion along e overwhelms the slow 1?) ~ —3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ,, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.7, and the empirical scarcity of trajectories close to EQ,. (Continued in
example 4.7.)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait (Continued from example 4.6.) As the
EQ, unstable manifold spirals out, the strip that starts out in the section above EQ, in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ,.

How? As in the neighborhood of the EQ, equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQq, continue analytically to a small distance beyond EQ, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e®)
direction, and those to the right along —e\Y). As along the €1 direction xy > 0, the
nonlinear term in the z equation (2.12) bends both branches of the EQ, unstable
manifold WY(EQ) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.2, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilibria
and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (Continued in example 9.2.)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary toajex(t). The exponential
of a constant matrix can be defined either by its Taylor sexigmnsion, or in
terms of the Euler limit4.15:

etA EAk (4.40)
k=0
. t \Mm
— im (1+ —A) . (4.41)
m—oo m

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkigiappropriate for the
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task at hand, as for a dynamical system the local rate of hertlood distortion
A(X) depends on where we are along the trajectory. The linehniegghborhood is
multiplicatively deformed along the flow, and thediscrete time step approximation
to J' is therefore given by a generalization of the Euler proddct):

1 1
b= i = i tA(X)
J lim l:n[q (1+ StA() = lim r];[neé (4.42)
= M LA Pt ACm-1) . . . htACR) HtAML)

whereédt = (t —tg)/m, andx, = X(to + ndt). Slightly perverse indexing of the
products indicates that in our convention the successitesimal deformation

are applied by multiplying from the left. The two formulas f§ agree to leading

order indt, and them — oo limit of this procedure is the integral

3 () = [TefJ drA(x(r»]” , (4.43)

whereT stands for time-ordered integratiaefinedas the continuum limit of the
successive left multiplicationst(42). This integral formula ford is the main

. ise 4.5
conceptual result of this chapter. fexercise 4.5]

It makes evident important properties of fundamental roag;i such as that
they are multiplicative along the flow,

() = () I®),  wherex = fi(x), (4.44)

an immediate consequence of time-ordered product steiofuft.42). However,
in practiced is evaluated by integratingt(9) along with the ODEs that define a
particular flow.

in depth:
Q sect. 15.3, p. 263

4.4 Neighborhood volume

Consider a small state space voluké = d?x centered around the poing at

timet = 0. The volumeAV’ = AV(t) around the poink’ = x(t) timet later is o

[remark 15.3]

AV OxX

’ _ o — t
AV = - AV = ’det aX’AV |det I(x0)'| AV, (4.45)

so the|det]] is the ratio of the initial and the final volumes. The deteramin
detJi(x) = Hﬁzl Ai(Xo, t) is the product of the multipliers. We shall refer to this
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determinant as th&acobianof the flow. This Jacobian is easily evaluated. TaFe _
. L. . . exercise 4.1]
the time derivative and use the matrix identity In det tr In J:

d d d 1.
d—tInAV(t) = d—tlndetJ _trd—tInJ _ter_trA_a.v..

(Here, as elsewhere in this book, a repeated index impliesraiion.) As the
divergenced;v; is a scalar quantity, the integral in the exponent nesal$ime
ordering Integrate both sides to obtain the time evolution of an itggimal
volume

detJ'(xo) = exp[ft drtrA(x(r))] = exp[ft draivi(x(r))] . (4.46)
0 0

All we need to do is evaluate the time average

- t d
= g J o YA

d
l_[ Ai(Xo, 1)
i1

1
—In
t

d
= > A%00,1) (4.47)
i=1

along the trajectory. If the flow is not singular (for examplee trajectory does
not run head-on into the Coulombrilsingularity), the stability matrix elements
are bounded everywher@j| < M, and so is the tracg; A;j. The time integral

in (4.46) grows at most linearly with, henced;v; is bounded for all times, and
numerical estimates of the— oo limit in (4.47) are not marred by any blowups.

Even if we were to insist on extractingv; from (4.42) by first multiplying
fundamental matrices along the flow, and then taking therithga, we can avoid
exponential blowups id' by using the multiplicative structurd ¢44), detJ'+{(xo) =
detJ!(x) detJ'(xo) to restart withJ°(x’) = 1 whenever the eigenvalues #{xo)
start getting out of hand.  In numerical evaluations of Lyapuexponents
Ai = iMoo 1O (x0, 1), the sum rule 4.47) can serve as a helpful check on t
accuracy of the computation.

Hsection 15.3]
e

The divergencd,v; is an important characterization of the flow - it describes
the behavior of a state space volume in the infinitesimal himicghood of the
trajectory. Ifg;v; < 0, the flow islocally contracting and the trajectory might
be falling into an attractor. 1d;v;(X) < 0, for all x € M, the flow isglobally
contracting, and the dimension of the attractor is necigssmaller than the
dimension of state spackl. If div; = O, the flow preserves state space volume
and detJ! = 1. A flow with this property is calledhcompressible An important
class of such flows are the Hamiltonian flows considered ih g€

But before we can get to that, Henri Roux, the perfect studlvays on alert,
pipes up. He does not like our definition of the fundamentatiman terms of the
time-ordered exponentiaft(43. Depending on the signs of multipliers, the left
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hand side of4.46) can be either positive or negative. But the right hand sdmi
exponential of a real number, and that can only be positiveagives? As we
shall see much later on in this text, in discussion of topicligndices arising in
semiclassical quantization, this is not at all a dumb qaesti

4.5 Stability of maps

R

The transformation of an infinitesimal neighborhood of gettory under the
iteration of a map follows from Taylor expanding the itechieapping atliscrete
time n to linear order, as in4(5). The linearized neighborhood is transported by
the fundamental matrix evaluated at a discrete set of timeg, 2, . . .,

af"
M) =

ij 9%, (4.48)

X=Xo

We shall refer to this Jacobian matrix also as thenodromymatrix, in case of
periodic orbitsf"(X) = x. Derivative notationM!(xp) — Df(xg) is frequently
employed in the literature. As in the continuous case, wetehy Ay the kth

eigenvalueor multiplier of the finite time fundamental matrM"(xo), andu® the

real part ofkth eigen-exponent

Ay = g'=io) IA] = ™.

For complex eigenvalue pairs the phaselescribes the rotation velocity in the
plane defined by the corresponding pair of eigenvector$, avie period of rotation
given by

T=21lw. (4.49)

Example 4.8 Stability of a 1-dimensional map: Consider a 1-d map f(X). The
chain rule yields the stability of the nth iterate

n-1
AGoM = - 1700) = [ | F0m). = 70x0). (4.50)
m=0

The 1-step product formula for the stability of thil iterate of ad-dimensional
map

M (%) = M(Xp-1)- - M(x))M(Xo),
M = %fk(x), Xen = (%) (4.51)
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follows from the chain rule for matrix derivatives

d
0 0 0
—fi(f(X) = —f ‘ — fk(X).
e DO = it o)

If you prefer to think of a discrete time dynamics as a seqe@fi@oincaré section
returns, then4.51) follows from (4.44): fundamental matrices are multiplicative

along the flow. .
[exercise 15.1]

Example 4.9 Hénon map fundamental matrix: For the Hénon map (3.18) the
fundamental matrix for the nth iterate of the map is

1
woo =[] 2 8], = oaw). (452

m=n

The determinant of the Hénon one time step fundamental matrix (4.52) is constant,
detM = AjA, = -b (4.53)

so in this case only one eigenvalue A; = —b/A; needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:
E chapter 7, p. 108

4.5.1 Stability of Poincate return maps

O3

(R. PaSkauskas and P. Cvitanovi€)

We now relate the linear stability of the Poincaré returmprifa £ — ¥ defined
in sect.3.1to the stability of the continuous time flow in the full stafese.

The hypersurfac can be specified implicitly through a functidh(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint 6x is in
the hypersurfac® if U(x+6x) = 0, and the same is true for variations around the
first return pointX’ = x(r), so expandindJ(X’) to linear order irvx leads to the
condition

d+1 aU(X,) %
ox  dx

=0. (4.54)
7)

i=1
In what followsU; is the gradient ofJ defined in 8.3), unprimed quantities refer
to the starting poink = Xy € P, v = V(Xp), and the primed quantities to the first

return: X' = X(1), V. = v(x), U’ = U(X). For brevity we shall also denote the
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Figure 4.8: If x(t) intersects the Poincaré sectih
at timer, the nearbyx(t) + 6x(t) trajectory intersects
it time 7 + ot later. As U’ - vét) = —(U’ - J6X),
the diference in arrival times is given byt =

X(t)
—(U-J6%)/(U” - V). X(t)+3x(t)

full state space fundamental matrix at the first returrdby J°(xg). Both the first
return X’ and the time of flight to the next Poincaré sectidi) depend on the
starting pointx, so the fundamental matrix

ax

NEVTE ax
j

(4.55)

P

with both initial and the final variation constrained to tt@riRaré section hypersurface
P is related to the continuous flow fundamental matrix by

dx
i

0§ dXde o dr
P_an dr de - ide'

The return time variatiordr/dx, figure 4.8, is eliminated by substituting this
expression into the constraint.64),

0=0U" Jj+ -(9U’)c?—; )
i

yielding the projection of the full space ¢ 1)-dimensional fundamental matrix
to the Poincaré mag-dimensional fundamental matrix:

. VU’

Substituting 4.7) we verify that the initial velocity/(x) is a zero-eigenvector of
Jv=0, (4.57)

so the Poincaré section eliminates variations parallel amdJ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matri describes the sheariftpmpressiofa
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expansion of an infinitesimal neighborhood in an infinitedimime step. The
deformation after a finite timeis described by the fundamental matrix

I(xo) = Teh dvAKD)

whereT stands for the time-ordered integration, defined multgtiely along the
trajectory. For discrete time maps this is multiplicationtime step fundamental
matrix M along then pointsxg, X1, X2, . . ., X1 0N the trajectory okg,

M"(X0) = M(Xn-1)M(Xn-2) - - - M(x1) M(X0) ,

with M(X) the single discrete time step fundamental matrix. In tliskoAg
denotes thdth eigenvalueof the finite time fundamental matri¥(xo), andu®
the real part okth eigen-exponent

|A| — en# , Ai — eﬂ(,uiiw) )

For complex eigenvalue pairs the phasdescribes rotational motion in the plane
defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamentaixrdescribe the
deformation of an initial infinitesimal sphere of neighlmyitrajectories into an
ellipsoid a finite timet later. Nearby trajectories separate exponentially along
unstable directions, approach each other along stabletiding, and change slowly
(algebraically) their distance along marginal directioffie fundamental matrix
JUis in general neither symmetric, nor diagonalizable by atioh, nor do its
(left or right) eigenvectors define an orthonormal coortirfeame. Furthermore,
although the fundamental matrices are multiplicative glitne flow, in dimensions
higher than one their eigenvalues in general are not. Thisdamultiplicativity
has important repercussions for both classical and quadymamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect4.2 we only sketch, and in appendix recapitulate a few facts that
our narrative relies on. They are presented at length in ntextpooks. The standard
references that exhaustively enumerate and explain aBilplescases are Hirsch and
Smale [], and Arnol'd [1]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 Meissd], chapter 1 of Perkod] and chapters 3 and 5 of Glendinning most.

The construction of projection operators given here isndkem refs. |5, 7]. Who
wrote this down first we do not know, lineage certainly goéthal way back to Lagrange
polynomials [L(], but projection operators tend to get drowned in sea oftakje details.
Halmos ] is a good early reference - but we like Harter’s expositiore] 17] best, for
its multitude of specific examples and physical illustraio
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The nomenclature tends to be a bit confusing. In referrifydefined in ¢.3) as the
“stability matrix” we follow Tabor [L3]. SometimedA, which describes the instantaneous
shear of the trajectory poin(xo, t) is referred to as the ‘Jacobian matrix,” a particularly
unfortunate usage when one considers linearized stabfliayn equilibrium point4.30.
What Jacobi had in mind in his 1841 fundamental papé} ¢n the determinants today
known as ‘jacobians’ were transformations betwedfedént coordinate frames. These
are dimensionless quantities, while the dimensioApfl/[time]. More unfortunate still
is referring toJ' = € as an ‘evolution operator,” which here (see séét.) refers to
something altogether fierent. In this book fundamental matidk always refers t04.6),
the linearized deformation after a finite timheeither for a continuous time flow, or a
discrete time mapping.

Exercises
4.1. Trace-log of a matrix. Prove that (a) Show that equatiofdet (A — A1)| = O for Rossler
flow in the notation of exercis2.8 can be written
detM = elf M as

3,32 F + 2 _~F\— _
for an arbitrary nonsingular finite dimensional matvx L 2e(p =)+ A(p*/e+1-C’ep”)¥c VD = 0(4.
detM # 0. (b) Solve @.58 for eigenvalues A= for each

4.2. Stability, diagonal case. Verify the relation ¢.17) equilibrium as an expansion in powers ef

Derive
J=e?=uld?u, Ap=UAU. A7 = —C+ €c/(C% + 1) + 0(e)
_ A, = eC3/[2(c* + 1)] + o(€?)
4.3. State space volume contraction. 0, = 1+ €/[2(c% + 1)] + 0(e)
1 = ce(1- ) + o(e?) (4.59)

(a) Compute the Rossler flow volume contraction rate

_ 52 6
at the equilibria. A; = —€¢°/2+0(e”)

05 = V1+1/e(1+ o(e))
Compare with exact eigenvalues. What are

dynamical implications of the extravagant value of
A7? (continued as exercide.?)

(b) Study numerically the instantaneodis; along a
typical trajectory on the Rdssler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions

of local expansion, explain them. (R. Paskauskas)
(c) Compute numerically the average contractionrat, 5. Time-ordered exponentials. Given a time dependent
(4.47) along a typical trajectory on the Rossler matrix V(t) check that the time-ordered exponential
attractor. t
(d) (optional) color-code the points on the trajectory Uut) = Teb Ve
by the sign (and perhaps the magnitudeyof — may be written as
oiVi.
(e) Argue on basis of your results that this attractor is () = i ft , ftl .- tm-1 GV(t) V()
of dimension smaller than the state spece 3. =50 0 0 "

() (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

and verify, by using this representation, thaf(t)
satisfies the equation

U = VEOU(L),
4.4. Topology of the Rossler flow. (continuation of = VoUW
exercises. 1) with the initial condition2(0) = 1.
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