
Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

S  we have concentrated on description of the trajectory of a single initial
point. Our next task is to define and determine the size of aneighborhood
of x(t). We shall do this by assuming that the flow is locally smooth,and

describe the local geometry of the neighborhood by studyingthe flow linearized
aroundx(t). Nearby points aligned along the stable (contracting) directions remain
in the neighborhood of the trajectoryx(t) = f t(x0); the ones to keep an eye on are
the points which leave the neighborhood along the unstable directions. As we shall
demonstrate in chapter16, in hyperbolic systems what matters are the expanding
directions. The repercussion are far-reaching: As long as the number of unstable
directions is finite, the same theory applies to finite-dimensional ODEs, state
space volume preserving Hamiltonian flows, and dissipative, volume contracting
infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best understood
by considering a trajectory originating nearx0 = x(0) with an initial infinitesimal
displacementδx(0), and letting the flow transport the displacementδx(t) along the
trajectoryx(x0, t) = f t(x0).

4.1.1 Instantaneous shear

The system of linearequations of variationsfor the displacement of the infinitesimally
close neighborx+ δx follows from the flow equations (2.6) by Taylor expanding
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Figure 4.1: A swarm of neighboring points ofx(t) is
instantaneously sheared by the action of the stability
matrix A - a bit hard to draw.

δ t

to linear order

ẋi + δ̇xi = vi(x+ δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacementδx is thus transported along the trajectoryx(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑

j

∂vi

∂x j
(x)

∣

∣

∣

∣

∣

∣

x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation tox(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j (x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent spaceδx ∈ TxM to every pointx ∈ M in the d-
dimensional state spaceM ⊂ Rd. Thestability matrix(velocity gradients matrix)

Ai j (x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow, figure4.1.

Example 4.1 Rössler and Lorenz flows, linearized: For the Rössler (2.17) and
Lorenz (2.12) flows the stability matrices are, respectively

ARoss=

















0 −1 −1
1 a 0
z 0 x− c

















, ALor =

















−σ σ 0
ρ − z −1 x

y x −b

















. (4.4)
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Figure 4.2: The fundamental matrixJt maps an
infinitesimal displacement atx0 into a displacement
rotated and sheared by the linearized flow fundamental
matrix Jt(x0) finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

4.1.2 Linearized flow

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

Taylor expanding afinite timeflow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.5)

one finds that the linearized neighborhood is transported by

δx(t) = Jt(x0)δx0 , Jt
i j (x0) =

∂xi(t)
∂x j

∣

∣

∣

∣

∣

∣

x=x0

. (4.6)

This Jacobian matrix has inherited the namefundamental solution matrixor simply
fundamental matrixfrom the theory of linear ODEs. It is often denotedD f ,
but for our needs (we shall have to sort through a plethora of related Jacobian
matrices) matrix notationJ is more economical.J describes the deformation of
an infinitesimal neighborhood at finite timet in the co-moving frame ofx(t).

As this is a deformation in the linear approximation, one canthink of it as
a linear deformation of an infinitesimal sphere envelopingx0 into an ellipsoid
aroundx(t), described by the eigenvectors and eigenvalues of the fundamental
matrix of the linearized flow, figure4.2. Nearby trajectories separate along the
unstable directions, approach each other along thestable directions, and change
their distance along themarginal directionsat a rate slower than exponential,
corresponding to the eigenvalues of the fundamental matrixwith magnitude larger
than, smaller than, or equal 1. In the literature adjectivesneutralor indifferentare
often used instead of ‘marginal,’ (attracting) stable directions are sometimes called
‘asymptotically stable,’ and so on.

One of the preferred directions is what one might expect, thedirection of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight timeδt: δx0 = f δt(x0) − x0 = v(x0)δt. By the semigroup
property of the flow,f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

0
dτ v(x(τ)) = δt v(x(t)) + f t(x0) .
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Figure 4.3: For a periodic orbitp, any two points
along the cycle are mapped into themselves after one
cycle periodT, henceδx = v(x0)δt is mapped into itself
by the cycle fundamental matrixJp.

δ  x
x(T) = x(0)

Expanding both sides off t( f δt(x0)) = f δt( f t(x0)), keeping the leading term inδt,
and using the definition of the fundamental matrix (4.6), we observe thatJt(x0)
transports the velocity vector atx0 to the velocity vector atx(t) at timet:

v(x(t)) = Jt(x0) v(x0) . (4.7)

In nomenclature of page63, the fundamental matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

The velocity at pointx(t) in general does not point in the same direction
as the velocity at pointx0, so this is not an eigenvalue condition forJt; the
fundamental matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning.

As the eigenvalues of finite timeJt have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter5. However, already at this
stage we see that if the orbit is periodic,x(Tp) = x(0), at any point along cyclep
the velocityv is an eigenvector of the fundamental matrixJp = JTp with a unit
eigenvalue,

Jp(x) v(x) = v(x) , x ∈ p . (4.8)

Two successive points along the cycle separated byδx0 have the same separation
after a completed periodδx(Tp) = δx0, see figure4.3, hence eigenvalue 1.

As we started by assuming that we know the equations of motion, from (4.3)
we also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodδxi(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matrixA to fundamental matrixJt. On
the level of differential equations the relation follows by taking the time derivative
of (4.6) and replacingδ̇x by (4.2)

δ̇x(t) = J̇t δx0 = Aδx(t) = AJt δx0 .
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Hence thed2 matrix elements of fundamental matrix satisfy the linearized equation
(4.1)

d
dt

Jt(x) = A(x) Jt(x) , initial condition J0(x) = 1 . (4.9)

Given a numerical routine for integrating the equations of motion, evaluation
of the fundamental matrix requires minimal additional programming effort; one
simply extends thed-dimensional integration routine and integrates concurrently
with f t(x) thed2 elements ofJt(x).

The qualifier ‘simply’ is perhaps too glib. Integration willwork for short finite
times, but for exponentially unstable flows one quickly runsinto numerical over-
and/or underflow problems, so further thought will have to go intoimplementation
this calculation.

So now we know how to compute fundamental matrixJt given the stability
matrix A, at least when thed2 extra equations are not too expensive to compute.
Mission accomplished.

fast track:

chapter 7, p. 108

And yet... there are mopping up operations left to do. We persist until we
derive the integral formula (4.43) for the fundamental matrix, an analogue of the
finite-time “Green function” or “path integral” solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hencethe next section,
which might seem an embarrassment (what is a section onlinear flows doing
in a book onnonlinear dynamics?), offers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvaluesand eigenvectors,
you may prefer to fast forward here.

fast track:

sect. 4.3, p. 71

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are goodfor all times. The state
space for linear differential equations isM = Rd, and the equations of motion
(2.6) are written in terms of a vectorx and a constant stability matrixA as

ẋ = v(x) = Ax. (4.10)
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Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through the pointx0. If x(t) is a solution withx(0) = x0 andy(t) another
solution withy(0) = y0, then the linear combinationax(t) + by(t) with a, b ∈ R is
also a solution, but now starting at the pointax0 + by0. At any instant in time, the
space of solutions is ad-dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a matrix
equation we have a scalar one, ˙x = λx , the solution is

x(t) = etλx0 . (4.11)

In order to solve thed-dimensional matrix case, it is helpful to rederive the solution
(4.11) by studying what happens for a short time stepδt. If at time t = 0 the
position isx(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iteratem times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1+
t
m
λ

)m
x(0) . (4.13)

The term in parentheses acts on the initial conditionx(0) and evolves it tox(t) by
takingmsmall time stepsδt = t/m. Asm→ ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative pointx is now a vector inRd acted on by the matrixA, as in
(4.10). Denoting by1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jtx(0) , Jt = etA = lim
m→∞

(

1+
t
m

A
)m
. (4.15)

We will find this definition the exponential of a matrix helpful in the general case,
where the matrixA = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?

fast track:

sect. 4.3, p. 71
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Example 4.2 Fundamental matrix eigenvalues, diagonalizable case: Should we
be so lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =























etλ(1) · · · 0
. . .

0 · · · etλ(d)























. (4.16)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.15)):

[exercise 4.2]

Jt = etA = UetADU−1 . (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of both A and Jt, and under the
flow the neighborhood is deformed by a multiplication by an eigenvalue factor for each
coordinate axis.

In generalJt is neither diagonal, nor diagonalizable, nor constant along the
trajectory. As any matrix,Jt can also be expressed in the singular value decomposition
form

J = UDVT

whereD is diagonal, andU, V are orthogonal matrices. The diagonal elements
σ1, σ2, . . ., σd of D are called thesingular valuesof J, namely the square root of
the eigenvalues ofJ†J, which is a Hermitian, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). From a geometric point of view,
when all singular values are non-zero,J maps the unit sphere into an ellipsoid:
the singular values are then the lengths of the semiaxes of this ellipsoid.

[section 5.1.2]

We recapitulate the basic facts of linear algebra in appendix B. A 2−d example
serves well to highlight the most important types of linear flows:

Example 4.3 Linear stability of 2 −d flows: For a 2−d flow the eigenvalues λ(1), λ(2) of
A are either real, leading to a linear motion along their eigenvectors, x j(t) = x j(0) exp(tλ( j)),
or a form a complex conjugate pair λ(1) = µ + iω , λ(2) = µ − iω , leading to a circular or
spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case λ(1) > 0, λ(2) < 0, x1 grows exponentially with time,
and x2 contracts exponentially. This behavior, called a saddle, is sketched in figure 4.4,
as are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and contracts into
(0, 0) when the µ < 0, whereas the phase velocity ω controls its oscillations.

If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [dα×dα] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.2.
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Figure 4.4: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

Figure 4.5: Qualitatively distinct types of
exponents of a [2×2] fundamental matrix.
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4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbolΛk will always denote thekth eigenvalue(in
literature sometimes referred to as themultiplier or Floquet!multiplier) of the
finite time fundamental matrixJt. Symbolλ(k) will be reserved for thekth Floquet
or characteristicexponent, orcharacteristic value, with real partµ(k) and phase
ω(k):

Λk = etλ(k)
= et(µ(k)+iω(k)) . (4.18)

Jt(x0) depends on the initial pointx0 and the elapsed timet. For notational brevity
we tend to omit this dependence, but in general

Λ = Λk = Λk(x0, t) , λ = λ
(k)(x0, t) , ω = ω

(k)(x0, t) , · · · etc.,

depend on both the trajectory traversed and the choice of coordinates.

However, as we shall see in sect.5.2, if the stability matrixAor the fundamental
matrix J is computed on a flow-invariant setMp, such as an equilibriumq or a
periodic orbitp of periodTp,

Aq = A(xq) , Jp(x) = JTp(x) , x ∈ Mp , (4.19)

(x is any point on the cycle) its eigenvalues

λ
(k)
q = λ

(k)(xq) , Λp,k = Λk(x,Tp)
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are flow-invariant, independent of the choice of coordinates and the initial point
in the cyclep, so we label them by theirq or p label.

We number eigenvaluesΛk in order of decreasing magnitude

|Λ1| ≥ |Λ2| ≥ . . . ≥ |Λd| . (4.20)

Since|Λ j | = etµ( j)
, this is the same as labeling by

µ(1) ≥ µ(2) ≥ . . . ≥ µ(d) . (4.21)

In dynamics the expanding directions,|Λe| > 1, have to be taken care of first,
while the contracting directions|Λc| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria andperiodic orbits is afforded
by projection operators

Pi =
∏

j,i

M − λ( j)1
λ(i) − λ( j)

, (4.22)

where matrixM is typically either equilibrium stability matrixA, or periodic orbit
fundamental matrixĴ restricted to a Poincaré section, as in (4.55). While usually
not phrased in language of projection operators, the requisite linear algebra is
standard, and relegated here to appendixB.

Once the distinct non-zero eigenvalues{λ(i)} are computed, projection operators
are polynomials inM which need no further diagonalizations or orthogonalizations.
For each distinct eigenvalueλ(i) of M , the colums/rows ofPi

(M − λ( j)1)P j = P j(M − λ( j)1) = 0 , (4.23)

are the right/left eigenvectorse(k), e(k) of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and are aconvenient starting
seed for tracing out the global unstable/stable manifolds.

MatricesPi areorthogonalandcomplete:

PiP j = δi j P j , (no sum onj) ,
r

∑

i=1

Pi = 1 . (4.24)
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with the dimension of theith subspace given bydi = tr Pi . Completeness relation
substituted intoM = M 1 yields

M = λ(1)P1 + λ
(2)P2 + · · · + λ(r)Pr . (4.25)

As any matrix functionf (M ) takes the scalar valuef (λ(i)) on thePi subspace,
f (M )Pi = f (λ(i))Pi , it is easily evaluated through itsspectral decomposition

f (M ) =
∑

i

f (λ(i))Pi . (4.26)

As M has only real entries, it will in general have either real eigenvalues
(over-damped oscillator, for example), or complex conjugate pairs of eigenvalues
(under-damped oscillator, for example). That is not surprising, but also the corresponding
eigenvectors can be either real or complex. All coordinatesused in defining the
flow are real numbers, so what is the meaning of acomplexeigenvector?

If two eigenvalues form a complex conjugate pair,{λ(k), λ(k+1)} = {µ + iω, µ −
iω}, they are in a sense degenerate: while a realλ(k) characterizes a motion
along a line, a complexλ(k) characterizes a spiralling motion in a plane. We
determine this plane by replacing the corresponding complex eigenvectors by their
real and imaginary parts,{e(k), e(k+1)} → {Ree(k), Im e(k)}, or, in terms of projection
operators:

Pk =
1
2

(R + iQ) , Pk+1 = P∗k ,

whereR = Pk + Pk+1 is the subspace decomposed by thekth complex eigenvalue
pair, andQ = (Pk − Pk+1)/i, both matrices with real elements. Substitution

( Pk

Pk+1

)

=
1
2

(1 i
1 −i

) ( R
Q

)

,

brings theλ(k)Pk+λ
(k+1)Pk+1 complex eigenvalue pair in the spectral decomposition

(4.25) into the real form,

( Pk Pk+1 )
(

λ 0
0 λ∗

) ( Pk

Pk+1

)

= ( R Q )
(

µ −ω
ω µ

) ( R
Q

)

, (4.27)

where we have dropped the superscript(k) for notational brevity.

To summarize, spectrally decomposed matrixM (4.25) acts along lines on
subspaces corresponding to real eigenvalues, and as a [2×2] rotation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavior ofeigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.
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4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation Jt

for a general nonlinear smooth flow? The fundamental matrix is computed by
integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0)δx(x0, 0) . (4.28)

The equations are linear, so we should be able to integrate them–but in order to
make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

For a start, consider the case wherex is an equilibrium point (2.8). Expanding
around the equilibrium pointxq, using the fact that the stability matrixA = A(xq)
in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.29)

we verify that the simple formula (4.15) applies also to the fundamental matrix of
an equilibrium point,

Jt(xq) = eAqt , Aq = A(xq) . (4.30)

Example 4.4 In-out spirals. Consider a 2−d equilibrium whose stability eigenvalues
{λ(1), λ(2)} = {µ+ iω, µ− iω} form a complex conjugate pair. The corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} → {Ree(k), Im e(k)}.
The 2−d real representation (4.27),

(

µ −ω
ω µ

)

= µ

( 1 0
0 1

)

+ ω

( 0 −1
1 0

)

consists of the identity and the generator of S O(2) rotations. Trajectories x(t) = Jt x(0),
where

Jt = eAqt = etµ
( cosωt − sin ωt

sin ωt cosωt

)

, (4.31)

spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T, and
contraction/expansion radially by the multiplier Λradial, and by the multiplier Λ j along
the e( j) eigendirection per a turn of the spiral:

[exercise B.1]

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (4.32)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers give
us estimates of strange-set thickness.
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Figure 4.6: Two trajectories of the Rössler flow
initiated in the neighborhood of the ‘+’ or ‘outer’
equilibrium point (2.18). (R. Paškauskas) xy

z
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-40
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Example 4.5 Stability of equilibria of the R össler flow. The Rösler system
[exercise 4.4]

[exercise 2.8]
(2.17) has two equilibrium points (2.18), the inner equilibrium (x−, y−, z−), and the outer
equilibrium point (x+, y+, z+). Together with their exponents (eigenvalues of the stability
matrix) the two equilibria now yield quite detailed information about the flow. Figure 4.6
shows two trajectories which start in the neighborhood of the ‘+’ equilibrium point.
Trajectories to the right of the outer equilibrium point ‘+’ escape, and those to the left
spiral toward the inner equilibrium point ‘−’, where they seem to wander chaotically
for all times. The stable manifold of outer equilibrium point thus serves as a attraction
basin boundary. Consider now the eigenvalues of the two equilibria

(µ(1)
− , µ

(2)
− ± i ω(2)

− ) = (−5.686, 0.0970± i 0.9951 )
(µ(1)
+ , µ

(2)
+ ± i ω(2)

+ ) = ( 0.1929, −4.596× 10−6 ± i 5.428 )
(4.33)

Outer equilibrium: The µ(2)
+ ± i ω(2)

+ complex eigenvalue pair implies that that neighborhood
of the outer equilibrium point rotates with angular period T+ ≈

∣

∣

∣2π/ω(2)
+

∣

∣

∣ = 1.1575.
The multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts
in the stable manifold plane is the excrutiatingly slow Λ+2 ≈ exp(µ(2)

+ T+) = 0.9999947
per rotation. For each period the point of the stable manifold moves away along the
unstable eigen-direction by factorΛ+1 ≈ exp(µ(1)

+ T+) = 1.2497. Hence the slow spiraling
on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The µ(2)
− ± i ω(2)

− complex eigenvalue pair tells us that neighborhood
of the ‘−’ equilibrium point rotates with angular period T− ≈

∣

∣

∣2π/ω(2)
−

∣

∣

∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by which
a trajectory that starts near the ‘−’ equilibrium point spirals away per one rotation is
Λradial ≈ exp(µ(2)

− T−) = 1.84. The µ(1)
− eigenvalue is essentially the z expansion

correcting parameter c introduced in (2.16). For each Poincaré section return, the
trajectory is contracted into the stable manifold by the amazing factor ofΛ1 ≈ exp(µ(1)

− T−) =
10−15.6 (!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. After
one Poincaré return the interval is of order of 10−4 fermi, the furthest we will get into
subnuclear structure in this book. Of course, from the mathematical point of view, the
flow is reversible, and the Poincaré return map is invertible. (R. Paškauskas)

Example 4.6 Stability of Lorenz flow equilibria: (Continued from example 3.5.) A
glance at figure 3.7 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

Lorenz flow is volume contracting (4.47),

∂ivi =

3
∑

i=1

λ(i)(x, t) = −σ − b− 1 , (4.34)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 .
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Figure 4.7: (a) A perspective view of the
linearized Lorenz flow nearEQ1 equilibrium,
see figure3.7 (a). The unstable eigenplane of
EQ1 is spanned by Ree(1) and Ime(1). The
stable eigenvectore(3). (b) Lorenz flow near the
EQ0 equilibrium: unstable eigenvectore(1), stable
eigenvectorse(2), e(3). Trajectories initiated at
distances 10−8 · · · 10−12, 10−13 away from the
z-axis exit finite distance fromEQ0 along the
(e(1),e(2)) eigenvectors plane. Due to the strong
λ(1) expansion, theEQ0 equilibrium is, for all
practical purposes, unreachable, and theEQ1 →
EQ0 heteroclinic connection never observed in
simulations such as figure2.4. (E. Siminos;
continued in figure10.7.) (a) (b)

The symmetry of Lorenz flow leads to a block-diagonal form for the EQ0

equilibrium stability matrix, explicit in (4.4) evaluated at xEQ0 = (0, 0, 0). The z-axis
is an eigenvector with a contracting eigenvalue λ(2) = −b. From (4.34) it follows that all
[x, y] areas shrink at rate −σ − b. Indeed, the [x, y] submatrix

A− =

(

−σ σ
ρ −1

)

(4.35)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+1)/2±
√

(σ − 1)2/4+ ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ( j)1
λ(i) − λ( j)

=
1

λ(i) − λ( j)

(

−σ − λ( j) σ

ρ −1− λ( j)

)

, i , j ∈ {1, 3} . (4.36)

EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A− λ1) = 0:

λ3 + λ2(σ + b+ 1)+ λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.37)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex
conjugate pair, leading to a spiral-out instability and the strange attractor depicted in
figure 2.4.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice σ = 10, b = 8/3, ρ = 28, we note the values of these eigenvalues for
future reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83, − 2.666, −22.83 )
EQ1 : (µ(1) ± i ω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ),

(4.38)

as well as the rotation period TEQ1 = 2π/ω(1) about EQ1, and the associated expansion/contraction
multipliers Λ(i) = exp(µ( j)TEQ1) per a spiral-out turn:

TEQ1 = 0.6163, (Λ(1),Λ(3)) = ( 1.060, 1.957× 10−4 ) . (4.39)

We learn that the typical turnover time scale in this problem is of order T ≈ TEQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.34), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ≈ 10−4 per
mean turnover time.

stability - 13jun2008.tex



CHAPTER 4. LOCAL STABILITY 74

In the EQ1 neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplierΛ(1) ≃ 1.06, and very strong contraction
multiplier Λ(3) ≃ 10−4 onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface
evident in the section figure 3.7.

In the xEQ0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ(3) ≃
−23 contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) ≃ 12, and the slowest
contraction rate eigenvector e(2) along the z-axis, with λ(2) ≃ −3. In this plane the strong
expansion along e(1) overwhelms the slow λ(2) ≃ −3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ0, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.7, and the empirical scarcity of trajectories close to EQ0. (Continued in
example 4.7.)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait (Continued from example 4.6.) As the
EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0.

How? As in the neighborhood of the EQ0 equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQ0, continue analytically to a small distance beyond EQ0, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e(1)

direction, and those to the right along −e(1). As along the e(1) direction xy > 0, the
nonlinear term in the ż equation (2.12) bends both branches of the EQ0 unstable
manifold Wu(EQ0) upwards. Then . . . - never mind. Best to postpone the completion of
this narrative to example 9.2, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilibria
and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (Continued in example 9.2.)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The exponential
of a constant matrix can be defined either by its Taylor seriesexpansion, or in
terms of the Euler limit (4.15):

etA =

∞
∑

k=0

tk

k!
Ak (4.40)

= lim
m→∞

(

1+
t
m

A
)m
. (4.41)

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
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task at hand, as for a dynamical system the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood is
multiplicatively deformed along the flow, and themdiscrete time step approximation
to Jt is therefore given by a generalization of the Euler product (4.41):

Jt = lim
m→∞

1
∏

n=m

(1+ δtA(xn)) = lim
m→∞

1
∏

n=m

eδt A(xn) (4.42)

= lim
m→∞

eδt A(xn)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

whereδt = (t − t0)/m, and xn = x(t0 + nδt). Slightly perverse indexing of the
products indicates that in our convention the successive infinitesimal deformation
are applied by multiplying from the left. The two formulas for Jt agree to leading
order inδt, and them→ ∞ limit of this procedure is the integral

Jt
i j (x0) =

[

Te
∫ t
0 dτA(x(τ))

]

i j
, (4.43)

whereT stands for time-ordered integration,definedas the continuum limit of the
successive left multiplications (4.42). This integral formula forJ is the main

[exercise 4.5]
conceptual result of this chapter.

It makes evident important properties of fundamental matrices, such as that
they are multiplicative along the flow,

Jt+t′ (x) = Jt′(x′) Jt(x), where x′ = f t(x) , (4.44)

an immediate consequence of time-ordered product structure of (4.42). However,
in practiceJ is evaluated by integrating (4.9) along with the ODEs that define a
particular flow.

in depth:

sect. 15.3, p. 263

4.4 Neighborhood volume

[section 15.3]

[remark 15.3]

Consider a small state space volume∆V = ddx centered around the pointx0 at
time t = 0. The volume∆V′ = ∆V(t) around the pointx′ = x(t) time t later is

∆V′ =
∆V′

∆V
∆V =

∣

∣

∣

∣

∣

det
∂x′

∂x

∣

∣

∣

∣

∣

∆V =
∣

∣

∣det J(x0)t
∣

∣

∣∆V , (4.45)

so the|detJ| is the ratio of the initial and the final volumes. The determinant
detJt(x0) =

∏d
i=1Λi(x0, t) is the product of the multipliers. We shall refer to this
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determinant as theJacobianof the flow. This Jacobian is easily evaluated. Take
[exercise 4.1]

the time derivative and use the matrix identity ln detJ = tr ln J:

d
dt

ln∆V(t) =
d
dt

ln detJ = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) As the
divergence∂ivi is a scalar quantity, the integral in the exponent needsno time
ordering. Integrate both sides to obtain the time evolution of an infinitesimal
volume

detJt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]

= exp

[∫ t

0
dτ ∂ivi(x(τ))

]

. (4.46)

All we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d
∑

i=1

Aii (x(τ))

=
1
t

ln

∣

∣

∣

∣

∣

∣

∣

d
∏

i=1

Λi(x0, t)

∣

∣

∣

∣

∣

∣

∣

=

d
∑

i=1

λ(i)(x0, t) (4.47)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere,|Ai j | < M , and so is the trace

∑

i Aii . The time integral
in (4.46) grows at most linearly witht, hence∂ivi is bounded for all times, and
numerical estimates of thet → ∞ limit in (4.47) are not marred by any blowups.

Even if we were to insist on extracting∂ivi from (4.42) by first multiplying
fundamental matrices along the flow, and then taking the logarithm, we can avoid
exponential blowups inJt by using the multiplicative structure (4.44), detJt′+t(x0) =
detJt′(x′) detJt(x0) to restart withJ0(x′) = 1 whenever the eigenvalues ofJt(x0)
start getting out of hand. In numerical evaluations of Lyapunov exponents,

[section 15.3]
λi = limt→∞ µ

(i)(x0, t), the sum rule (4.47) can serve as a helpful check on the
accuracy of the computation.

The divergence∂ivi is an important characterization of the flow - it describes
the behavior of a state space volume in the infinitesimal neighborhood of the
trajectory. If∂ivi < 0, the flow islocally contracting, and the trajectory might
be falling into an attractor. If∂ivi(x) < 0 , for all x ∈ M, the flow isglobally
contracting, and the dimension of the attractor is necessarily smaller than the
dimension of state spaceM. If ∂ivi = 0, the flow preserves state space volume
and detJt = 1. A flow with this property is calledincompressible. An important
class of such flows are the Hamiltonian flows considered in sect. 7.2.

But before we can get to that, Henri Roux, the perfect studentalways on alert,
pipes up. He does not like our definition of the fundamental matrix in terms of the
time-ordered exponential (4.43). Depending on the signs of multipliers, the left
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hand side of (4.46) can be either positive or negative. But the right hand side is an
exponential of a real number, and that can only be positive. What gives? As we
shall see much later on in this text, in discussion of topological indices arising in
semiclassical quantization, this is not at all a dumb question.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the
iteration of a map follows from Taylor expanding the iterated mapping atdiscrete
time n to linear order, as in (4.5). The linearized neighborhood is transported by
the fundamental matrix evaluated at a discrete set of timesn = 1, 2, . . .,

Mn
i j (x0) =

∂ f n
i (x)

∂x j

∣

∣

∣

∣

∣

∣

x=x0

. (4.48)

We shall refer to this Jacobian matrix also as themonodromymatrix, in case of
periodic orbits f n(x) = x. Derivative notationMt(x0) → D f t(x0) is frequently
employed in the literature. As in the continuous case, we denote byΛk the kth
eigenvalueor multiplier of the finite time fundamental matrixMn(x0), andµ(k) the
real part ofkth eigen-exponent

Λ± = en(µ±iω) , |Λ| = enµ .

For complex eigenvalue pairs the phaseω describes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors, with one period of rotation
given by

T = 2π/ω . (4.49)

Example 4.8 Stability of a 1-dimensional map: Consider a 1-d map f (x). The
chain rule yields the stability of the nth iterate

Λ(x0, n) =
d
dx

f n(x0) =
n−1
∏

m=0

f ′(xm) , xm = f m(x0) . (4.50)

The 1-step product formula for the stability of thenth iterate of ad-dimensional
map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) ,

M(x)kl =
∂

∂xl
fk(x) , xm = f m(x0) (4.51)
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follows from the chain rule for matrix derivatives

∂

∂xi
f j( f (x)) =

d
∑

k=1

∂

∂yk
f j(y)

∣

∣

∣

∣

∣

y= f (x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of Poincaré section
returns, then (4.51) follows from (4.44): fundamental matrices are multiplicative
along the flow.

[exercise 15.1]

Example 4.9 Hénon map fundamental matrix: For the Hénon map (3.18) the
fundamental matrix for the nth iterate of the map is

Mn(x0) =
1

∏

m=n

(

−2axm b
1 0

)

, xm = f m
1 (x0, y0) . (4.52)

The determinant of the Hénon one time step fundamental matrix (4.52) is constant,

detM = Λ1Λ2 = −b (4.53)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:

chapter 7, p. 108

4.5.1 Stability of Poincaŕe return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P : P → P defined
in sect.3.1to the stability of the continuous time flow in the full state space.

The hypersurfaceP can be specified implicitly through a functionU(x) that
is zero whenever a pointx is on the Poincaré section. A nearby pointx+ δx is in
the hypersurfaceP if U(x+ δx) = 0, and the same is true for variations around the
first return pointx′ = x(τ), so expandingU(x′) to linear order inδx leads to the
condition

d+1
∑

i=1

∂U(x′)
∂xi

dx′i
dxj

∣

∣

∣

∣

∣

∣P
= 0 . (4.54)

In what followsUi is the gradient ofU defined in (3.3), unprimed quantities refer
to the starting pointx = x0 ∈ P, v = v(x0), and the primed quantities to the first
return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also denote the
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Figure 4.8: If x(t) intersects the Poincaré sectionP
at timeτ, the nearbyx(t) + δx(t) trajectory intersects
it time τ + δt later. As (U′ · v′δt) = −(U′ · J δx),
the difference in arrival times is given byδt =
−(U′ · J δx)/(U′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

full state space fundamental matrix at the first return byJ = Jτ(x0). Both the first
return x′ and the time of flight to the next Poincaré sectionτ(x) depend on the
starting pointx, so the fundamental matrix

Ĵ(x)i j =
dx′i
dxj

∣

∣

∣

∣

∣

∣P
(4.55)

with both initial and the final variation constrained to the Poincaré section hypersurface
P is related to the continuous flow fundamental matrix by

dx′i
dxj

∣

∣

∣

∣

∣

∣P
=
∂x′i
∂x j
+

dx′i
dτ

dτ
dxj
= Ji j + v′i

dτ
dxj
.

The return time variationdτ/dx, figure 4.8, is eliminated by substituting this
expression into the constraint (4.54),

0 = ∂iU
′ Ji j + (v′ · ∂U′) dτ

dxj
,

yielding the projection of the full space (d + 1)-dimensional fundamental matrix
to the Poincaré mapd-dimensional fundamental matrix:

Ĵi j =

(

δik −
v′i ∂kU′

(v′ · ∂U′)

)

Jk j . (4.56)

Substituting (4.7) we verify that the initial velocityv(x) is a zero-eigenvector of̂J

Ĵv= 0 , (4.57)

so the Poincaré section eliminates variations parallel tov, andĴ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrixA describes the shearing/compression/-
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expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite timet is described by the fundamental matrix

Jt(x0) = Te
∫ t
0 dτA(x(τ)) ,

whereT stands for the time-ordered integration, defined multiplicatively along the
trajectory. For discrete time maps this is multiplication by time step fundamental
matrix M along then pointsx0, x1, x2, . . ., xn−1 on the trajectory ofx0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single discrete time step fundamental matrix. In this book Λk

denotes thekth eigenvalueof the finite time fundamental matrixJt(x0), andµ(k)

the real part ofkth eigen-exponent

|Λ| = enµ , Λ± = en(µ±iω) .

For complex eigenvalue pairs the phaseω describes rotational motion in the plane
defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamental matrix describe the
deformation of an initial infinitesimal sphere of neighboring trajectories into an
ellipsoid a finite timet later. Nearby trajectories separate exponentially along
unstable directions, approach each other along stable directions, and change slowly
(algebraically) their distance along marginal directions. The fundamental matrix
Jt is in general neither symmetric, nor diagonalizable by a rotation, nor do its
(left or right) eigenvectors define an orthonormal coordinate frame. Furthermore,
although the fundamental matrices are multiplicative along the flow, in dimensions
higher than one their eigenvalues in general are not. This lack of multiplicativity
has important repercussions for both classical and quantumdynamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect.4.2 we only sketch, and in appendixB recapitulate a few facts that
our narrative relies on. They are presented at length in manytextbooks. The standard
references that exhaustively enumerate and explain all possible cases are Hirsch and
Smale [1], and Arnol’d [1]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 Meiss [2], chapter 1 of Perko [3] and chapters 3 and 5 of Glendinning [4] most.

The construction of projection operators given here is taken from refs. [6, 7]. Who
wrote this down first we do not know, lineage certainly goes all the way back to Lagrange
polynomials [10], but projection operators tend to get drowned in sea of algebraic details.
Halmos [5] is a good early reference - but we like Harter’s exposition [8, 9, 12] best, for
its multitude of specific examples and physical illustrations.
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The nomenclature tends to be a bit confusing. In referring toA defined in (4.3) as the
“stability matrix” we follow Tabor [13]. SometimesA, which describes the instantaneous
shear of the trajectory pointx(x0, t) is referred to as the ‘Jacobian matrix,’ a particularly
unfortunate usage when one considers linearized stabilityof an equilibrium point (4.30).
What Jacobi had in mind in his 1841 fundamental paper [11] on the determinants today
known as ‘jacobians’ were transformations between different coordinate frames. These
are dimensionless quantities, while the dimension ofAi j 1/[time]. More unfortunate still
is referring toJt = etA as an ‘evolution operator,’ which here (see sect.15.2) refers to
something altogether different. In this book fundamental matrixJt always refers to (4.6),
the linearized deformation after a finite timet, either for a continuous time flow, or a
discrete time mapping.

Exercises

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrixM,
detM , 0.

4.2. Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etAD U , AD = UAU−1 .

4.3. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of∂ivi . If you see regions
of local expansion, explain them.

(c) Compute numerically the average contraction rate
(4.47) along a typical trajectory on the Rössler
attractor.

(d) (optional) color-code the points on the trajectory
by the sign (and perhaps the magnitude) of∂ivi −
∂ivi .

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spaced = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

4.4. Topology of the Rössler flow. (continuation of
exercise3.1)

(a) Show that equation|det (A− λ1)| = 0 for Rössler
flow in the notation of exercise2.8can be written
as

λ3+λ2c (p∓−ǫ)+λ(p±/ǫ+1−c2ǫp∓)∓c
√

D = 0(4.58)

(b) Solve (4.58) for eigenvalues λ± for each
equilibrium as an expansion in powers ofǫ.
Derive

λ−1 = −c+ ǫc/(c2 + 1)+ o(ǫ)
λ−2 = ǫc

3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1+ ǫ/[2(c2 + 1)] + o(ǫ)
λ+1 = cǫ(1− ǫ) + o(ǫ3)
λ+2 = −ǫ5c2/2+ o(ǫ6)
θ+2 =

√
1+ 1/ǫ (1+ o(ǫ))

(4.59)

Compare with exact eigenvalues. What are
dynamical implications of the extravagant value of
λ−1? (continued as exercise12.7)

(R. Paškauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrixV(t) check that the time-ordered exponential

U(t) = Te
∫ t

0 dτV(τ)

may be written as

U(t) =
∞
∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmV(t1) · · ·V(tm)

and verify, by using this representation, thatU(t)
satisfies the equation

U̇(t) = V(t)U(t),

with the initial conditionU(0) = 1.
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