Chapter 4

Local stability

(R. Mainieri and P. Cvitanovic)

point. Our next task is to define and determine the sizerdighborhood
of x(t). We shall do this by assuming that the flow is locally smoaitn]
describe the local geometry of the neighborhood by studihieglow linearized
aroundx(t). Nearby points aligned along the stable (contractingalions remain

S rAR We have concentrated on description of the trajectory ofiglsiinitial

in the neighborhood of the trajectorgt) = f!(x); the ones to keep an eye on are

the points which leave the neighborhood along the unstatgetins. As we shall

demonstrate in chaptés, in hyperbolic systems what matters are the expanding

directions. The repercussion are far-reaching: As longn@asiuimber of unstable
directions is finite, the same theory applies to finite-digienal ODESs, state
space volume preserving Hamiltonian flows, and dissipatisgkime contracting
infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carfi@sgaand distorts

neighborhoods. The deformation of an infinitesimal neighbod is best understood

by considering a trajectory originating neay = X(0) with an initial infinitesimal
displacemenéx(0), and letting the flow transport the displaceméx(t) along the
trajectoryx(xo, t) = (o).

4.1.1 Instantaneous shear

The system of lineagquations of variationfor the displacement of the infinitesimally

close neighbox + ¢x follows from the flow equations2(6) by Taylor expanding
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5t

Figure 4.1: A swarm of neighboring points of(t) is
instantaneously sheared by the action of the stabili
matrix A - a bit hard to draw.

to linear order

i+ 6% = Vi(X+6X) = Vi(X) + Z ﬂ6xJ

The infinitesimal displacemeni is thus transported along the trajecto(o, t),
with time variation given by

5Xj(%0, 1) . 4.1
X=X(Xo,t)

6X.(><o, Z —(X)

As both the displacement and the trajectory depend on ttialipoint Xo and the
timet, we shall often abbreviate the notationX(, t) — x(t) — X, 6xi(Xo,t) —
6%i(t) — oxin what follows. Taken together, the set of equations

=il 0% = ) Aj(IoX; @2
i

governs the dynamics in the tangent bundlex) € T M obtained by adjoining
the d-dimensional tangent spadx € TyM to every pointx € M in the d-
dimensional state spagel c RY. Thestability matrix(velocity gradients matrix)

A = av'(x)

(4.3)

describes the instantaneous rate of shearing of the irdimg neighborhood of
X(t) by the flow, figured.1

Example 4.1 Réssler and Lorenz flows, linearized: For the Réssler (2.17) and

Lorenz (2.12) flows the stability matrices are, respectively

0o -1 -1 - o 0
ARoss:[l a 0 ], ALor:[P*Z -1 X ]
z 0 x-c y X -b
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X(t) 0 0X(t) = 3 '5(0)

Figure 4.2: The fundamental matrixJ' maps an
infinitesimal displacement at, into a displacement X(O)
rotated and sheared by the linearized flow fundamental
matrix J'(xo) finite timet later. 0

4.1.2 Linearized flow

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

Taylor expanding &inite timeflow to linear order,

7}

fl
'(XO)(SXJ- o, (4.5)
Xoj

f(x0 + %) = f(x0) + z}: 5

one finds that the linearized neighborhood is transported by

ax(0) = )%, Ij(x0) = (@

(9Xj (4-6)

X=Xo

This Jacobian matrix has inherited the naomedamental solution matrier simply
fundamental matrirom the theory of linear ODEs. It is often denot&f,
but for our needs (we shall have to sort through a plethoreelated Jacobian
matrices) matrix notatiod is more economicalJ describes the deformation of
an infinitesimal neighborhood at finite tinhén the co-moving frame ox(t).

As this is a deformation in the linear approximation, one ttank of it as
a linear deformation of an infinitesimal sphere envelopiggnto an ellipsoid
aroundx(t), described by the eigenvectors and eigenvalues of theafoedtal
matrix of the linearized flow, figurd.2. Nearby trajectories separate along the
unstable directionsapproach each other along thiable directionsand change
their distance along thenarginal directionsat a rate slower than exponential,
corresponding to the eigenvalues of the fundamental mattikmagnitude larger
than, smaller than, or equal 1. In the literature adjecthasgral or indiferentare
often used instead of ‘marginal,’ (attracting) stable cli@ns are sometimes called
‘asymptotically stable, and so on.

One of the preferred directions is what one might expectditextion of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xo = f(xg) — Xo = V(Xo)ét. By the semigroup
property of the flow,fi*t = fot where

£ (x0) = f t+;jr V(X(7)) = stv(x(t)) + F(xo).
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Figure 4.3: For a periodic orbitp, any two points e
along the cycle are mapped into themselves after one

cycle periodT, henceasx = v(Xo)dt is mapped into itself

by the cycle fundamental matrik,.

Expanding both sides dff(f%(xg)) = f°(f!(xo)), keeping the leading term it,
and using the definition of the fundamental matrixgj, we observe thaf'(xo)
transports the velocity vector & to the velocity vector ax(t) at timet:

V(X() = 3'(x0) V(o) - (4.7)

In nomenclature of pagé3, the fundamental matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinatenéa

The velocity at pointx(t) in general does not point in the same direction
as the velocity at poinky, so this is not an eigenvalue condition fdf;, the
fundamental matrix computed for an arbitrary segment ofraitrary trajectory
has no invariant meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chagierHowever, already at this
stage we see that if the orbit is periodi€T ;) = x(0), at any point along cyclp
the velocityv is an eigenvector of the fundamental matdx = J' with a unit
eigenvalue,

Jp()V(X) = V(X), X€EP. (4.8)

Two successive points along the cycle separateépyhave the same separation
after a completed periadk(Tp) = 6o, see figuret.3, hence eigenvalue 1.

As we started by assuming that we know the equations of mdtiom (4.3)
we also know stability matri, the instantaneous rate of shear of an infinitesimal
neighborhoodix(t) of the trajectoryx(t). What we do not know is the finite time
deformation ¢.6).

Our next task is to relate the stability matrxto fundamental matrixi!. On

the level of diferential equations the relation follows by taking the tineeizative
of (4.6) and replacingx by (4.2

ox(t) = J'6xp = Asx(t) = A 6xg.
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Hence thel® matrix elements of fundamental matrix satisfy the linezdiequation
(4.9

d — -
d—tJ'(x) = A() J'(x), initial condition J°(x) = 1. (4.9)

Given a numerical routine for integrating the equations aftion, evaluation
of the fundamental matrix requires minimal additional pesgming éfort; one
simply extends the-dimensional integration routine and integrates conaiiye
with f{(x) thed? elements of)'(x).

The qualifier ‘simply’ is perhaps too glib. Integration walbrk for short finite
times, but for exponentially unstable flows one quickly rimte numerical over-
andor underflow problems, so further thought will have to go imglementation
this calculation.

So now we know how to compute fundamental matigiven the stability
matrix A, at least when the? extra equations are not too expensive to compute.
Mission accomplished.

fast track:
W chapter 7, p. 108
And yet... there are mopping up operations left to do. Weigestil we

derive the integral formulad(43 for the fundamental matrix, an analogue of the
finite-time “Green function” or “path integral” solutiong other linear problems.

We are interested in smooth fiirentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hetige next section,
which might seem an embarrassment (what is a sectiolinear flows doing
in a book onnorlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalaed eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 71
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described laalimiterential equations
which can be solved explicitly, with solutions that are gémdall times. The state

space for linear dierential equations i = RY, and the equations of motion
(2.6) are written in terms of a vectorand a constant stability matri as

X =V(X) = AX. (4.10)
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Solving this equation means finding the state space trajecto
X(®) = (xa(), %2(t). - - -, Xa(t))

passing through the poing. If x(t) is a solution withx(0) = xp andy(t) another
solution withy(0) = yp, then the linear combinaticax(t) + by(t) with a,b € R is

also a solution, but now starting at the pang + byp. At any instant in time, the
space of solutions is@dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear fierential equation4.10)? If instead of a matrix
equation we have a scalar ones Ax, the solution is

x(t) = €. (4.11)
In order to solve the-dimensional matrix case, it is helpful to rederive the Solu
(4.1)) by studying what happens for a short time stp If at timet = 0 the

position isx(0), then

x(6t) — x(0)

s = XO), (4.12)

which we iteratemtimes to obtain Euler’s formula for compounding interest
t m
X(t) ~ (1 + a/l) X(0). (4.13)

The term in parentheses acts on the initial conditi(®) and evolves it to(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equatiaghi(?):

M - AX0). (4.14)

A representative poink is now a vector irRY acted on by the matri®, as in
(4.10. Denoting byl the identity matrix, and repeating the stepsl@) and @.13
we obtain Euler’s formula for the exponential of a matrix:

X0 = Ix0),  I=e*= lim (1 + %A)m . (4.15)

We will find this definition the exponential of a matrix helpfo the general case,
where the matriXA = A(x(t)) varies along a trajectory.

How do we compute the exponentidl.{5?

fast track:
W sect. 4.3, p. 71
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Example 4.2 Fundamental matrix eigenvalues, diagonalizable case: Should we
be so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A0, 2@, ..., @),
the exponential is simply
R 0
J=eh= . (4.16)
0 ... g

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U~AU. Then J can also be brought to a diagonal form (insert

factors 1 = UU™! between the terms of the product (4.15)): )
[exercise 4.2]

Jt=¢gA=Uudtoyt, (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of both A and J!, and under the
flow the neighborhood is deformed by a multiplication by an eigenvalue factor for each
coordinate axis.

In generalJt is neither diagonal, nor diagonalizable, nor constantgite
trajectory. As any matrixJ' can also be expressed in the singular value decomposition
form

J=uDV'

whereD is diagonal, andJ, V are orthogonal matrices. The diagonal elements
o1, 072, ..., 0q 0f D are called theingular valuef J, namely the square root of
the eigenvalues ad’J, which is a Hermitian, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). Fromoangéric point of view,
when all singular values are non-zetbmaps the unit sphere into an ellipsoid:
the singular values are then the lengths of the semiaxessofltipsoid.
[section 5.1.2]
We recapitulate the basic facts of linear algebra in appeBdA 2-d example
serves well to highlight the most important types of lineaw8:

Example 4.3 Linear stability of 2 —d flows:  For a 2-d flow the eigenvalues A, 1@ of
Aare either real, leading to a linear motion along their eigenvectors, x;(t) = x;(0) exp¢A),
or a form a complex conjugate pair A9 = u + iw, 1® = u - iw, leading to a circular or
spiral motion in the [X1, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case AV > 0, 1® < 0, x; grows exponentially with time,
and Xy contracts exponentially. This behavior, called a saddle, is sketched in figure 4.4,
as are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when i > 0, and contracts into
(0,0) when the u < 0, whereas the phase velocity w controls its oscillations.

If eigenvalues A1) = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.2.
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Figure 4.4:  Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

saddle outnode innode

center outspiral in spiral

X X

X X

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbalx will always denote thekth eigenvalue(in
literature sometimes referred to as tmaltiplier or Floquet'multiplie) of the
finite time fundamental matridt. SymbolA® will be reserved for théth Floquet
or characteristicexponent, orcharacteristic valugwith real partu® and phase
w®

Ay = ¥ — du®iot) (4.18)

JY(xg) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general

A = Ax = A(xo, 1), 1= 29(x0,1), w = w®(x0,1),- - etc.,

depend on both the trajectory traversed and the choice ofitades.

However, as we shall see in se&L, if the stability matrixA or the fundamental
matrix J is computed on a flow-invariant s@tlp, such as an equilibriumy or a
periodic orbitp of period Ty,

Ag= AKXy,  Jp()=J"(x), xeMp, (4.19)
(xis any point on the cycle) its eigenvalues

AR = A9(xq), Apk = A% Tp)
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are flow-invariant, independent of the choice of coordisated the initial point
in the cyclep, so we label them by theg or p label.

We number eigenvaluesy in order of decreasing magnitude
A1l 2 A2l 2 ... 2 |Adl. (4.20)
SincelAj| = & this is the same as labeling by

V2@ O (4.21)

In dynamics the expanding directiong| > 1, have to be taken care of first,
while the contracting directiong\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria padodic orbits is #orded
by projection operators

M - a1
Rzgjﬁﬁfﬁﬂ’ (4.22)

where matrixM is typically either equilibrium stability matri, or periodic orbit
fundamental matrix restricted to a Poincaré section, as4r66). While usually

not phrased in language of projection operators, the ritguisear algebra is
standard, and relegated here to appeifdix

Once the distinct non-zero eigenvalyg®} are computed, projection operators

are polynomials itM which need no further diagonalizations or orthogonalerati
For each distinct eigenvalué) of M, the columgows of P;

M -a01)P; =M - 2W1) = 0, (4.23)

are the righteft eigenvectore®, ey of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and @mavanient starting
seed for tracing out the global unstaktable manifolds.

MatricesP; areorthogonalandcomplete

r
PiPj = 6;jPj, (nosum onj), Z Pi=1. (4.24)
i1
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with the dimension of théth subspace given by = tr P; . Completeness relation
substituted intdV = M 1 yields

M = ADPy + APP, 4 ...+ AOP, . (4.25)

As any matrix functionf(M) takes the scalar valu&(4®) on theP; subspace,
fM)P; = f(AD)P; , it is easily evaluated through ispectral decomposition

f(M) = > faO)P;. (4.26)

As M has only real entries, it will in general have either realeeigglues
(over-damped oscillator, for example), or complex confegairs of eigenvalues

(under-damped oscillator, for example). That is not seipg, but also the corresponding

eigenvectors can be either real or complex. All coordinated in defining the
flow are real numbers, so what is the meaning obmplexeigenvector?

If two eigenvalues form a complex conjugate p&ifd, A& D} = {u + iw, u —
iw}, they are in a sense degenerate: while a R#al characterizes a motion
along a line, a complex® characterizes a spiralling motion in a plane. We
determine this plane by replacing the corresponding coxgateenvectors by their
real and imaginary partge®, e1} — {Ree®, Im e}, or, in terms of projection
operators:

1 . .
Pk = Q(R*’IQ)s Pk+l:Pk,

whereR = Py + Py, 1 is the subspace decomposed by kttecomplex eigenvalue
pair, andQ = (Px — Pk.1)/i, both matrices with real elements. Substitution

(o) =201 S)(Q):

brings thet® P +1*&+Dp, . ; complex eigenvalue pair in the spectral decomposition
(4.25) into the real form,

s OE)-w ot YE).

where we have dropped the superscfipfor notational brevity.

To summarize, spectrally decomposed mabix(4.25 acts along lines on
subspaces corresponding to real eigenvalues, and aRprffation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to timéimear case.
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CHAPTER 4. LOCAL STABILITY 75

task at hand, as for a dynamical system the local rate of heijood distortion
A(X) depends on where we are along the trajectory. The linehneghborhood is
multiplicatively deformed along the flow, and thediscrete time step approximation
to Jtis therefore given by a generalization of the Euler proddet):

1 1
t o _ f T t A(Xn)
o= lim r];L (1+ StA(X)) = lim Qé (4.42)

= lim &tA)tANm-1) .. PLAGR) Pt A(x) ,
m-oco

whereédt = (t—tg)/m, andx, = X(tp + ndt). Slightly perverse indexing of the
products indicates that in our convention the successfimtesimal deformation

are applied by multiplying from the left. The two formulas ft§ agree to leading

order inét, and them — co limit of this procedure is the integral

% 00) = [Teb de(x(TDLJ_ : (4.43)

whereT stands for time-ordered integratiaefinedas the continuum limit of the
successive left multiplicationst(42).  This integral formula fod is the main

. ise 4.5
conceptual result of this chapter. fexercise 4.5]

It makes evident important properties of fundamental roes;i such as that
they are multiplicative along the flow,

() = ' (X)I(x),  wherex = fi(x), (4.44)

an immediate consequence of time-ordered product steuofu.42). However,
in practiced is evaluated by integrating!(9) along with the ODEs that define a
particular flow.

in depth:
” sect. 15.3, p. 263
4.4 Neighborhood volume

Consider a small state space volué = ddx centered around the poing at

timet = 0. The volumeAV’ = AV(t) around the poink’ = x(t) timet later is I 2

[remark 15.3]

, AV X !
AV = S AV = ‘detaX’AV = |det I(xo)'| AV, (4.45)

so theldetJ| is the ratio of the initial and the final volumes. The deteranin
detJ(xo) = H?zl Ai(xXo, 1) is the product of the multipliers. We shall refer to this
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determinant as thé&acobianof the flow. This Jacobian is easily evaluated. Ta[(e )
. L. . . exercise 4.1]
the time derivative and use the matrix identity In det tr In J:

d d d 1.
d—tInAV(t)_ d—tlndetJ_traInJ_ter_trA_a,v.‘

(Here, as elsewhere in this book, a repeated index impliesration.) As the
divergenced;v; is a scalar quantity, the integral in the exponent nesalsime
ordering Integrate both sides to obtain the time evolution of an itgfgimal
volume

t = t T T t T OV T :|
detJ'(xo) _exp[fo drtr A(x(r)) fod AVi(X(1))] - (4.46)

=exp

All we need to do is evaluate the time average

v = Jim3 fo 3 Ao

d
[ JAito.t
i=1

1
=In
t

d
= > 000,1) (4.47)
i=1

along the trajectory. If the flow is not singular (for examptlee trajectory does
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywheri;j| < M, and so is the tracg,; Aj. The time integral

in (4.46) grows at most linearly with, henceg;v; is bounded for all times, and
numerical estimates of the— oo limit in (4.47) are not marred by any blowups.

Even if we were to insist on extractingv; from (4.42) by first multiplying
fundamental matrices along the flow, and then taking therithga, we can avoid
exponential blowups idt by using the multiplicative structurd.@4), detJ" *t(xo) =
detJ' (x) detJd'(xo) to restart withJ°(x’) = 1 whenever the eigenvalues #{xo)
start getting out of hand.  In numerical evaluations of Lyapuexponents,
A = limie 1D (x0, 1), the sum rule 4.47) can serve as a helpful check on I
accuracy of the computation.

section 15.3]
e

The divergencé;v; is an important characterization of the flow - it describes
the behavior of a state space volume in the infinitesimal himichood of the
trajectory. Ifojvi < 0, the flow islocally contracting and the trajectory might
be falling into an attractor.  1§;vi(x) < 0, for all x € M, the flow isglobally
contracting, and the dimension of the attractor is necigsamaller than the
dimension of state spackl. If 9v; = 0, the flow preserves state space volume
and detJ! = 1. A flow with this property is calledncompressible An important
class of such flows are the Hamiltonian flows considered ih get

But before we can get to that, Henri Roux, the perfect studbvays on alert,

pipes up. He does not like our definition of the fundamentatiman terms of the
time-ordered exponentiad(43. Depending on the signs of multipliers, the left
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CHAPTER 4. LOCAL STABILITY 77

hand side of4.46) can be either positive or negative. But the right hand Sdmi
exponential of a real number, and that can only be positiveatgives? As we
shall see much later on in this text, in discussion of topiefigndices arising in
semiclassical quantization, this is not at all a dumb qoasti

4.5 Stability of maps

RN
The transformation of an infinitesimal neighborhood of gettory under the

iteration of a map follows from Taylor expanding the itechteapping atliscrete

time n to linear order, as in4.5). The linearized neighborhood is transported by

the fundamental matrix evaluated at a discrete set of time4, 2,... .,

afn
M) = 2

(o) = = (4.48)

X=Xo

We shall refer to this Jacobian matrix also as thenodromymatrix, in case of
periodic orbitsf"(x) = x. Derivative notationM!(xp) — Df'(xo) is frequently
employed in the literature. As in the continuous case, wetehy Ay the kth

eigenvalueor multiplier of the finite time fundamental matrM"(xo), andu® the

real part ofkth eigen-exponent

Ay =0 A =gt

For complex eigenvalue pairs the phaselescribes the rotation velocity in the
plane defined by the corresponding pair of eigenvector$, avie period of rotation
given by

T=2n/w. (4.49)

Example 4.8 Stability of a 1-dimensional map: Consider a 1-d map f(x). The
chain rule yields the stability of the nth iterate

n-1
Ao = 51700 = | | 10w, X = 17000, (250
m=0

The 1-step product formula for the stability of thié iterate of al-dimensional
map

M) = M(%1) - MOx)M(xo),
M %fk(xx Xon = £7(%0) (4.51)
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follows from the chain rule for matrix derivatives
a 49 P
—fi(f(x) = —f ‘ — fk(X).
e 110D = 0 50 3 W9

If you prefer to think of a discrete time dynamics as a seqe@f®oincaré section
returns, then4.51) follows from (4.44): fundamental matrices are multiplicative

along the flow. )
[exercise 15.1]

Example 4.9 Hénon map fundamental matrix: For the Hénon map (3.18) the
fundamental matrix for the nth iterate of the map is

1
woo=[[( 75 §). xa= e, (452)

m=n

The determinant of the Hénon one time step fundamental matrix (4.52) is constant,
detM = A1A2 = -b (453)

so in this case only one eigenvalue A1 = —b/A, needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

W fast track:
chapter 7, p. 108

4.5.1 Stability of Poincaé return maps

O

(R. Paskauskas and P. Cvitanovic)

We now relate the linear stability of the Poincaré returrprRa £ — P defined
in sect.3.1to the stability of the continuous time flow in the full stafease.

The hypersurfacé can be specified implicitly through a functidi(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint 6x is in
the hypersurfac® if U(x+6x) = 0, and the same is true for variations around the
first return pointX’ = x(r), so expandindJ(xX') to linear order insx leads to the
condition

d+1 BU(X’) d_)<

o% dx

=0. (4.54)
ral

In what followsU; is the gradient ofJ defined in 8.3), unprimed quantities refer
to the starting poink = Xg € P, v = V(Xp), and the primed quantities to the first
return: X' = X(r), V. = v(X'), U’ = U(X). For brevity we shall also denote the
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CHAPTER 4. LOCAL STABILITY 79

ci

U(x)=0

Figure 4.8: If x(t) intersects the Poincaré sectih
at timer, the nearbyx(t) + 6x(t) trajectory intersects

J
it time 7 + St later. As U’ - Vét) = —(U’ - J6X), X0
the diference in arrival times is given byt =
—(U-J36%)/(U" - V). X(H)+8X(t)

full state space fundamental matrix at the first returnly J7(Xp). Both the first
return X’ and the time of flight to the next Poincaré sectiq) depend on the
starting pointx, so the fundamental matrix

Iy = d—)q‘ (4.55)

de P

with both initial and the final variation constrained to th@riearé section hypersurface
P is related to the continuous flow fundamental matrix by

dx
&

0% d)§ dr dr
S R I, VYL
P 3Xj * dr de JIJ * 'de

The return time variatiordr/dx, figure 4.8, is eliminated by substituting this
expression into the constraint.b4),

0=(9iU'Jij +(\/'8U’)%,
]

yielding the projection of the full spacel ¢ 1)-dimensional fundamental matrix
to the Poincaré mag-dimensional fundamental matrix:

(4.56)

R vV oU’
Jij:(éik— ! ) ki -

v -au7)

Substituting 4.7) we verify that the initial velocity(x) is a zero-eigenvector of

Jv=o0, (4.57)

so the Poincaré section eliminates variations parallel amdJ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résumé

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matri describes the shearii@mpressiofs
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expansion of an infinitesimal neighborhood in an infinitedirtime step. The
deformation after a finite timeis described by the fundamental matrix

o) = Teh drAX@) i

whereT stands for the time-ordered integration, defined multgii@ly along the
trajectory. For discrete time maps this is multiplicatigntime step fundamental
matrix M along then pointsxg, X1, X2, . . ., Xn—1 On the trajectory okp,

M"(x0) = M(Xn-1)M(Xn-2) - - - M(x))M (X0) ,

with M(x) the single discrete time step fundamental matrix. In thiskbAg
denotes théth eigenvalueof the finite time fundamental matri(xo), andu®
the real part okth eigen-exponent

Al =™, A, = o)

For complex eigenvalue pairs the phasdescribes rotational motion in the plane
defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamentabndescribe the
deformation of an initial infinitesimal sphere of neighlritrajectories into an
ellipsoid a finite timet later. Nearby trajectories separate exponentially along
unstable directions, approach each other along stabletiding, and change slowly
(algebraically) their distance along marginal directio&e fundamental matrix
JUis in general neither symmetric, nor diagonalizable by ation, nor do its
(left or right) eigenvectors define an orthonormal coortéirfeame. Furthermore,
although the fundamental matrices are multiplicative gl flow, in dimensions
higher than one their eigenvalues in general are not. Thisdamultiplicativity
has important repercussions for both classical and quadjuamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect4.2 we only sketch, and in appendik recapitulate a few facts that
our narrative relies on. They are presented at length in niextpooks. The standard
references that exhaustively enumerate and explain aliilescases are Hirsch and
Smale [l], and Arnold [1]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 MeissZ], chapter 1 of Perkod] and chapters 3 and 5 of Glendinning most.

The construction of projection operators given here isrigkem refs. [, 7]. Who
wrote this down first we do not know, lineage certainly goéthal way back to Lagrange
polynomials [L0], but projection operators tend to get drowned in sea oftalgje details.
Halmos [] is a good early reference - but we like Harter’'s expositioyef 17] best, for
its multitude of specific examples and physical illustrasio
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The nomenclature tends to be a bit confusing. In referrinfydefined in ¢.3) as the
“stability matrix” we follow Tabor [L3]. Sometimed, which describes the instantaneous
shear of the trajectory poin{(xo, t) is referred to as the ‘Jacobian matrix, a particularly
unfortunate usage when one considers linearized stabfliy equilibrium point4.30.
What Jacobi had in mind in his 1841 fundamental papé} fn the determinants today
known as ‘jacobians’ were transformations betwedfedént coordinate frames. These
are dimensionless quantities, while the dimensioApfl/[time]. More unfortunate still
is referring toJ! = € as an ‘evolution operator,” which here (see séé&t?) refers to
something altogether ierent. In this book fundamental matik always refers to4.6),
the linearized deformation after a finite tinheeither for a continuous time flow, or a
discrete time mapping.

Exercises
4.1. Trace-log of a matrix. Prove that (a) Show that equatiojdet (A — A1)| = O for Rossler
flow in the notation of exercis2.8 can be written
detM = gf "™ as

3,52 " 2w\ _
for an arbitrary nonsingular finite dimensional maix B+ (p -+ A(p*/e+1-c?ep”) 7 VD = 0(4.

detM # 0. (b) Solve @.58 for eigenvalues A* for each
4.2. Stability, diagonal case. Verify the relation ¢.17) queL:il\I/lgnum as an expansion in powers ef
J=g?=utd®u, Ap=UAU. A = —C+ ec/(cP + 1) + 0(e)
) A, = ec®/[2(c? + 1)] + o(€?)
4.3. State space volume contraction. 0; = 1+ ¢/[2(c2 + 1)] + oe) (4.59)
4.59
. . A+ =ce(1 - €) + o(e®)
C te the Rossler fl I tract t 1
(a) Compute the Rossler flow volume contraction rate 2= 222+ o)

at the equilibria.

(b) Study numerically the instantaneodjs; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions

2
05 = V1+1/e(1+0(e))
Compare with exact eigenvalues. What are
dynamical implications of the extravagant value of
A7? (continued as exercide.?)

of local expansion, explain them. (R. Paskauskas)
(c) Compute numerically the average contraction ratey 5. Time-ordered exponentials. Given a time dependent
(4.47) along a typical trajectory on the Rossler matrix V(t) check that the time-ordered exponential
attractor. .
(d) (optional) color-code the points on the trajectory u) = Teb VO
by the sign (and perhaps the magnitudeyiof — may be written as
AVi.
(e) Argue on basis of your results that this attractor is ) = i ft i fli .. ftm V() Vit
of dimension smaller than the state spdce 3. 0o 0 0

(f) (optional) Start some trajectories on the escape g4 verify, by using this representation, tha(t)
side of the outer equilibrium, color-code the points satisfies the equation
on the trajectory. Is the flow volume contracting? )
. - UM = VEOU),
4.4. Topology of the Rossler flow. (continuation of
exercises.1) with the initial conditionZ/(0) = 1.
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