Chapter 11

Qualitative dynamics, for cyclists

1.1 Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the area
of global analysis defined by ftierentiable dynamical
systems or equivalently the action ff@rentiable) of a
Lie groupG on a manifoldM. Here Dif(M) is the group
of all diffeomorphisms oM and a difeomorphism is a
differentiable map with a ferentiable inverse.. (.) Our
problem is to study the global structure, i.e., all of the
orbits of M.

—Stephen Smaldifferentiable Dynamical Systems

in any way you please. In chaptémwe established that stability eigenvalues
of periodic orbits are invariants of a given flow. The invada of stabilities
of a periodic orbit is a local property of the flow.

I N sects. 14.1anp 10.1we introduced the concept of partitioning the state space,

For the Rossler flow of exampke4, we have learned that the attractor is very
thin, but otherwise the return maps that we found were diting — figure3.6
did not appear to be a one-to-one map. This apparent losvettitsility is an
artifact of projection of higher-dimensional return mapgolower-dimensional
subspaces. As the choice of lower-dimensional subspackiisay, the resulting
snapshots of return maps look rather arbitrary, too. Othgeptions might look
even less suggestive.

Such observations beg a question: Does there exist a “hatatansically
optimal coordinate system in which we should plot of a retuap?

As we shall now argue (see also s€l.1), the answer is yes: The intrinsic
coordinates are given by the stagbiestable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the idietezneighborhood
of the unstable manifold.

In this chapter we show that every equilibrium point and g\a&riodic orbit

carries with it stable and unstable manifolds which pro@depologically invariant
global foliation of the state space. This qualitative dynamics toétehing and
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symmetric 3-disk pinball; a bounce in which the
trajectory returns to the preceding disk is labeled 0, and
abounce which results in continuation to the third disk
is labeled 1.

Figure 11.1: Binary labeling of trajectories of the .
0

mixing enables us to partition the state space and assigbdimdynamics itineraries
to trajectories.

Given an itinerary, the topology of stretching and foldinge the relative
spatial ordering of trajectories, and separates the aibigsand inadmissible
itineraries. The level is distinctly cyclist, in distinoti to the pedestrian tempo
of the preceding chapter. Skip this chapter unless yowreakd to get into nitty-
gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 212
11.1 Recoding, symmetries, tilings

In chapterd we made a claim that if there is a symmetry of dynamics, we nmest
it. So let’s take the old pinball game and “quotient the sta@ce by the symmetry
or “desymmetrize.”

Though a useful tool, Markov partitioning is not without @tzacks. One glaring
shortcoming is that Markov partitions are not unique: anyany diferent

partitions might do the job. The 3-disk systerffevs a simple illustration of
different Markov partitioning strategies for the same dynahsigstem.

TheA = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor
necessarily the smartest one - before proceeding it paygptoiethe symmetries
of the pinball in order to obtain a mor@ieient description. In chapté9we shall
be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game ofpihas a sixfold
symmetry. For instance, the cyclég, 23, and13 are related to each other by
rotation by+2r/3 or, equivalently, by a relabeling of the disks. The diskelab
are arbitrary; what is important is how a trajectory evolesst hits subsequent
disks, not what label the starting disk had. We exploit thimsetry byrecoding
in this case replacing the absolute disk labels by relativeb®ls, indicating the
type of the collision. For the 3-disk game of pinball there awo topologically

distinct kinds of collisions, figuré1.1: )
[exercise 10.1]

[exercise 9.1]

(11.1)

._J 0 : pinball returns to the disk it came from
S=11 pinball continues to the third disk

This binary symbolic dynamics has two immediate advantages over tharer
one; the prohibition of self-bounces is automatic, and tbdirg utilizes the
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Figure 11.2: The 3-disk game of pinball with the
disk radius : center separation ratio aR1:2.5.

(a) 2-cyclesl2, 13,23, and 3-cycled23 and132

(notdrawn). (b) The fundamental domain, i.e., the
small ¥6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poin6s 1. See figur®.4

for cycle 10 and further examples. (@)

(b)

symmetry of the 3-disk pinball game in elegant manner. Ilils&s are sfiiciently
far apart there are no further restrictions on symbols, yimebslic dynamics is
complete, an@ll binary sequences (see talile.1) are admissible itineraries.

[exercise 10.2]

Example 11.1 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (11.1) fixes the subsequent binary
symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary
sequence:

ternary © 3121312321231323
binary : -10101101011010 (11.2)

The first 2 disks initialize the trajectory and its direction; 3 — 1 +— 2 + ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size partitions, and are coded by a
single binary sequence. For periodic orbits, the equivalent ternary cycles reduce to
binary cycles of 1/3, 1/2 or the same length. How this works is best understood by
inspection of table 11.1, figure 11.2 and figure 9.5.

The 3-disk game of pinball is tiled by six copies of fuamdamental domaijn
a one-sixth slice of the full 3-disk system, with the symmedxes acting as
reflecting mirrors, see figurel.2(b). Every global 3-disk trajectory has a corresponding
fundamental domain mirror trajectory obtained by replgaévery crossing of a
symmetry axis by a reflection. Depending on the symmetry efftll state
space trajectory, a repeating binary symbols block coomdp either to the full
periodic orbit or to a relative periodic orbit (examples ah@wn in figurell.2
and table11.1). An irreducible segment corresponds to a periodic orbithia
fundamental domain. TablEl.1lists some of the shortest binary periodic orbits,
together with the corresponding full 3-disk symbol seqesrand orbit symmetries.
For a number of deep reasons that will be elucidated in chdgtdife is much
simpler in the fundamental domain than in the full systemwkenever possible
our computations will be carried out in the fundamental dioma

Example 11.2 C, recoded: As the simplest example of implementing the ?g(%\r/gse 02]
scheme consider the C, symmetry of example 9.4. For our purposes, all that we Reed>e ¥
to know here is that each orbit or configuration is uniquely labeled by an infinite string

{s}, s = +,— and that the dynamics is invariant under the + < — interchange, i.e.,

it is C, symmetric. The C, symmetry cycles separate into two classes, the self-dual
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Table 11.1: Cg, correspondence between the binary labeled fundamentaidgmme
cyclespand the full 3-disk ternary labeled cyclpstogether with theCs, transformation
that maps the end point of thecycle into the irreducible segment of tigecycle, see
sect.9.3 Breaks in the above ternary sequences mark repeats of¢dedible segment.
The multiplicity of p cycle ismy = 6nz/n,. The shortest pair of the fundamental domain
cycles related by time reversal (but no spatial symmetrg)tae 6-cycle01011 and
001101.

p p 9% p p 9

0 12 o1 000001 121212131313 023

1 123 C 000011  121212313131232323 C?

01 1213 o3 000101 121213 e

001 121232313 C 000111 121213212123 012

011 121323 o3 001011 121232131323 023

0001 12121313 o3 001101 121231323213 013

0011 121231312323 C? 001111  121231232312313123 C

0111 12132123 o1, 010111  121312313231232123 C?

00001 121212323231313C 011111 121321323123 013

00011 1212132323 o013 0000001 121212123232323131318

00101 1212321213 o2 0000011 12121213232323 013

00111 12123 e 0000101 12121232121213 012

01011 121312321231323C 0000111 1212123 e

01111 1213213123 023 e e e
configurations +—, + + ——, + ++— ——, + — — + — + +—, - - -, with multiplicity m, = 1, and
the asymmetric pairs +, —, + + —, — — +, - -+, with multiplicity m, = 2. For example, as

there is no absolute distinction between the “up” and the “down” spins, or the “left” or
the “right” lobe, A = A_, A++- = A.__, and so on. [exercise 19.4]
The symmetry reduced labeling pi € {0,1} is related to the standard s € {+, -}

Ising spin labeling by

If s = s.1 then pi=1

If s # s-1 then pi=0 (11.3)
Forexample,i:~--++++~--map_sinto---lll---:i(andsodoes:),j:
coo—+—+4---mapsinto---000--- =0, —++— =+ ——++ — — + +--- maps into

..-0101--- = 01, and so forth. A list of such reductions is given in table 11.2.

Example 11.3 Cg, recoded - 3-disk game of pinball:

The Cgy recoding can be worked out by a glance at figure 11.2 (a) (continuation
of example 9.5). For the symmetric 3-disk game of pinball the fundamental domain is
bounded by a disk segment and the two adjacent sections of the symmetry axes that
act as mirrors (see figure 11.2 (b)). The three symmetry axes divide the space into
six copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced by flat
mirror reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has
a simple geometric interpretation: a collision of type O reflects the projectile to the disk
it comes from (back—scatter), whereas after a collision of type 1 projectile continues to
the third disk. For example, 23 = - -- 232323 -- maps into - - - 000- - - = 0 (and so do 12
and13), 123=---12312-- maps into - --111- - - = 1 (and so does 132), and so forth. A
list of such reductions for short cycles is given in table 11.1, figure 11.2 and figure 9.5.
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Table 11.2: Correspondence between g symmetry reduced cyclgsahd the standard
Ising model periodic configuratiorns together with their multiplicitiesn,. Also listed
are the two shortest cycles (length 6) related by time redeost distinct unde€,.

p p M
1 + 2
0 —+ 1
01 —— ++ 1
001 -+ 4+ 2
011 ——— 4+ ++ 1
0001 —t == =+ 1
0011 —+++ 2
0111 ———— ++++ 1
00001 —+-+- 2
00011 —+-—— +—+++ 1
00101 —++-— +——++ 1
00111 —+-—-— +—+++ 1
01011 —-—-+++ 2
01111 - ---- +++++ 1
001011 —-++-—-—-+-—+++ 1
001101 —-+++--+-—-—-++ 1

11.2 Going global: Stablgunstable manifolds

In the linear approximation, the fundamental matkitt describes the shearing
of an infinitesimal neighborhood in after a finite tine Its eigenvalues and
eigendirections describe deformation of an initial insitnal sphere of neighboring
trajectories into an ellipsoid tintdater. Nearby trajectories separate exponentially
along the unstable directions, approach each other alenstalble directions, and
maintain their distance along the marginal directions.

The fixed or periodic poink* fundamental matridp(x*) eigenvectors¥.12
form a rectilinear coordinate frame in which the flow intof of) or encircling the
fixed point is linear in the sense of se¢t2. These eigendirections are numerically
continued into global curvilinear invariant manifolds a#idws.

The global continuations of the local stable, unstablerglgections are called
the stable respectivelyunstable manifolds They consist of all points which
march into the fixed point forward, respectively backwartirime

we [xe M: f'(9 - X" - D ast - |
W = {xe M) -x" > 0ast — oo] ) (11.4)

The stablgunstable manifolds of a flow are rather hard to visualize,ssloiag as
we are not worried about a global property such as the nunflienes they wind
around a periodic trajectory before completing a par-aause might just as well
look at their Poincaré section return maps. Stable, ulestalnifolds for maps
are defined by

wW* {xeP: f(x) - x* — 0ash — oo}
WY = {(xeP:f(x)-x —0asn— o} . (11.5)
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Eigenvectors (real or complex pairs) of fundamental matp(x*) play a special
role - on them the action of the dynamics is the linear mudtitlon by A; (for
a real eigenvector) alongd invariant curve\N‘i"S or spiral ifout action in a 2B
surface (for a complex pair). Far— o afinite segment oW(Se), respectivelwv(‘é)
converges to the linearized map eigenvee®y, respectivelye®. In this sense
each eigenvector defines a (curvilinear) axis of the stabkpectively unstable
manifold.

Conversely, we can use an arbitrarily small segment of a fimatt eigenvector
to construct a finite segment of the associated manifold.cig&econstruction
depends on the type of the eigenvalue(s).

Expanding real and positive eigendirection Consideiith expanding eigenvalue,
eigenvector pairA;, &) computed fromJ evaluated at a cycle point,

Je(®) =Ae(), xep, A>1. (11.6)

Take an infinitesimal eigenvectere(x), e < 1, and its imagelp(X)e g(x) =
Aijee(x) . Sprinkle the intervalAj—1|e with a large number of pointsy,, equidistantly
spaced on logarithmic scale|lk; —1|+In . The successive images of these points
f(xj), f2(x,-), -+, fM(x;) trace out the curvilinear unstable manifold in direction
6. Repeat for-€ g(X).

Contracting real, positive eigendirection Reverse the action of the map
backwards in time. This turns a contracting direction intoexpanding one,
tracing out the curvilinear stable manifold in continuatiof € e;.

Expanding/contracting real negative eigendirection As above, but every
even iteratef2(x;), f4(x;), f8(x;) continues in the directios, every odd one in
the direction-g.

Complex eigenvalue pair Construct an orthonormal pair of eigenvectors
spanning the plang e;, e €j,1}. Iteration of the annulus between an infinitesimal
circle and its image byl spans the spirallingircle unstable manifold of the
complex eigenvalue paji\j, Aj;1 = Af}.

11.3 Horseshoes

If a flow is locally unstable but globally bounded, any opefi béinitial points
will be stretched out and then folded back. An example is ar8dsional invertible
flow sketched in figuré0.5which returns an area of a Poincaré section of the flow
stretched and folded into a “horseshoe,” such that thealrdtiea is intersected at
most twice (see exercidd .4 the first Figure). Run backwards, the flow generates
the backward horseshoe which intersects the forward Huwsest most 4 times,
and so forth.  Such flows exist, and are easily constructeéxample is the
Rossler flow, discussed in exam(del.
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Now we shall construct an example of a locally unstable bbajly bounded
mapping which returns an initial area stretched and foldesla “horseshoe,” such
that the initial area is intersected at most twice. We stedéirrto such mappings
with at most 2 transverse self-intersections at tiik iteration as thence-folding
maps.

As an example isféorded by the 2-dimension&lénon map

Xna1 1-ax + by,
Yol = Xa- 11.7)

The Hénon map models qualitatively the Poincaré secéturm map of figurd 0.5
For b = 0 the Hénon map reduces to the parabdl@.?), and, as shown in
sects.3.3and27.1, for b # 0 it is kind of a fattened parabola; by construction, it
takes a rectangular initial area and returns it bent as &blocg.

For definitiveness, fix the parameter valuesate: 6, b = —1. The map is
quadratic, so it has 2 fixed points = f(xo), X1 = f(x1) indicated in figurel1.3(a).
For the parameter values at hand, they are both unstable. oulftart with a
small ball of initial points centered around, and iterate the map, the ball will be
stretched and squashed along the ¢ Similarly, a small ball of initial points
centered around the other fixed poigtiterated backward in time,

X-1 = Yn

Vo1 = —%(1 —a - X)), (11.8)

traces out the Iintwg. Wg is the stable manifold of, fixed point, andwyj' is the
unstable manifold ok; fixed point, defined in sec.1.2  Their intersections
enclose the crosshatched regibf . Any point outsideW;' border of M escapes
to infinity forward in time, while any point outsidé/; border escapes to infinity
backwards in time. In this way the unstable - stable marsfdigfine topologically,
invariant and optimaM_ initial region; all orbits that stay confined for all times
are confined tovV1 .

Iterated one step forward, the regidn is stretched and folded intosanale
horseshoe drawn in figurel.3(b). The horseshoe fattened parabola shape is the
consequence of the quadratic fowhin (11.7). Parametea controls the amount
of stretching, while the parametercontrols the amount of compression of the
folded horseshoe. The cage- 6,b = 0.9 considered here corresponds to strong
stretching and weak compression. Label the two forwardsetgionsf (M )NM.
by Ms,, with s € {0, 1}, figure 11.3(b). The horseshoe consists of the two strips
Mo, My, and the bent segment that lies entirely outsideWeline. As all
points in this segment escape to infinity under forward ftena this region can
safely be cut out and thrown away.

Iterated one step backwards, the regiehis again stretched and folded into
a horseshoe, figurél.3(c). As stability and instability are interchanged under
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Figure 11.3: The Hénon map fom = 6, b =
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Their intersection bounds the regiol which
contains the non-wandering s€t. (b) The
intersection of the forward imagé*(M) with
the backward backward-*(M) is a four-region
cover of Q. (c) The intersection of the twice-
folded forward horsesho&?(M) with backward 0.0
horseshoef=}(M). (d) The intersection of
f2(M) with f2(M) is a 16-region cover of
Q. Iteration yields the complete Smale horseshoe
non-wandering se®, i.e., the union of all non-
wandering points off, with every forward fold

-1.0l -1
intersecting every backward fold. (Y. Matsuoka)(C) -1.0 0.0 0 (d) -0

time reversal, this horseshoe is transverse to the forwaed Again the points in
the horseshoe bend wondef o infinity asn — —oo, and we are left with the
two (backward) strips\io, M1 . lterating two steps forward we obtain the four
strips Mi1, Mo1, Moo, Mio, and iterating backwards we obtain the four strips
Mo, M o1, M 11, M 10 transverse to the forward ones just as for 3-disk pinball
game figurel0.3 Iterating three steps forward we get an 8 strips, and sacon
infinitum

What is the significance of the subscrigt which labels theM o171 backward
strip? The two strips\ o, M 1 partition the state space into two regions labeled
by the two-letter alphabe#i = {0,1}. S* = .011 is thefuture itinerary for all
X € Mo11. Likewise, for the forward strips ak € Ms . ..s,s. have thepast
itinerary S” = s. -+ s.1% . Which partition we use to present pictorially the
regions that do not escape imiterations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo, = F(My), My = f(Ma).

Q, the non-wandering se.@) of M, is the union of all points whose forward
and backward trajectories remain trapped for all time. g the intersections
of all images and preimages &l

Q- {x pxe lim_1mm) () f‘“(M‘)} . (11.9)

Two important properties of the Smale horseshoe are thatsitacomplete
binary symbolic dynamicand that it isstructurally stable
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For acompleteSmale horseshoe every forward fdl{ M) intersects transversally
every backward foldf "™(M), so a unique bi-infinite binary sequence can be
associated to every element of the non—wandering set. A @ is labeled by
the intersection of its past and future itinerai®g) = - -- s 25 1%.51% - - -, Where

ss=s if f(x)e Ms , se{0,1} andn € Z. For suficiently separated disks,
the 3-disk game of pinball figur20.3 is another example of a complete Smale
horseshoe; in this case the “folding” region of the horsesisocut out of the
picture by allowing the pinballs that fly between the disk&ilboff the table and
escape.

The system is said to kstructurally stableif all intersections of forward and
backward iterates off remain transverse for ficiently small perturbation$ —
f + ¢ of the flow, for example, for slight displacements of the dijghr suficiently
small variations of the Hénon map parametard while structural stability is
exceedingly desirable, it is also exceedingly rare. Abbist imore later.

11.4 Spatial ordering

Consider a system for which you have succeeded in constguattovering symbolic
dynamics, such as a well-separated 3-disk system. Nowrstaring the disks
toward each other. At some critical separation a disk wdktdblocking families

of trajectories traversing the other two disks. The ordewhich trajectories
disappear is determined by their relative ordering in sptieeones closest to the
intervening disk will be pruned first. Determining inadniliés itineraries requires

that we relate the spatial ordering of trajectories to thieie ordered itineraries. )
[exercise 11.8]

So far we have rules that, given a state space partition ratenatemporally
ordered itinerary for a given trajectory. Our next task ie teverse: given a
set of itineraries, what is thepatial ordering of corresponding points along the
trajectories? In answering this question we will be aide®ale’s visualization
of the relation between the topology of a flow and its symbdyicamics by means
of “horseshoes.”

11.4.1 Symbol square

For a better visualization of 2-dimensional non-wandesiets, fatten the intersection
regions until they completely cover a unit square, as in &égur4 We shall refer

to such a “map” of the topology of a given “stretch & fold” dyn&al system as
the symbol squareThe symbol square is a topologically accurate repregentat

of the non—-wandering set and serves as a street map fomglilipieces. Finite
memory ofm steps and finite foresight ofsteps partitions the symbol square into
rectangleds m1--- S0-S1S2 - - - Sv)- In the binary dynamics symbol square the size
of such rectangle is2' x 27"; it corresponds to a region of the dynamical state
space which contains all points that share commduture andm past symbols.
This region maps in a nontrivial way in the state space, btiiénsymbol square
its dynamics is exceedingly simple; all of its points are pegby the decimal
point shift (10.19

[exercise 11.2]
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Figure 11.4: Kneading Danish pastry: symbol 00 il
square representation of an orientation reversin Q0o !
once-folding map obtained by fattening the Smal o0
horseshoe intersections of figuté.3into a unit © -
square. In the symbol square the dynamics may - »
rectangles into rectangles by a decimal point shift FIG. 4. Tterative construction of the symbol plane.
(525155198 7) = - S2515051- %S5 » (11.10)

For example, the square [@1L] gets mapped into the rectangtf91.01] = [010.1],
see exercisé1.4 the first Figure (b).

As the horseshoe mapping is a simple repetitive operatierexpect a simple
relation between the symbolic dynamics labeling of the ésfise strips, and
their relative placement. The symbol square poir(8*) with future itinerary
S* are constructed by converting the sequencea,isfinto a binary number by
the algorithm {0.9. This follows by inspection from figuré1.4 In order to
understand this relation between the topology of horseshae their symbolic
dynamics, it might be helpful to backtrace to seéd.2.2and work through and
understand first the symbolic dynamics of 1-dimensionainacial mappings.

Under backward iteration the roles of 0 and 1 symbols aredhasnged;/\/(al

[exercise 11.3]

[exercise 11.4]

has the same orientation A4, while/\/q1 has the opposite orientation. We assi%mxercise 115)

to anorientation preservingonce-folding map thepast topological coordinate
¢ = §(S7) by the algorithm:

W, if =0
Wn1 = { " -f: 1 Wo=%o

5(S7) (11.11)

1
o
s
Z
g
e
I

M
=
B
N

Such formulas are best derived by quiet contemplation oftten of a folding
map, in the same way we derived the future topological coatdi (0.9).

The coordinate pairé(y) maps a pointX,y) in the state space Cantor set
of figure 11.3into a point in the symbol square of figufiel.4, preserving the
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topological ordering;{ y) serves as a topologically faithful representation of the
non-wandering set of any once-folding map, and aids us ititipaing the set
and ordering the partitions for any flow of this type.

11.5 Pruning

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic
tanglesLes méthodes nouvelles de la méchanique céleste

In general, not all possible itineraries are realized assigly trajectories.
Trying to get from “here” to “there” we might find that a shosth is excluded by
some obstacle, such as a disk that blocks the path, or a @abtédge. To count
correctly, we need tprunethe inadmissible trajectories, i.e., specify the grammar
of the admissible itineraries.

While the complete Smale horseshoe dynamics discussedisodther straightforward,
we had to get through it in order to be able to approach a situgthat resembles
more the real life: adjust the parameters of a once-foldiag so that the intersection
of the backward and forward folds is still transverse, butomger complete, as in
figure13.2(a). The utility of the symbol square lies in the fact that $keviving,
admissible itineraries still maintain the same relativatig ordering as for the
complete case.

In the example of figur&3.2(a) the rectangles [10], [11.1] have been pruned,
and consequentlgny trajectory containing blockls; = 101,b, = 111 is pruned.
We refer to the border of this primary pruned region aspthaing front another
example of a pruning front is drawn in figus.2 (d). We call it a “front”
as it can be visualized as a border between admissible addissible; any
trajectory whose periodic point would fall to the right o&tfront in figure13.2
is inadmissible, i.e., pruned. The pruning front is a corgplescription of the
symbolic dynamics of once-folding maps.For now we needdhig as a concrete
illustration of how pruning rules arise.

In the example at hand there are total of two forbidden bldéks 111, so the
symbol dynamics is a subshift of finite typ&0(22. For now we concentrate on
this kind of pruning because it is particularly clean andggen Unfortunately, for
a generic dynamical system a subshift of finite type is thesption rather than
the rule. Only some repelling sets (like our game of pinbati)l a few purely
mathematical constructs (called Anosov flows) are strafifustable - for most
systems of interest an infinitesimal perturbation of the fli@stroys anbr creates
an infinity of trajectories, and specification of the grammeguires determination
of pruning blocks of arbitrary length. The repercussiorsttamatic and counterintuitive;
for example, due to the lack of structural stability the sfaort codficients such
as the deterministic tfusion constant of seck4.2are emphaticallynot smooth
functions of the system parameters. This generic lack ofcsiral stability is
what makes nonlinear dynamics so hard.
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The conceptually simpler finite subshift Smale horseshafis to motivate
most of the key concepts that we shall need for time being.

11.5.1 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to bamilhating, so
we turn next to the simplest example of pruned symbolic dyosnthe finite
subshift obtained by prohibition of repeats of one of the lsgts, let us say00..
This situation arises, for example, in studies of the cirolgps, where this kind
of symbolic dynamics describes “golden mean” rotations.wNioe admissible
itineraries are enumerated by the pruned binary tree ofdigQr13(a), or the
corresponding Markov graph figufé.13(b). We recognize this as the Markov
graph example of figur&0.14

[exercise 13.7]
[exercise 13.8]

So we can already see the main ingredients of a general thigor{1) Markov
graph encodes self-similarities of the tree of all itinersyr and (2) if we have a
pruning block of lengthM, we need to descenifl levels before we can start
identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so luckyngsfar
pruning rules that you now know the gramma0(2J) in terms of a finite set
of pruning blockgg = {b1, by, - - - by}, of lengthsny,, < M. Our task is to generate
all admissible itineraries. What to do?

A Markov graph algorithm.

1. Starting with the root of the tree, delineate all brandhes correspond to
all pruning blocks; implement the pruning by removing trst lzode in each
pruning block.

2. Label all nodes internal to pruning blocks by the itingraonnecting the
root point to the internal node. Why? So far we have prunebidoen
branches by lookingy, steps into future for all pruning blocks. into future
for pruning blockb = 10010. However, the blocks with a right combination
of past and future [0110], [10110], [10110] and [10110] are also pruned.
In other words, any node whose near past coincides with thmbieg of
a pruning block is potentially dangerous - a branch furthewr the tree
might get pruned.

3. Add to each internal node all remaining branches allowethé alphabet,
and label them. Why? Each one of them is the beginning poian affinite
tree, atree that should be similar to another one origigatioser to the root
of the whole tree.

4. Pick one of the free external nodes closest to the root efetitire tree,
forget the most distant symbol in its past. Does the truncdiserary
correspond to an internal node? If yes, identify the two sodfenot, forget
the next symbol in the past, repeat. If no such truncatedgoatsponds to
any internal node, identify with the root of the tree.
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This is a little bit abstract, so let’s say the free exterr@dein question is The itinerary describes the time evolution of an orbit, wh{fior 2-d hyperbolic
[101Q]. Three time steps back the past is [J1T hat is not dangerous, as maps) the symbol square describes the spatial orderingintfspalong the orbit.
no pruning block in this example starts with 0. Now forget thied step in The rule that everything to one side of the pruning front ibidden might (in
the past: [10 is dangerous, as that is the start of the pruning blockI[10). hindsight) seem obvious, but if you have ever tried to worksymbolic dynamics
Hence the free external node [10L6hould be identified with the internal of some “generic” dynamical system, you should be struck tbysimplicity:

node [10]. instead of pruning a Cantor set embedded within some largetdC set, the

5. Repeat until all free nodes have been tied back into tleeriat nodes. pruning front cleanly c‘u‘ts out eompactregion in the symbol square and that
is all - there are no additional pruning rules.
6. Clean up: check whether every node can be reached from etrer node.

Remove the transient nodes, i.e., the nodes to which dysamsicr returns. The symbol square is a useful tool in transforming topolalgjruning into
pruning rules for inadmissible sequences; those are ingiéad by constructing
transition matrices aridr Markov graphs. These matrices are the simplest examples
of evolution operators prerequisite to developing a thebgveraging over chaotic
flows.

7. The result is a Markov diagram. There is no guarantee thsti$ the
smartest, most compact Markov diagram possible for givemipg (if
you have a better algorithm, teach us), but walks around getwrate all
admissible itineraries, and nothing else.

Importance of symbolic dynamics is often grossly unappited; as we shall
see in chapter&1 and 18, coupled with uniform hyperbolicity, the existence of a
finite grammar is the crucial prerequisite for constructidrzeta functions with
nice analyticity properties.

Heavy pruning.

We complete this training by examples by implementing themg of figurel3.2(d).
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (11.12)

Blocks 01101, 10110 contain the forbidden block 101, so #reyredundant as
pruning rules. Draw th@runing treeas a section of a binary tree with 0 and 1
branches and label each internal node by the sequence afdEsaconnecting it

to the root of the tree (figur&3.3(a). These nodes are the potentially dangerous
nodes - beginnings of blocks that might end up pruned. Addsitle branches

to those nodes (figurg3.3(b). As we continue down such branches we have to
check whether the pruning imposes constraints on the segseso generated:
we do this by knocking f the leading bits and checking whether the shortened
strings coincide with any of the internal pruning tree nod¥#— 0; 110— 10;

011 — 11; 0101— 101 (pruned); 1006» 00 — 00 — 0; 10011— 0011 —
011— 11; 01000 O.

As in the previous two examples, the trees originating imiified nodes
are identical, so the tree is “self-similar.” Now conneat 8ide branches to the
corresponding nodes, figuf3.3 (d). Nodes “” and 1 are transient nodes; no
sequence returns to them, and as you are interested heria arfipitely recurrent
sequences, delete them. The result is the finite Markov goéfigure 13.3(d);
the admissible bi-infinite symbol sequences are generatedl possible walks
along this graph.

Résum é

Given a partitionA of the state spacét, a dynamical systemA(, f) induces
topological dynamics, o) on the spac& of all admissible bi—infinite itineraries.
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Commentary

Remark 11.1 Stable/unstable manifolds.  For pretty pictures of invariant manifolds
other than Lorenz, see Abraham and Sha@.[

Remark 11.2 Smale horseshoe. S.Smale understood clearly that the crucial ingredient
in the description of a chaotic flow is the topology of its nandering set, and he
provided us with the simplest visualization of such setates $ections of Smale horseshoes.
In retrospect, much of the material covered here can alreadiyund in Smale’s fundamental
paper P3|, buta physicist who has run into a chaotic time series ifldtisratory might

not know that he is investigating the actionf{drentiable) of a Lie groufs on a manifold

M, and that the Lefschetz trace formula is the way to go. If yod fiourself mystified by
Smale’s article abstract about “the actionfglientiable) of a Lie grou® on a manifold

M,” quoted on pagel79 rereading chaptet4 might help; for example, the Liouville
operators form a Lie group (of symplectic, or canonical $farmations) acting on the
manifold (p, ).

Remark 11.3 Kneading theory. ~ The admissible itineraries are studied in refs?, [
14,16, 17], as well as many others. We follow here the Milnor-Thurstaposition [L3].
They study the topological zeta function for piecewise ntone maps of the interval, and
show that for the finite subshift case it can be expressediinstef a finite dimensional
kneading determinantAs the kneading determinant is essentially the topoldgieta
function that we introduce inl@.4), we shall not discuss it here. Baladi and Ruelle have
reworked this theory in a series of papers,[L6, 1 7] and in ref. [Lg] replaced it by a power
series manipulation. The kneading theory is covered hePelahlqvist's appendii. 1.

Remark 11.4 Pruning fronts. The notion of a pruning frontwas introduced in refd],

and developed by K.T. Hansen for a number of dynamical systerhis Ph.D. thesis3]

and a series of paper&(-[30]. Detailed studies of pruning fronts are carried out in
refs. [20, 22, 21]; ref. [5] is the most detailed study carried out so far. The rigorous
theory of pruning fronts has been developed by Y. Ishij P4] for the Lozi map, and A.

de Carvalho?9] in a very general setting.

Remark 11.5 The unbearable growth of Markov graphs. A construction of finite
Markov partitions is described in refs.(, 11], as well as in the innumerably many other
references.

If two regions in a Markov partition are not disjoint but searboundary, the boundary
trajectories require special treatment in order to avoieroounting, see sect9.3.1 If
the image of a trial partition region cuts across only a pamrwther trial region and
thus violates the Markov partition conditiohq.4), a further refinement of the partition is
needed to distinguish distinct trajectories - figliBe2is an example of such refinements.

The finite Markov graph construction sketched above is noessarily the minimal
one; for example, the Markov graph of figur@.3does not generate only the “fundamental”
cycles (see chapter8), but shadowed cycles as well, suchtasi in (13.17. For
methods of reduction to a minimal graph, consult refs5[l, 7]. Furthermore, when one
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implements the time reversed dynamics by the same algqritheusually gets a graph of
very different topology even though both graphs generate the sanmissidlensequences,
and have the same determinant. The algorithm describededtes some sense fordl-
dynamics, but is unnatural for @ maps whose dynamics it treats as 1-dimensional. In
practice, generic pruning grows longer and longer, and rplenetiful pruning rules. For
generic flows the refinements might never stop, and almostyslwe might have to deal
with infinite Markov partitions, such as those that will bedissed in sect.3.6 Not only
do the Markov graphs get more and more unwieldy, they haverthieasant property that
every time we add a new rule, the graph has to be construaieddcratch, and it might
look very diferent form the previous one, even though it leads to a minoifination

of the topological entropy. The most determinékbe to construct such graphs may be
the one of ref. P(]. Still, this seems to be the best technology availablegsmthe reader
alerts us to something superior.
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Exercises

11.1. A Smale horseshoe. The Hénon map

11.2.

11.3.

11.4.

X | [ 1-a+y
[y]‘[bx * (11.13)

maps the X,y) plane into itself - it was constructed
by Hénon P] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figurel0.5 For definitiveness fix the

parametersta=6,b = -1.

a) Draw a rectangle in thex(y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2times.

b) Construct the inverse of th@1.13.

c) lterate the rectangle back in the time; how many
intersections are there between thforward and
mbackward iterates of the rectangle?

d) Use the above information about the inters,ectiorisl 5

to guess thex,y) coordinates for the two fixed
points, a 2-cycle point, and points on the two
distinct 3-cycles from tabl@0.1 The exact cycle
points are computed in exerci$g.1Q

Kneading Danish pastry. Write down the K y) —
(x,y) mapping that implements the baker's map of
figure 11.4 together with the inverse mapping. Sketch
a few rectangles in symbol square and their forward and
backward images. (Hint: the mapping is very much like
the tent map10.9).

Kneading Danish without flipping. The baker’s
map of figurell.4includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the & y) — (xy) mapping that implements an
orientation preserving baker's map (no flip; Jacobian
determinant 1). Sketch and label the first few folds
of the symbol square.

Fix this manuscript. Check whether the layers of the
baker’'s map of figurel1.4 are indeed ordered as the
branches of the alternating binary tree of figui@9
(They might not be - we have not rechecked them).
Draw the correct binary trees that order both the future
and past itineraries.

For once-folding maps there are four topologically
distinct ways of laying out the stretched and folded
image of the starting region,

(a) orientation preserving: stretch, fold upward, as in
figure??.
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11.6.

(b) orientation preserving: stretch, fold downward, as
in figure13.2

(c) orientation reversing: stretch, fold upward, flip, as
in figure ??.

(d) orientation reversing: stretch, fold downward, flip,
asin figurell.4

with the corresponding four distinct binary-labeled
symbol squares. Fon-fold “stretch & fold” flows

the labeling would benary. The intersectionM, for

the orientation preserving Smale horseshoe, the first
Figure (a) above. is oriented the same way\@swhile

My is oriented opposite tal. Brief contemplation of
figure11.4indicates that the forward iteration strips are
ordered relative to each other as the branches of the
alternating binary tree in figurg0.9

Check the labeling for all four cases.

Orientation reversing once-folding map. By adding
areflection around the vertical axis to the horseshoe map
g we get the orientation reversing mgsfiown in the
second Figure abové&), and®; are oriented ag and

Qu, so the definition of the future topological coordinate
v is identical to they for the orientation preserving
horseshoe. The inverse intersectiddg and Q;* are
oriented so thaQ;* is opposite toQ, while Q;* has the
same orientation a®. Check that the past topological
coordinates is given by

_ 1-w, ifs,=0 _
Wh-1 = {Wn ifs=1" Wo = S

609 = Owow.aw...= Y win/2"(11.14)

n=1

Infinite symbolic dynamics. Let o be a function
that returns zero or one for every infinite binary string:
o {0, — {0,1}). Its value is represented by
(e, €,...) where theg are either 0 or 1. We will
now define an operatdr that acts on observables on the
space of binary strings. A functiamis an observable if

it has bounded variation, that is, if

llall = supla(ey. €z, . . .)| < o

(e}

For these functions

Tale, e,...) = a0,e,e,..)00,¢€,e,...)

+a(l, e, €,.. )01, e, €,...).
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(a) (easy) Consider a finite versidp of the operator
T
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(Kai T. Hanser

11.9. Alphabet {0,1}, prune _100Q, -0010Q, _-0110Q

Tha(es, €,...,€1n) =
a0, e €,....a-1)0(0, €1, €2, ..., 6n-1) +
al e e,....e-1)o(L e ... 6n-1).

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent of
(b) (medium) With the operator norm induced by the
function norm, show thaf” is a bounded operator.
(c) (hard) Show thaf is not trace class.

Time reversibility. Hamiltonian flows are time
reversible. Does that mean that their Markov graphs
are symmetric in all node — node links, their
transition matrices are adjacency matrices, symmetric
and diagonalizable, and that they have only real
eigenvalues?

This example is motivated by the pruning fi
description of the symbolic dynamics for the Heér
type maps.

step 1. .100Q prunes all cycles with a.000
subsequence with the exception of the fixed pd
hence we factor out (% tp) explicitly, and prune00Q
from the rest. This means thag is an isolated fixe
point - no cycle stays in its vicinity for more tha
iterations. In the notation of sect1.5.1 the alphab
is {1, 2, 3; 0}, and the remaining pruning rules hav
be rewritten in terms of symbols=20, 3=100:

step 2. alphabet(1, 2, 3; 6], prune_33., 213,313
This means that the 3-cycR = 100 is pruned and
long cycles stay close enough to it for a singlé®0
repeat. As in example 1?!, prohibition aB3_ i
implemented by dropping the symbol “3” and exten

11.8. 3-disk pruning (Not easy) Show that for 3-disk
game of pinball the pruning of orbits startsRit a =
2.04821419. ..
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the alphabet by the allowed blocks 13, 23:

step 3.alphabet1, 2, 13 23 0}, prune_213, 2313
_1313,, where 13= 13, 23= 23 are now used as sin
letters. Pruning of the repetitiond313_ (the 4-cycl
13 = 1100 is pruned) yields the

result: alphabet{1, 2, 23 113 0}, unrestricted 4-a
dynamics. The other remaining possible block$3
_2313_ are forbidden by the rules of step 3. (contir
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