
Chapter 34

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

S  the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclassics
of bound systems is all we need to understand the semiclassics for open,

scattering systems as well. We start by a brief review of the quantum theory of
elastic scattering of a point particle from a (repulsive) potential, and then develop
the connection to the standard Gutzwiller theory for bound systems. We do this in
two steps - first, a heuristic derivation which helps us understand in what sense
density of states is “density,” and then we sketch a general derivation of the
central result of the spectral theory of quantum scattering, the Krein-Friedel-Lloyd
formula. The end result is that we establish a connection between the scattering
resonances (both positions and widths) of an open quantum system and the poles
of the trace of the Green function, which we learned to analyze in earlier chapters.

34.1 Density of states

For a scattering problem the density of states (30.18) appear ill defined since
formulas such as (33.6) involve integration over infinite spatial extent. What we
will now show is that a quantity that makes sense physically is the difference of
two densities - the first with the scatterer present and the second with the scatterer
absent.

In non-relativistic dynamics the relative motion can be separated from the
center-of-mass motion. Therefore the elastic scattering of two particles can be
treated as the scattering of one particle from a static potential V(q). We will study
the scattering of a point-particle of (reduced) massm by a short-range potential
V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
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slowly as a function ofq so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose the spatial coordinate
frame freely, it is advisable to place its origin somewhere near the geometrical
center of the potential. The scattering problem is solved, if a scattering solution
to the time-independent Schrödinger equation (30.5)

(

−
~

2

2m
∂2

∂q2
+ V(q)

)

φ~k(q) = Eφ~k(q) (34.1)

can be constructed. HereE is the energy,~p = ~~k the initial momentum of the
particle, and~k the corresponding wave vector.

When the argumentr = |q| of the wave function is large compared to the
typical sizeaof the scattering region, the Schrödinger equation effectively becomes
a free particle equation because of the short-range nature of the potential. In
the asymptotic domainr ≫ a, the solutionφ~k(q) of (34.1) can be written as
superposition of ingoing and outgoing solutions of the freeparticle Schrödinger
equation for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions),

where in 1-dimensional problemsφ(−)(q), φ(+)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering problems the “incoming,” “outgoing”
radial waves, with the constant matricesA, B fixed by the boundary conditions.
What are the boundary conditions? The scatterer can modify only the outgoing
waves (see figure34.1), since the incoming ones, by definition, have yet to encounter
the scattering region. This defines the quantum mechanical scattering matrix, or
theS matrix

φm(r) = φ(−)
m (r) + Smm′φ

(+)
m′ (r) . (34.2)

All scattering effects are incorporated in the deviation ofS from the unit matrix,
the transition matrixT

S = 1 − iT . (34.3)

For concreteness, we have specialized to two dimensions, although the final formula
is true for arbitrary dimensions. The indicesm andm′ are the angular momenta
quantum numbers for the incoming and outgoing state of the scattering wave
function, labeling theS-matrix elementsSmm′ . More generally, given a set of
quantum numbersβ, γ, theS matrix is a collectionSβγ of transition amplitudes
β → γ normalized such that|Sβγ |2 is the probability of theβ → γ transition. The
total probability that the ingoing stateβ ends up in some outgoing state must add
up to unity

∑

γ

|Sβγ |2 = 1 , (34.4)
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Figure 34.1: (a) Incoming spherical waves
running into an obstacle. (b) Superposition
of outgoing spherical waves scattered from an
obstacle. (a) (b)

so theS matrix is unitary:S†S = SS† = 1.

We have already encountered a solution to the 2-dimensionalproblem; free
particle propagation Green’s function (32.48) is a radial solution, given in terms
of the Hankel function

G0(r, 0,E) = −
im

2~2
H(+)

0 (kr) ,

where we have usedS0(r, 0,E)/~ = kr for the action. Themth angular momentum
eigenfunction is proportional toφ(±)

m (q) ∝ H(±)
m (kr), and given a potentialV(q) we

can in principle compute the infinity of matrix elementsSmm′ . We will not need
much information aboutH(t)

m (kr), other than that for larger its asymptotic form is

H± ∝ e±ikr

In general, the potentialV(q) is not radially symmetric and (34.1) has to be
solved numerically, by explicit integration, or by diagonalizing a large matrix in
a specific basis. To simplify things a bit, we assume for the time being that a
radially symmetric scatterer is centered at the origin; thefinal formula will be
true for arbitrary asymmetric potentials. Then the solutions of the Schrödinger
equation (30.5) are separable,φm(q) = φ(r)eimθ, r = |q|, the scattering matrix
cannot mix different angular momentum eigenstates, andS is diagonal in the
radial basis (34.2) with matrix elements given by

Sm(k) = e2iδm(k). (34.5)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means
that an incoming state of the formH(−)

m (kr)eimθ gets scattered into an outgoing state
of the formSm(k)H(+)

m (kr)eimθ, whereH(∓)
m (z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in a infinite cylindrical well
of radiusR, and will later takeR→ ∞. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresponds to some value ofm.
For larger ≫ a each eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(

Sm(k)H(+)
m (kr) + H(−)

m (kr)
)

≈ · · · cos(kr + δm(k) − χm) , (34.6)
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Figure 34.2: The “difference” of two bounded
reference systems, one with and one without the
scattering system.

b b

-

where· · · is a common prefactor, andχm = mπ/2+π/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions that will play no role in
what follows.

The state (34.6) must satisfy the external boundary condition that it vanish at
r = R. This implies the quantization condition

knR+ δm(kn) − χm = π (n+ 12) .

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. SinceR is large, the density of states is high, and the phaseδm(k) does
not change much over such a small interval. Therefore, to leading order we can
include the effect of the change of the phase on staten+1 by Taylor expanding. is

kn+1R+ δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ π + π(n+ 12).

Taking the difference of the two equations we obtain∆k ≈ π(R+ δ′m(k))−1. This
is the eigenvalue spacing which we now interpret as the inverse of the density of
states withinm angular momentum sbuspace

dm(k) ≈
1
π

(

R+ δ′m(k)
)

.

TheR term is essentially the 1− d Weyl term (33.8), appropriate to 1− d radial
quantization. For largeR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative of thescattering phase shift,
approximation accurate to order 1/R. However, not all is well: the area under
consideration tends to infinity. We regularize this by subtracting from the result
from the free particle density of statesd0(k), for the same size container, but this
time without any scatterer, figure34.2. We also sum over allmvalues so that

d(k) − d0(k) =
1
π

∑

m

δ′m(k) =
1

2πi

∑

m

d
dk

logSm

=
1

2πi
Tr

(

S†
dS
dk

)

. (34.7)

The first line follows from the definition of the phase shifts (34.5) while the second
line follows from the unitarity ofS so thatS−1

= S†. We can now take the limit
R→ ∞ since theRdependence has been cancelled away.
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This is essentially what we want to prove since for the left hand side we
already have the semiclassical theory for the trace of the difference of Green’s
functions,

d(k) − d0(k) = −
1

2πk
Im (tr (G(k) −G0(k)) . (34.8)

There are a number of generalizations. This can be done in anynumber of
dimensions. It is also more common to do this as a function of energy and not
wave numberk. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumberk, we have adaptedk as the natural variable in the
above discussion.

Finally, we state without proof that the relation (34.7) applies even when there
is no circular symmetry. The proof is more difficult since one cannot appeal to the
phase shiftsδm but must work directly with a non-diagonalS matrix.

34.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection between the
scattering matrix and the trace of the quantum Green’s function (more formally
between the difference of the Green’s function with and without the scattering
center.) We now show how this connection can be derived in a more rigorous
manner. We will also work in terms of the energyE rather than the wavenumber
k, since this is the more usual exposition. Suppose particlesinteract via forces of
sufficiently short range, so that in the remote past they were in a free particle state
labeledβ, and in the distant future they will likewise be free, in a state labeledγ.
In the Heisenberg picture theS-matrix is defined asS = Ω−Ω

†
+ in terms of the

Møller operators

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ , (34.9)

where H is the full Hamiltonian, whereasH0 is the free Hamiltonian. In the
interaction picture theS-matrix is given by

S = Ω
†
+Ω− = lim

t→∞
eiH0t/~e−2iHt/~eiH0t/~

= T exp

(

−i
∫

+∞

−∞
dtH′(t)

)

, (34.10)

whereH′ = V = H −H0 is the interaction Hamiltonian andT is the time-ordering
operator. In stationary scattering theory theS matrix has the following spectral
representation

S =

∫ ∞

0
dE S(E)δ(H0 − E)

S(E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iǫ)−1V , (34.11)
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such that

Tr

[

S†(E)
d

dE
S(E)

]

= Tr

[

1
H0 − E − iǫ

−
1

H − E − iǫ
− (ǫ ↔ −ǫ)

]

. (34.12)

The manipulations leading to (34.12) are justified if the operatorsQ±(E) can be
[appendix J]

linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formula which is the
central result of this chapter. The Krein-Lloyd formula provides the connection
between the trace of the Green’s function and the poles of thescattering matrix,
implicit in all of the trace formulas for open quantum systems which will be
presented in the subsequent chapters.

34.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is
provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral
density which we now derive. This derivation builds on the results of the last
section and extends the discussion of the opening section.

In chapter32we linked the spectral density (see (30.18)) of a bounded system

d(E) ≡
∑

n

δ(En − E) (34.13)

via the identity

δ(En − E) = − lim
ǫ→0

1
π

Im
1

E − En + iǫ

= − lim
ǫ→0

1
π

Im〈En|
1

E − H + iǫ
|En〉

=
1

2π i
lim
ǫ→0

〈

En

∣

∣

∣

∣

∣

1
E − H − iǫ

−
1

E − H + iǫ

∣

∣

∣

∣

∣

En

〉

(34.14)

to the trace of the Green’s function (33.1.1). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is given bythe Gutzwiller trace
formula (33.11) in terms of a smooth Weyl term and an oscillating contribution of
periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is
completed, if we can find a connection between the spectral density d(E) and
the scattering matrixS. We will see that (34.12) provides the clue. Note that
the right hand side of (34.12) has nearly the structure of (34.14) when the latter
is inserted into (34.13). The principal difference between these two types of
equations is that theS matrix refers tooutgoingscattering wave functions which
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are not normalizable and which have acontinuousspectrum, whereas the spectral
densityd(E) refers to a bound system with normalizable wave functions with a
discrete spectrum. Furthermore, the bound system is characterized by ahermitian
operator, the HamiltonianH, whereas the scattering system is characterized by a
unitary operator, theS-matrix. How can we reconcile these completely different
classes of wave functions, operators and spectra? The trickis to put our scattering
system into a finite box as in the opening section. We choose a spherical conatiner
with radiusR and with its center at the center of our finite scattering system. Our
scattering potentialV(~r) will be unaltered within the box, whereas at the box walls
we will choose an infinitely high potential, with the Dirichlet boundary conditions
at the outside of the box:

φ(~r)|r=R = 0 . (34.15)

In this way, for any finite value of the radiusR of the box, we have mapped
our scattering system into a bound system with a spectral density d(E; R) over
discrete eigenenergiesEn(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which explainswhy the Coulomb
potential requires special care.) The hope is that in the limit R → ∞ we will
recover the scattering system. But some care is required in implementing this.
The smooth Weyl term̄d(E; R) belonging to our box with the enclosed potentialV
diverges for a spherical 2-dimensional box of radiusR quadratically, asπR2/(4π)
or asR3 in the 3-dimensional case. This problem can easily be cured if the spectral
density of an empty reference box of thesamesize (radiusR) is subtracted (see
figure 34.2). Then all the divergences linked to the increasing radiusR in the
limit R → ∞ drop out of the difference. Furthermore, in the limitR → ∞ the
energy-eigenfunctions of the box are only normalizable as adelta distribution,
similarly to a plane wave. So we seem to recover a continous spectrum. Still the
problem remains that the wave functions do not discriminatebetween incoming
and outgoing waves, whereas this symmetry, namely the hermiticity, is broken in
the scattering problem. The last problem can be tackled if wereplace the spectral
density over discrete delta distributions by a smoothed spectral density with a
small finite imaginary partη in the energyE:

d(E + iη; R) ≡
1

i 2π

∑

n

{

1
E − En(R) − iη

−
1

E − En(R) + iη

}

. (34.16)

Note thatd(E + iη; R) , d(E − iη; R) = −d(E + iη; R). By the introduction of the
positivefinite imaginary partη the time-dependent behavior of the wave function
has effectively been altered from an oscillating one to a decaying one and the
hermiticity of the Hamiltonian is removed. Finally the limit η→ 0 can be carried
out, respecting the order of the limiting procedures. First, the limit R→ ∞ has
to be performed for afinite value ofη, only then the limitη → 0 is allowed. In
practice, one can try to work with a finite value ofR, but then it will turn out (see
below) that the scattering system is only recovered ifR

√
η≫ 1.

Let us summarize the relation between the smoothed spectraldensitiesd(E +
iη; R) of the boxed potential andd(0)(E+ iη; R) of the empty reference system and
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theS matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(

d(E+iη; R) − d(0)(E+iη; R)
)

=
1

2πi
Tr

[

S†(E)
d

dE
S(E)

]

=
1

2πi
Tr

d
dE

ln S(E) =
1

2πi
d

dE
ln detS(E) . (34.17)

This is theKrein-Friedel-Lloyd formula. It replaces the scattering problem by
the difference of two bounded reference billiards of the same radiusR which
finally will be taken to infinity. The first billiard contains the scattering region
or potentials, whereas the other does not (see figure34.2). Here d(E + iη; R)
andd(0)(E + iη; R) are thesmoothedspectral densities in the presence or in the
absence of the scatterers, respectively. In the semiclassical approximation, they
are replaced by a Weyl term (33.10) and an oscillating sum over periodic orbits.
As in (33.2), the trace formula (34.17) can be integrated to give a relation between
the smoothed staircase functions and the determinant of theS-matrix:

lim
η→+0

lim
R→∞

(

N(E+iη; R) − N(0)(E+iη; R)
)

=
1

2πi
ln detS(E) . (34.18)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the energy
argumentE + iη can be replaced by the wavenumber argumentk + iη′. These
expressions only make sense for wavenumbers on or above the real k-axis. In
particular, ifk is chosen to be real,η′ must be greater than zero. Otherwise, the
exact left hand sides (34.18) and (34.17) would give discontinuous staircase or
even delta function sums, respectively, whereas the right hand sides are continuous
to start with, since they can be expressed by continuous phase shifts. Thus the
order of the two limits in (34.18) and (34.17) is essential.

The necessity of the+iη prescription can also be understood by purely phenomenological
considerations in the semiclassical approximation: Without theiη term there is no
reason why one should be able to neglect spurious periodic orbits which are there
solely because of the introduction of the confining boundary. The subtraction of
the second (empty) reference system removes those spuriousperiodic orbits which
never encounter the scattering region – in addition to the removal of the divergent
Weyl term contributions in the limitR→ ∞. The periodic orbits that encounter
both the scattering region and the external wall would stillsurvive the first limit
R → ∞, if they were not exponentially suppressed by the+iη term because of
their

eiL(R)
√

2m(E+iη)
= eiL(R)k e−L(R)η′

behavior. As the lengthL(R) of a spurious periodic orbit grows linearly with the
radiusR. The boundRη′ ≫ 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container if theKrein-Friedel-Lloyd
formulas (34.17) and (34.18) are evaluated at a finite value ofR.

[exercise 34.1]

Finally, the semiclassical approximation can also help us in the interpretation
of the Weyl term contributions for scattering problems. In scattering problems

scattering - 29dec2004.tex



CHAPTER 34. QUANTUM SCATTERING 566

the Weyl term appears with a negative sign. The reason is the subtraction of
the empty container from the container with the potential. If the potential is
a dispersing billiard system (or a finite collection of dispersing billiards), we
expect an excluded volume (or the sum of excluded volumes) relative to the empty
container. In other words, the Weyl term contribution of theempty container
is larger than of the filled one and therefore a negative net contribution is left
over. Second, if the scattering potential is a collection ofa finite number of non-
overlapping scattering regions, the Krein-Friedel-Lloydformulas show that the
corresponding Weyl contributions are completely independent of the position of
the single scatterers, as long as these do not overlap.

34.4 Wigner time delay

The term d
dE ln detS in the density formula (34.17) is dimensionally time. This

suggests another, physically important interpretation ofsuch formulas for scattering
systems, the Wigner delay, defined as

d(k) =
d
dk

Argdet (S(k))

= −i
d
dk

log det (S(k)

= −i tr

(

S†(k)
dS
dk

(k)

)

(34.19)

and can be shown to equal the total delay of a wave packet in a scattering system.
We now review this fact.

A related quantity is the total scatteringphase shiftΘ(k) defined as

detS(k) = e+i Θ(k) ,

so thatd(k) = d
dkΘ(k).

The time delay may be both positive and negative, reflecting attractive respectively
repulsive features of the scattering system. To elucidate the connection between
the scattering determinant and the time delay we study a plane wave:

The phase of a wave packet will have the form:

φ = ~k · ~x− ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if scattering
is present. The center of the wave packet will be determined by the principle of
stationary phase:

0 = dφ = d~k · ~x− dω t + dΘ .
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Hence the packet is located at

~x =
∂ω

∂~k
t −
∂Θ

∂~k
.

The first term is just the group velocity times the given timet. Thus the the packet
is retarded by a length given by the derivative of the phase shift with respect to the
wave vector~k. The arrival of the wave packet at the position~x will therefore be
delayed. Thistime delaycan similarly be found as

τ(ω) =
∂Θ(ω)
∂ω

.

To show this we introduce theslownessof the phase~s= ~k/ω for which~s ·~vg = 1,
where~vg is the group velocity to get

d~k · ~x = ~s · ~x dω =
x
vg

dω ,

since we may assume~x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x
vg
+
∂Θ(ω)
∂ω

.

If the scattering matrix is not diagonal, one interprets

∆ti j = Re

(

−i S−1
ij

∂Sij

∂ω

)

= Re

(

∂Θij

∂ω

)

as the delay in thejth scattering channel after an injection in theith. The probability
for appearing in channelj goes as|Si j |2 and therefore the average delay for the
incoming states in channeli is

〈∆ti〉 =
∑

j

|Si j |2∆ti j = Re (−i
∑

j

S∗ij
∂Sij

∂ω
) = Re (−i S† · ∂S

∂ω
)ii

= −i

(

S† · ∂S
∂ω

)

ii
,

where we have used the derivative,∂/∂ω, of the unitarity relationS · S† = 1 valid
for real frequencies. This discussion can in particular be made for wave packets
related to partial waves and superpositions of these like anincoming plane wave
corresponding to free motion. The total Wigner delay therefore corresponds to the
sum over all channel delays (34.19).
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Commentary

Remark 34.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [1], sections
3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s thesis [15] (appendix)
discusses the Levison Theorem.

It helps to start with a toy example or simplified example instead of the general
theorem, namely for the radially symmetric potential in a symmetric cavity. Have a look
at the book of K. Huang, chapter 10 (on the ”second virial coefficient”), or Beth and
Uhlenbeck [5], or Friedel [7]. These results for the correction to the density of states are
particular cases of the Krein formula [3]. The Krein-Friedel-Lloyd formula (34.17) was
derived in refs. [3, 7, 8, 9], see also refs. [11, 14, 15, 17, 18]. The original papers are by
Krein and Birman [3, 4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [16]. Page
16 discusses the Beth-Uhlenbeck formula [5], the predecessor of the more general Krein
formula for spherical cases.

Remark 34.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of the filled one and therefore a negative
net contribution is left over, see ref. [15].

Remark 34.3 Wigner time delay. Wigner time delay and the Wigner-Smith time delay
matrix, are powerful concepts for a statistical description of scattering. The diagonal
elementsQaa of the lifetime matrixQ = −iS−1∂S/∂ω, whereS is the [2N×2N] scattering
matrix, are interpreted in terms of the time spent in the scattering region by a wave packet
incident in one channel. As shown by Smith [26], they are the sum over all ouput
channels (both in reflection and transmission) of∆tab = Re [(−i/Sab)(∂Sab/∂ω)] weighted
by the probability of emerging from that channel. The sum of theQaa over all 2N channels
is the Wigner time delayτW =

∑

a Qaa, which is the trace of the lifetime matrix and is
proportional to the density of states.

Exercises

34.1. Spurious orbits under the Krein-Friedel-Lloyd
contruction. Draw examples for the three
types of period orbits under the Krein-Friedel-Lloyd
construction: (a) the genuine periodic orbits of the
scattering region, (b) spurious periodic orbits which can
be removed by the subtraction of the reference system,
(c) spurious periodic orbits which cannot be removed
by this subtraction. What is the role of the double limit
η→ 0, container sizeb→ ∞?

34.2. The one-disk scattering wave function. Derive the
one-disk scattering wave function.

(Andreas Wirzba)

34.3. Quantum two-disk scattering. Compute the
quasiclassical spectral determinant

Z(ε) =
∏

p, j,l















1−
tp

Λ
j+2l
p















j+1

for the two disk problem. Use the geometry
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The full quantum mechanical version of this problem
can be solved by finding the zeros ink for the

determinant of the matrix

Mm,n = δm,n +
(−1)n

2
Jm(ka)

H(1)
n (ka)

(

H(1)
m−n(kR) + (−1)nH

where Jn is the nth Bessel function andH(1)
n is the

Hankel function of the first kind. Find the zeros of the
determinant closest to the origin by solving detM(k) =
0. (Hints: notice the structureM = I +A to approximate
the determinant; or readChaos2, 79 (1992))

34.4. Pinball topological index. Upgrade your pinball
simulator so that it computes the topological index for
each orbit it finds.
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