Chapter 34

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanovi¢ and N. Whelan)

consideration is bound. As we shall now see, we are in luok séimiclassics

of bound systems is all we need to understand the semicdafsiopen,
scattering systems as well. We start by a brief review of tentum theory of
elastic scattering of a point particle from a (repulsivegmtial, and then develop
the connection to the standard Gutzwiller theory for boursiesns. We do this in
two steps - first, a heuristic derivation which helps us usi@ded in what sense
density of states is “density,” and then we sketch a genegdlation of the
central result of the spectral theory of quantum scattetimgKrein-Friedel-Lloyd
formula. The end result is that we establish a connectiowdsst the scattering
resonances (both positions and widths) of an open quantsterayand the poles
of the trace of the Green function, which we learned to araiyzarlier chapters.

S raR the trace formulas have been derived assuming that thensystder

34.1 Density of states

For a scattering problem the density of stat86.{8 appear ill defined since
formulas such as3@.6) involve integration over infinite spatial extent. What we
will now show is that a quantity that makes sense physicallthé diference of
two densities - the first with the scatterer present and tbensbwith the scatterer
absent.

In non-relativistic dynamics the relative motion can beasefed from the
center-of-mass motion. Therefore the elastic scatterfrigv@ particles can be
treated as the scattering of one particle from a static piatev{q). We will study
the scattering of a point-particle of (reduced) masby a short-range potential
V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
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slowly as a function of) so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose #patial coordinate
frame freely, it is advisable to place its origin somewheearnthe geometrical
center of the potential. The scattering problem is solved,scattering solution
to the time-independent Schrodinger equati®d.§)

w9
(e * V(@) = E0@ (34.)

can be constructed. Hefeis the energyg = 7K the initial momentum of the
particle, andk the corresponding wave vector.

When the argument = |g| of the wave function is large compared to the
typical sizea of the scattering region, the Schrodinger equatiteatively becomes
a free particle equation because of the short-range nafutieeqpotential. In
the asymptotic domaim > a, the solutiongy(q) of (34.1) can be written as
superposition of ingoing and outgoing solutions of the foeeticle Schrodinger
equation for fixed angular momentum:

#(@) = AsO)(q) + Bp™(g),  (+ boundary conditions)

where in 1-dimensional problems)(q), ¢(*)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering probta “incoming,” “outgoing”
radial waves, with the constant matric&sB fixed by the boundary conditions.
What are the boundary conditions? The scatterer can modifythe outgoing
waves (see figurg4.1), since the incoming ones, by definition, have yet to enaunt
the scattering region. This defines the quantum mechargedtesing matrix, or
theS matrix

#m(r) = ¢5(1) + SmmetD(r) . (34.2)

All scattering éfects are incorporated in the deviation®from the unit matrix,
the transition matrixi

S=1-iT. (34.3)

For concreteness, we have specialized to two dimensidghsuaih the final formula
is true for arbitrary dimensions. The indicesandn are the angular momenta
quantum numbers for the incoming and outgoing state of tla¢tesing wave
function, labeling theS-matrix elementsSy,y. More generally, given a set of
quantum numberg, y, the S matrix is a collectionSg, of transition amplitudes

B — y normalized such thaS,|? is the probability of theg — y transition. The
total probability that the ingoing stafeends up in some outgoing state must add
up to unity

DlspP=1, (34.4)
Y
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Figure 34.1: (a) Incoming spherical waves

running

of outgoing spherical waves scattered from an

obstacle.
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into an obstacle. (b) Superposition

@

(b)
so theS matrix is unitary:SfS =SS’ = 1.

We have already encountered a solution to the 2-dimensfmodlem; free
particle propagation Green’s functioB2 49 is a radial solution, given in terms
of the Hankel function

Go(r.0.E) = 55 HS (ko).

where we have usesy(r, 0, E)/% = kr for the action. Thenth angular momentum
eigenfunction is proportional m(ﬁ)(q) oc Hﬁni)(kr), and given a potential (g) we
can in principle compute the infinity of matrix elemei@gn;. We will not need
much information abodt-l,(ﬁ,)(kr). other than that for largeits asymptotic form is

H* o e+ikr

In general, the potentidl(q) is not radially symmetric and3¢.1) has to be
solved numerically, by explicit integration, or by diagtimg a large matrix in
a specific basis. To simplify things a bit, we assume for theetbeing that a
radially symmetric scatterer is centered at the origin; fthal formula will be
true for arbitrary asymmetric potentials. Then the sohdiof the Schrodinger
equation B0.5 are separablegm(q) = #(r)e™, r = |q|, the scattering matrix
cannot mix dfferent angular momentum eigenstates, & diagonal in the
radial basis 4.2 with matrix elements given by

Sim(k) = e2on®), (34.5)

The matrix is unitary so in a diagonal basis all entries are phases. This means
that an incoming state of the forhlf{)(kr)eim" gets scattered into an outgoing state
of the formSm(k)Hﬁ,T)(kr)eimg, whereHﬁf)(z) are incoming and outgoing Hankel
functions respectively. We now embed the scatterer in aiiefgylindrical well

of radiusR, and will later takeR — co. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresptmsome value ah.
For larger > a each eigenstate is of the asymptotically free form

Q

()~ €™ (SmHE (kr) + HE (k)

---coskr + m(K) — xm) » (34.6)

Q
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b "

Figure 34.2:  The “difference” of two boundedf‘ ® ".

reference systems, one with and one without the
scattering system.

where-: - - is a common prefactor, angh = mr/2+n/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions thiéitplay no role in
what follows.

The state 4.6) must satisfy the external boundary condition that it viargs
r = R. This implies the quantization condition

kaR+ 6m(kn) —xm =7 (n+12) .

We now ask for the dierence in the eigenvalues of two consecutive states of
fixedm. SinceRis large, the density of states is high, and the pl#agk) does
not change much over such a small interval. Therefore, @ingeorder we can
include the &ect of the change of the phase on statel by Taylor expanding. is

kne1R + Sm(Kkn) + (Kns1 — Kn)om(kn) = xm ~ 7 + 7(n + 12).

Taking the dfference of the two equations we obtaik ~ (R + §j,(k))"*. This
is the eigenvalue spacing which we now interpret as the $avef the density of
states withirm angular momentum sbuspace

dm(k) = 7% (R+61,(K)) -

TheRterm is essentially the 2 d Weyl term 33.8), appropriate to + d radial
guantization. For largR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative ofghattering phase shift,
approximation accurate to ordefR. However, not all is well: the area under
consideration tends to infinity. We regularize this by satting from the result
from the free particle density of statdg(k), for the same size container, but this
time without any scatterer, figufit.2 We also sum over ath values so that

1 1 d
d(k) ~ do(K) = %mo = 5 zm] S10gSm

- Ly (sT d—s). (34.7)

The first line follows from the definition of the phase shiftg (5 while the second
line follows from the unitarity ofS so thatS—! = S*. We can now take the limit
R — oo since theR dependence has been cancelled away.
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This is essentially what we want to prove since for the lefachaide we
already have the semiclassical theory for the trace of ttferdnce of Green’s
functions,

d(k) — do(k) = —%(lm (tr (G(K) - Go(K)) - (34.8)

There are a number of generalizations. This can be done imamjper of
dimensions. It is also more common to do this as a functionnefgy and not
wave numbek. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumbég we have adaptell as the natural variable in the
above discussion.

Finally, we state without proof that the relatiod¥(7) applies even when there
is no circular symmetry. The proof is morefittult since one cannot appeal to the
phase shift$, but must work directly with a non-diagon8l matrix.

34.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there @naection between the
scattering matrix and the trace of the quantum Green'’s iomg¢more formally
between the dierence of the Green’s function with and without the scatteri
center.) We now show how this connection can be derived in g migorous
manner. We will also work in terms of the enerByrather than the wavenumber
k, since this is the more usual exposition. Suppose particlesact via forces of
sufficiently short range, so that in the remote past they werelieeadarticle state
labeleds, and in the distant future they will likewise be free, in astmbeledy.

In the Heisenberg picture ti&-matrix is defined a$ = Q,Qi in terms of the
Mgller operators

Q. = lim ht/igriHot/h (34.9)

t—+oo

where H is the full Hamiltonian, whereasly is the free Hamiltonian. In the
interaction picture th&-matrix is given by

S

QZQ, — |im gHot/ng-2iHt/ngHot/n
t—oo

T exp(—i f :0 dtH’(t)) , (34.10)

whereH’ =V = H — Hg is the interaction Hamiltonian andis the time-ordering
operator. In stationary scattering theory tenatrix has the following spectral
representation

S = fde S(E)6(Ho — E)
0
S(E) = Q.(E)Q-YE), Q.(E)=1+(Ho-E=xie)tV, (34.11)

scattering - 29dec2004.tex

CHAPTER 34. QUANTUM SCATTERING 563

such that

1 B 1
Ho—-E-ie H-E-ie

Tr [ST(E)d—C:ES(E)] = Trl —(e & —€)| .(34.12)

The manipulations leading t84.12 are justified if the operator€..(E) can be
linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formulaich is the
central result of this chapter. The Krein-Lloyd formula yides the connection
between the trace of the Green’s function and the poles af¢htering matrix,
implicit in all of the trace formulas for open quantum syssemhich will be
presented in the subsequent chapters.

34.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics ftiesog problems is
provided by the semiclassical limit of the Krein-Frieddéyd sum for the spectral
density which we now derive. This derivation builds on theutts of the last
section and extends the discussion of the opening section.

In chapter32 we linked the spectral density (s€(18) of a bounded system

d(E) = Z §(En - E) (34.13)

n

via the identity

1 1
0 -8) = -lm ime—e T
- —En
1 1
= —lim = Im(Ey|]=————|E
iy = "Ml e e B
1 1 1
= —i E — — —|E 34.14
ol e'_r%< "[E-H-ic E-H+ic "> (34.14)

to the trace of the Green'’s functioB3.1.]). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is giverth® Gutzwiller trace
formula (33.17) in terms of a smooth Weyl term and an oscillating contrityutof
periodic orbits.

Therefore, the task of constructing the semiclassics oa#esing system is
completed, if we can find a connection between the spectraityed(E) and
the scattering matriXs. We will see that 84.12 provides the clue. Note that
the right hand side of34.12 has nearly the structure 084.14 when the latter
is inserted into §4.13. The principal diference between these two types of
equations is that th8 matrix refers tooutgoingscattering wave functions which
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CHAPTER 34. QUANTUM SCATTERING 564

are not normalizable and which have@ntinuousspectrum, whereas the spectral
densityd(E) refers to a bound system with normalizable wave functioith &
discrete spectrum. Furthermore, the bound system is diesizad by ehermitian
operator, the Hamiltoniakl, whereas the scattering system is characterized by a
unitary operator, theS-matrix. How can we reconcile these completelffefient
classes of wave functions, operators and spectra? Thediickput our scattering
system into a finite box as in the opening section. We choopbexisal conatiner
with radiusR and with its center at the center of our finite scatteringesystOur
scattering potentia¥/ () will be unaltered within the box, whereas at the box walls
we will choose an infinitely high potential, with the Dirietlboundary conditions
at the outside of the box:

¢(Mlr=r=0. (34.15)

In this way, for any finite value of the radilR of the box, we have mapped
our scattering system into a bound system with a spectradityet(E; R) over
discrete eigenenergi&s,(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which exphaimg the Coulomb
potential requires special care.) The hope is that in th& IRn— o we will
recover the scattering system. But some care is requirechpeimenting this.
The smooth Weyl terrd(E; R) belonging to our box with the enclosed potental
diverges for a spherical 2-dimensional box of radRiguadratically, agR?/(4x)
or asR® in the 3-dimensional case. This problem can easily be ctited spectral
density of an empty reference box of themesize (radiusR) is subtracted (see
figure 34.2). Then all the divergences linked to the increasing radiua the
limit R — oo drop out of the dierence. Furthermore, in the linfR — oo the
energy-eigenfunctions of the box are only normalizable aglta distribution,
similarly to a plane wave. So we seem to recover a continoestspn. Still the
problem remains that the wave functions do not discrimitetisveen incoming
and outgoing waves, whereas this symmetry, namely the tieityiis broken in
the scattering problem. The last problem can be tackled ifepkace the spectral
density over discrete delta distributions by a smoothedtspledensity with a
small finite imaginary par in the energyE:

o 1 1
AE R = @;{E— ER -1 E- En(R)+in} - 19

Note thatd(E + in; R) # d(E — in; R) = —d(E + in; R). By the introduction of the
positivefinite imaginary part; the time-dependent behavior of the wave function
has dfectively been altered from an oscillating one to a decaying and the
hermiticity of the Hamiltonian is removed. Finally the limji — O can be carried
out, respecting the order of the limiting procedures. Fit& limit R — o has

to be performed for &inite value ofn, only then the limit; — 0 is allowed. In
practice, one can try to work with a finite valueRfbut then it will turn out (see
below) that the scattering system is only recoverelyfi > 1.

Let us summarize the relation between the smoothed spéetnaitiesd(E +
in; R) of the boxed potential and{®(E + iz; R) of the empty reference system and
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the S matrix of the corresponding scattering system:

lim lim (d(E+in; R) - dO(E+in; R))

n—+0R—0c0

1 d
T [s (E)ES(E)]

1_d 1 d
= 5 TrENSE) = o= J=idetSE). (34.17)

This is theKrein-Friedel-Lloyd formula It replaces the scattering problem by
the diference of two bounded reference billiards of the same raiughich
finally will be taken to infinity. The first billiard containsé scattering region
or potentials, whereas the other does not (see figdr®. Hered(E + in; R)
andd@(E + in; R) are thesmoothedspectral densities in the presence or in the
absence of the scatterers, respectively. In the semicisgpproximation, they
are replaced by a Weyl tern3%.10 and an oscillating sum over periodic orbits.
As in (33.2), the trace formula34.17) can be integrated to give a relation between
the smoothed staircase functions and the determinant &-thatrix:

lim _lim (N(E+in; R) - NOE+im; R) = %IndetS(E). (34.18)

n—+0R—c0

Furthermore, in both versions of the Krein-Friedel-Lloyatriulas the energy
argumentE + in can be replaced by the wavenumber argunientin’. These
expressions only make sense for wavenumbers on or abovedhk-axis. In
particular, ifk is chosen to be realy’ must be greater than zero. Otherwise, the
exact left hand sides34.19 and 4.17) would give discontinuous staircase or
even delta function sums, respectively, whereas the righd Isides are continuous
to start with, since they can be expressed by continuousep$tafis. Thus the
order of the two limits in 84.18 and @4.17) is essential.

The necessity of thein prescription can also be understood by purely phenomeiwaliog

considerations in the semiclassical approximation: Wittbein term there is no
reason why one should be able to neglect spurious perioditsavhich are there
solely because of the introduction of the confining bounddiye subtraction of
the second (empty) reference system removes those sppedosdic orbits which
never encounter the scattering region — in addition to threoxal of the divergent
Weyl term contributions in the limiR — oo. The periodic orbits that encounter
both the scattering region and the external wall would stilivive the first limit
R — oo, if they were not exponentially suppressed by #ig term because of
their

LR V2m(E+in) _ JLRK o LRI

behavior. As the length(R) of a spurious periodic orbit grows linearly with the
radiusR. The boundRyy’ > 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container ifKngin-Friedel-Lloyd
formulas B4.17) and 34.19 are evaluated at a finite value Rf

Finally, the semiclassical approximation can also helpwutbé interpretation
of the Weyl term contributions for scattering problems. &attering problems
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the Weyl term appears with a negative sign. The reason isuhgagtion of

the empty container from the container with the potentidfl.thé potential is
a dispersing billiard system (or a finite collection of dispeg billiards), we
expect an excluded volume (or the sum of excluded volumét)we to the empty
container. In other words, the Weyl term contribution of #mepty container
is larger than of the filled one and therefore a negative netriboition is left

over. Second, if the scattering potential is a collectiom éihite number of non-
overlapping scattering regions, the Krein-Friedel-Lidypdmulas show that the
corresponding Weyl contributions are completely indeenaf the position of
the single scatterers, as long as these do not overlap.

34.4 Wigner timedelay

The term £ IndetS in the density formula34.17) is dimensionally time. This
suggests another physically important interpretatiosueh formulas for scattering
systems, the Wigner delay, defined as

iArgdet (k)

= dk Iog det S(k)

= —itr (s‘ K= (k)) (34.19)

d(k)

and can be shown to equal the total delay of a wave packet iateesng system.
We now review this fact.

A related quantity is the total scatteripbase shif®(k) defined as
detS(k) = 0K |

so thatd(k) = £O(K).

The time delay may be both positive and negative, reflectingaiive respectively
repulsive features of the scattering system. To elucideeconnection between
the scattering determinant and the time delay we study aplave:

The phase of a wave packet will have the form:
p=K-R-wt + 0.

Here the term in the parenthesis refers to the phase shifttthaccur if scattering
is present. The center of the wave packet will be determiryetthdd principle of
stationary phase:

O0=d¢ =dk-X—dwt + dO.
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Hence the packet is located at

_Ow, 00
K ok

The first term is just the group velocity times the given tim&hus the the packet
is retarded by a length given by the derivative of the phagewith respect to the
wave vectork. The arrival of the wave packet at the positigmvill therefore be

delayed. Thigime delay can similarly be found as

() = 0®(w)

To show this we introduce thelownessf the phases = k/w for which §- Vg = 1
wherevy is the group velocity to get

dk- %= & Xdw = = dw,
Vg

since we may assumg is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

X 6®(w)
t=— .
Vg ow

If the scattering matrix is not diagonal, one interprets

(9 e
Aty = Re( is;t S’) Re(—”)
ow

as the delay in thg¢th scattering channel after an injection in ttie The probability
for appearing in channgl goes agS;j|? and therefore the average delay for the
incoming states in channels

S
(At) = ZJ:lS.JIZAt.J_Re(lz ”5 =Re(is'- —w)"

)

where we have used the derivatidégw, of the unitarity relatiors- S' = 1 valid
for real frequencies. This discussion can in particular laelenfor wave packets
related to partial waves and superpositions of these like@ming plane wave
corresponding to free motion. The total Wigner delay treetorresponds to the
sum over all channel delay34.19.
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EXERCISES 568
Commentary

Remark 34.1 Krein-Friedel-Lloyd formula. The third volume of Thirring ], sections
3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Safsethesis [ 5] (appendix)
discusses the Levison Theorem.

It helps to start with a toy example or simplified example éast of the general
theorem, namely for the radially symmetric potential in engyetric cavity. Have a look
at the book of K. Huang, chapter 10 (on the "second virialfitcoient”), or Beth and
Uhlenbeck ], or Friedel [7]. These results for the correction to the density of states a
particular cases of the Krein formul2][ The Krein-Friedel-Lloyd formula34.17) was
derived in refs. §, 7, 8, 9], see also refs.1[1, 14, 15, 17, 18]. The original papers are by
Krein and Birman §, 4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Caséfiiect [L6]. Page
16 discusses the Beth-Uhlenbeck formulfp fhe predecessor of the more general Krein
formula for spherical cases.

Remark 34.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of theéllbne and therefore a negative
net contribution is left over, see ref.q].

Remark 34.3 Wigner time delay. Wigner time delay and the Wigner-Smith time delay
matrix, are powerful concepts for a statistical descriptid scattering. The diagonal
elementsQ,, of the lifetime matrixQ = —iS19S/dw, whereSis the [2Nx2N] scattering
matrix, are interpreted in terms of the time spent in thetedag region by a wave packet
incident in one channel.  As shown by Smithd], they are the sum over all ouput
channels (both in reflection and transmissionAf, = Re [(—i/Sap)(San/dw)] weighted
by the probability of emerging from that channel. The sunhefQ., over all 2N channels

is the Wigner time delayw = Y Qaa, Which is the trace of the lifetime matrix and is
proportional to the density of states.

Exercises

34.1. Spurious orbits under the Krein-Friedel-Lloyd 34.2. The one-disk scattering wave function.  Derive the
contruction. Draw examples for the three one-disk scattering wave function.
types of period orbits under the Krein-Friedel-Lloyd (Andreas Wirzba)
construction: (a) the genuine periodic orbits of th
; . ) o ] . Compute the
scattering region, (b) spurious periodic orbits which cal
be removed by the subtraction of the reference system,

4.3. Quantum two-disk scattering.
quasiclassical spectral determinant

(c) spurious periodic orbits which cannot be removed tp i+l
by this subtraction. What is the role of the double limit Z(e) = l—[ [1 - W]
n — 0, container sizé — «o? p.jl p

for the two disk problem. Use the geometry
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determinant of the matrix

1) Inka)
2 H(ka)

M = 6o + (HRWKR + (1)

where J, is the nth Bessel function and-lﬁ,l) is the

Hankel function of the first kind. Find the zeros of

determinant closest to the origin by solving dk) =

R 0. (Hints: notice the structud = | + Ato approxima
the determinant; or readhaos2, 79 (1992))

34.4. Pinball topological index. Upgrade your pinb:s
The full quantum mechanical version of this problem simulator so that it computes the topological inde;
can be solved by finding the zeros i for the each orbit it finds.
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