Chapter 27

Relaxation for cyclists

YCLES, i.€., solutions of the periodic orbit conditionZ.1)
¥ T = f'(x), T>0 (27.1)

are prerequisite to chaptefi$s and 17 evaluation of spectra of classical
evolution operators.Chaptég offered an introductory, hands-on guide to
extraction of periodic orbits by means of the Newton-Raphswthod.
Here we take a very fferent tack, drawing inspiration from variational prineipl
of classical mechanics, and path integrals of quantum nmécha

In sect.12.2.1we converted orbits unstable forward in time into orbitbkta
backwards in time. Indeed, all methods for finding unstaptdes are based on
the idea of constructing a new dynamical system such théte position of the
cycle is the same for the original system and the transforomed (i) the unstable
cycle in the original system is a stable cycle of the tramsft system.

The Newton-Raphson method for determining a fixed pwirfor a mapx’ =
f(x) is an example. The method replaces iterationf ©f) by iteration of the
Newton-Raphson maf2.5

—— . — A l .
X = (9 = % - (W)” (19 - (272)

A fixed pointx. for a mapf(x) is also a fixed point of(x), indeed a superstable
fixed point sincedg;(x.)/0x; = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chaptdr2 that methods that start with initial guesses
for a number of points along a cycle are considerably moreisoland safer
than searches based on direct solution of the fixed-poinditon (27.1). The
relaxation (or variational) methods that we shall now diésctake this multipoint
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approach to its logical extreme, and start by a guess of neivepbints along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the dgs@ealdic orbit
looks like globally, and then use variational methods twelthe initial guess
toward the exact solution. Sacrificing computer memory fiustness of the
method, we replace a guess thap@int is on the periodic orbit by a guess of
the entire orbit And, sacrificing speed for safety, in se2f.1we replace the
Newton-Raphsoiteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the trues #dong a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and itsbplic dynamics,
or have already found a set of short cycles, you might be aldertstruct an initial
approximation to a longer cyclp as a sequence ™ points 10), igo), e iﬁ))
with the periodic boundary conditioxy;1 = X. Suppose you have an iterative
method for improving your guess; afteiterations the cost function

N

#6348 - 16 @3

or some other more cleverly constructed function (for étzdsnechanics - action)
is a measure of the deviation of tkidn approximate cycle from the true cycle. This
observation motivates variational approaches to deténgicycles.

We give here three examples of such methods, two for mapspaador
billiards. In sect27.1we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing &etliential flow for which
the desired fixed point is an attracting equilibrium pointoivihg differential
equations can be time intensive, so in sé¢t2we replace such flows by discrete
iterations. In sect27.3we show that for B-dimensional billiard flows variation
of D coordinates (wher® is the number of Hamiltonian degrees of freedom)
suffices to determine cycles in the fulD2dimensional phase space.

27.1 Fictitious time relaxation

(0. Biham, C. Chandre and P. Cvitanovic)

The relaxation (or gradient) algorithm for finding cycleb&sed on the observation
that a trajectory of a map such as the Henon n&apd,

%1 = 1-ad+by
Visl = X, (27.4)

is a stationary solution of the relaxation dynamics defingthk flow
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Vi)
Figure 27.1: “Potential” Vi(x) (27.7) for a typical
point along an initial guess trajectory. For = +1 \.
the flow is toward the local maximum &£(x), and for
o = —1 toward the local minimum. A large deviation
of x’s is needed to destabilize a trajectory passing
through such local extremum ¥f(x), hence the basin

of attraction is expected to be large.

%:vi, i=L....n (27.5)
dr

for any vector fieldv; = vi(xX) which vanishes on the trajectory. Heres a
“fictitious time” variable, unrelated to the dynamical tirtia this example, the
discrete time of map iteration). As the simplest exampke ¥ato be the deviation
of an approximate trajectory from the exact 2-step recegdorm of the Hénon
map .19

Vi = %ip1 — 1+ ax - bx_g. (27.6)

For fixed x_1, Xi+1 there are two values of satisfyingv; = 0. These solutions
are the two extremal points of a local “potential” functiaro(sum on)

V=SV V9 = Xk - b - 1)+ 56 (27.7)

Assuming that the two extremal points are real, one is a lsgaimum of V;(x)
and the other is a local maximum. Now here is the idea; refl2ce) by

%:mvi, i:1,...,n, (27.8)
dr

whereo; = +1.

The modified flow will be in the direction of the extremal pogiven by the
local maximum ofV;(x) if o = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we take = —1. This is not quite what
happens in solving27.8 - all x; andV;(x) change at each integration step - but
this is the observation that motivates the method. Tiemintial equations2(7.8
then drive an approximate initial guess toward the exagdtary. A sketch of
the landscape in whicly converges towards the proper fixed point is given in
figure 27.1 As the “potential” function 27.7) is not bounded for a large;|, the
flow diverges for initial guesses which are too distant frdra true trajectory.
However, the basin of attraction of initial guesses thatveaye to a given cycle is
nevertheless very large, with the spread in acceptableligitesses for figurg7.1
of order 1, in contrast to the exponential precision regLiéinitial guesses by
the Newton-Raphson method.

relax - 29mar2004.tex

CHAPTER 27. RELAXATION FOR CYCLISTS 467

15
N
05 Y
Ay,
AN
Z
05 s
. - -
Figure 27.2: The repeller for the Henon map at= i
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Example 27.1 Hénon map cycles. Our aim in this calculation is to find all periodic

orbits of period n for the Hénon map (27.4), in principle at most 2" orbits. We start by
choosing an initial guess trajectory (X1, Xz, - - -, Xn) and impose the periodic boundary
condition X,+1 = X1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is x; = 0 for all i. In order to find a given orbit one sets
o = —1 for all iterates i which are local minima of Vi(X), and o = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 10.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |X| is not
too large compared to 1/ +/a. Figure 27.1 gives some indication of a typical basin of
attraction of the method (see also figure 27.3).

The calculation is carried out by solving the set of n ordinary differential equations
(27.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1) until
V| becomes smaller than a given value € (in a typical calculation & ~ 10°7). Empirically,
in the case that an orbit corresponding to the desired itinerary does not exist, the initial

uess escapes to infinity since the “potential” Vi(X) grows without bound.
g P Y P i g [exercise 27.3]

Applied to the Hénon map at the Hénon's parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 100Q All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 27.1. The number of unstable periodic
orbits for periods n < 28 is given in table 27.1. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 10.1, we see that the pruning is quite
extensive, with the number of cycle points of period n growing as €*#%45" = (1.592)
rather than as 2".

As another example we plot all unstable periodic points up to period n = 14 for
a=18,b=03infigure 27.2. Comparing this repelling set with the strange attractor
for the Hénon's parameters figure 3.9, we note the existence of gaps in the set, cut out

by the preimages of the escaping regions. remark 27.2]

In practice, the relaxation flow (27.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the abd¥enon map
example is that instead of searching for an unstable periadiit of a map, one
searches for a stable attractor of a vector field. More gépewmnsider ad-
dimensional mapx’ = f(x) with a hyperbolic fixed poink.. Any fixed pointx, is
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Table 27.1: All prime cycles up to period 10 for the Henon maps 1.4 andb = 0.3. The
columns list the periody, the itinerary (defined in remak’ .4, a cycle pointyy, xp), and

the cycle Lyapunov exponenp = In|Ap|/n,. While most of the cycles havg, ~ 0.5,
several significantly do not. THecycle point is very unstable, isolated and transient fixed
point, with no other cycles returning close to it. At perid®idne finds a pair of cycles with
exceptionally low Lyapunov exponents. The cycles are cfosenost of the trajectory,
differing only in the one symbol corresponding to two cycle posttaddle the (partition)
fold of the attractor. As the system is not hyperbolic, thereo known lower bound on
cycle Lyapunov exponents, and the Hénon'’s strange “attramight some day turn out

to be nothing but a transient on the way to a periodic attraxftsome long period.

n P (Yo, %p) A

I 0 (-1.13135447, -1.13135447) 118167262
1 (0.63135447,0.63135447) 0.65427061

2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677, 0.63819399) 0.53908457
6 010111 -0.41515894 ,1.07011813 0.55610982
011111 -0.80421990, 0.44190995 0.55245341

7 0011101 -1.04667757, -0.17877958; 0.40998559
0011111 -1.08728604 , -0.28539206 0.46539757
0101111 -0.34267842, 1.14123046 0.41283650
0111111 -0.88050537, 0.26827759 0.51090634

8 00011101 -1.25487963, -0.82745422 0.43876727
00011111 -1.25872451,-0.83714168 0.43942101
00111101 -1.14931330, -0.48368863 0.47834615
00111111 -1.14078564 , -0.44837319 0.49353764
01010111 -0.52309999, 0.93830866 0.54805453
01011111 -0.38817041, 1.09945313 0.55972495
01111111 -0.83680827, 0.36978609 0.56236493

9 000111101 -1.27793296 , -0.90626780 0.38732115
000111111 -1.27771933, -0.90378859 0.39621864
001111101 -1.10392601, -0.34524675 0.51112950
001111111 -1.11352304, -0.36427104 0.51757012
010111111 -0.36894919, 1.11803210 0.54264571
011111111 -0.85789748, 0.32147653 0.56016658
10 0001111101 (-1.26640530, -0.86684837 0.47738235
0001111111 -1.26782752 , -0.86878943 0.47745508
0011111101 -1.12796804 , -0.41787432 0.52544529
0011111111 -1.12760083, -0.40742737 0.53063973
0101010111 -0.48815908 , 0.98458725 0.54989554
0101011111 -0.53496022 , 0.92336925 0.54960607
0101110111 -0.42726915, 1.05695851 0.54836764
0101111111 -0.37947780, 1.10801373 0.56915950
0111011111 -0.69555680, 0.66088560 0.54443884
0111111111 -0.84660200, 0.34750875 0.57591048

13 1110011101000 é—l.2085766485,—0.6729999948) 0.1e882
1110011101001 (-1.0598110494, -0.2056310390) 0.210r251

Table 27.2: The number of unstable periodic orbits of the Henon magferl.4,b = 0.3,
of all periodsn < 28. M, is the number of prime cycles of length andN, is the total
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0
Figure 27.3: Typical trajectories of the vector
field (27.9 for the stabilization of a hyperbolic fixed >
point of the lkeda map2(7.1]) located at X, y) =~
(0.532750.24689). The circle indicates the positior

of the fixed point. Note that the basin of attraction o
this fixed point is large, larger than the entire Iked ~

attractor. 0 x 1
by construction an equilibrium point of the fictitious timewi

X - x (27.9)
dr

If all eigenvalues of the fundamental matdgx.) = D f(x.) have real parts smaller
than unity, therx, is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than uhigyy one needs to
modify the vector field so that the corresponding directiofithe flow are turned
into stable directions in a neighborhood of the fixed pointthe spirit of £7.8),
modify the flow by

LT (27.10)
dr

whereC is a [dxd] invertible matrix. The aim is to turw, into a stable equilibrium
point of the flow by an appropriate choice 6f It can be shown that a set
of permutatiory reflection matrices with one and only one non-vanishingyentr
+1 per row or column (fod-dimensional systems, there a®? such matrices)
sufices to stabilize any fixed point. In practice, one choosesticpkar matrix

C, and the flow is integrated. For each choiceCofone or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 27.2 Ikeda map: We illustrate the method with the determination of the

periodic orbits of the lkeda map:

X =1+ a(xcosw — ysinw)
y' = a(xsinw + y cosw) (27.11)
where w="b- °

number of periodic points of periau(including repeats of shorter prime cycles).

28

16031

Np

69952
112452
177376
284042
449520

1+x2+y2’

witha = 0.9, b = 0.4, c = 6. The fixed point X, is located at (x,y) ~ (0.532750.24689)
with eigenvalues of the fundamental matrix (A1, A2) ~ (—2.3897 —0.3389) so the flow
is already stabilized with C = 1. Figure 27.3 depicts the flow of the vector field around
the fixed point X..

In order to determine X,, one needs to integrate the vector field (27.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
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-0.36 -0.36
Figure 27.4: Typical trajectories of the vector
field (27.10 for a hyperbolic fixed pointx,y) ~
(-0.13529 -0.37559) of {3, wheref is the lkeda
map @7.11). The circle indicates the position of X,
the fixed point. For the vector field corresponding
to (@) C = 1, x, is a hyperbolic equilibrium point -0.38 -0.38
of the flow, while for f) C = (39%), x. is an

attracting equilibrium point. (a) 0.2 “o1 (b) 02

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial

C matrices, different from the identity. Consider for example the hyperbolic fixed point

(x,y) = (-0.13529 -0.37559)of the third iterate f° of the Ikeda map. The flow of the

vector field for C = 1, Figure 27.4 (a), indicates a hyperbolic equilibrium point, while for

C= ( é fl) the flow of the vector field, figure 27.4 (b) indicates that x. is an attracting
equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searébecycles is
straightforward. In order to determine a prime cygle= (X1, X, ..., Xn) Of @
d-dimensional map< = f(x), we modify the multipoint shooting method of
sect.12.3 and consider thad-dimensional vector field

%‘ =C(f(N-x). (27.12)

where f(x) = (f(xn), f(x1), f(X2),..., f(Xr-1)), andC is an invertible fidx nd]
matrix. For the HEnon map, it is Bicient to consider a set of 2liagonal matrices
with eigenvaluest1. Risking a bit of confusion, we denote by f(x) both the
d-dimensional vectors in2(7.10, andnd-dimensional vectors in2(7.19, as the
structure of the equations is the same.

27.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteratidv () is that it requires very
precise initial guesses. For example, tith iterate of a unimodal map has as
many as 2 periodic points crammed into the unit interval, so deteation of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly 2. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie id-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation t#kdj of manually
turning instability into stability by a sign change, we najvgbandon the Newton-
Raphson method altogetheir) @bandon the continuous fictitious time flog27(9)
with its time-consuming integration, replacing it by a n@with a larger basin
of attraction (not restricted to a linear neighborhood effilxed point). The idea
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is to construct a very simple mayp a linear transformation of the originé| for
which the fixed point is stable. We replace the fundamentatixnprefactor in
(27.2 (whose inversion can be time-consuming) by a constantixnatefactor

X =g(X) = X+ ArC(f(X) — X), (27.13)

whereAr is a positive real number, ar@is a [dxd] permutation and reflection
matrix with one and only one non-vanishing entry per row or column. A fixed
point of f is also a fixed point of. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that foabAr — dr the
map @7.13 is the Euler method for integrating the modified floa7 (10, with
the integration stepr.

The argument why a suitable choice of mat@ixcan lead to the stabilization
of an unstable periodic orbit is similar to the one used tovate the construction
of the modified vector field in sec?7.1 Indeed, the flowZ7.8 is the simplest
example of this method, with the infinitesimal fictitious &nmcrementAr — dr,
the infinitesimal coordinate correctiox £ xX') — dx, and the fixn] diagonal
matrixC — o = +1.

For a given fixed point off (x) we again chose &€ such that the flow in the
expanding directions of(x.) is turned into a contracting flow. The aim is to
stabilizex, by a suitable choice d. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing theimé (in general
different for each unstable fixed point) and varying initial dbads for the map
g. For example, for 2-dimensional dissipative maps it canHmeve that the 3
matrices

o<{loz (o 2} o)}

suffice to stabilize all kinds of possible hyperbolic fixed points

[remark 27.3]

If At is chosen sfliciently small, the magnitude of the eigenvalues of the
fixed pointx, in the transformed system are smaller than one, and one halsla s
fixed point. HoweverAr should not be chosen too small: Since the convergence
is geometrical with a ratio + @At (where the value of constant depends on
the stability of the fixed point in the original system), shvat can slow down
the speed of convergence. The critical value\of which just sifices to make
the fixed point stable, can be reaff rom the quadratic equations relating the
stability codficients of the original system and those of the transformetesy. In
practice, one can find the optimat by iterating the dynamical system stabilized
with a givenC andAr. In general, all starting points converge on the attractor
providedAr is small enough. If this is not the case, the trajectory eitleerges
(if A7 is far too large) or it oscillates in a small section of theestgpace (it is
close to its stabilizing value).

The search for the fixed points is now straightforward: Atstgrpoint chosen
in the global neighborhood of the fixed point iterated with ttansformed dynamical
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systemg converges to the fixed point due to its stability. Numericaestigations

show that the domain of attraction of a stabilized fixed pa@ird rather extended
connected area, by no means confined to a linear neighbariAdtiches the basin

of attraction encompasses the complete state space ofithet@t so one can be
sure to be within the attracting basin of a fixed point regzssllof where on the
on the attractor on picks the initial condition.

The step sizég(x)— x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points ithigh precision,
one therefore needs a large number of iterations for thedi@jy which is already
in the linear neighborhood of the fixed point. To speed up tevergence of the
final part of the approach to a fixed point we recommend a caatibim of the
above approach with the Newton-Raphson mett&d. Table 27.3: All prime cycles up to 6 bounces for the 3-disk fundamentahedm, center-
to-center separatioR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalug,, and the length of the orbit (if the velocii this is the same as
its period or the action). Note that the two 6 cyc1011 and)01101 are degenerate
due to the time reversal symmetry, but are not related by &tyete spatial symmetry.
(Computed by P.E. Rosenqvist.)

The fixed points of thath iteratef” are cycle points of a cycle of periad If
we consider the map

X =g(X) = x+ ArC(f"(X) - X), (27.14)
p A T
T—ngmﬁsm%wmo

the iterates ofj converge to a fixed point provided th&t is suficiently small and (13 L :i-ﬂgéﬁggiggﬁgﬁ g-%%gggigg‘l‘gé
C is a [dxd] constant matrix chosen such that it stabilizes the flown &sows, At 001 1.24054255704410° 12.321746616182
has to be chosen smaller and smaller. In the case of the Ikageerample27.2 011 1.449545074956.0° 12.580807741032
the method works well fon < 20. As in 27.19, the multipoint shooting method 0001 -1.229570686194.0 16.322276474382
is the method of preference for determining longer cyclemsitlerx = (Xq, X2, . . ., Xn) ggﬁ i‘;g?ggzggéggg iggigg%gggggi
and thend-dimensional map 00001 -1.21733838705A.C° 20.322330025739
00011  1.4328209515440° 20.585689671758
, 00101  1.5392579074200° 20.638238386018
X' =109 = (f(xq), F(xa).- .., F(Xn-2))- 00111  -1.7041071554340° 20.853571517227
01011  -1.79901947942a0° 20.897369388186
o ) ) . ) ) ) N 01111  2.0102473474330° 21.116994322373
Determining cycles with period for thed-dimensionalf is equivalent to determining 000001 -1.2050629238%A0° 24.322335435738
fixed points of the multipointin-dimensionalf. The idea is to construct a matrix 000011 1-4185216228’@82 24.585734788507
C such that the fixed point of becomes stable for the map: 8881(1)1 _1'2522%3@%%& gigg%ggigggﬁ
001011 -1.7963549397830° 24.902167001066
, ATC(f 001101 -1.7963549397830° 24.902167001066
X = x+ ATC(F(x) - X), 001111 2.0057331062%80° 25.121488488111
010111 2.11961501536Q0° 25.165628236279
011111 -2.3663782548010° 25.384945785676

whereC is now a hdxnd] permutatiofreflection matrix with only one non-zero
matrix element:1 per row or column. For any given mati a certain fraction

of the cycles becomes stable and can be found by iteratingahsformed map

which is now and dimensional map.

From a practical point of view, the main advantage of thishoétcompared
to the Newton-Raphson method is twofold) the fundamental matrix of the
flow need not be computed, so there is no large matrix to ingmiplifying
considerably the implementation, arig émpirical basins of attractions for individual
C are much larger than for the Newton-Raphson method. The fwia reduction
in the speed of convergence.
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27.3 Least action method

(P. Dahlgvist)

The methods of sect®7.1 and 27.2 are somewhaad hoc as for general
flows and iterated maps there is no fundamental principleiidegus in choosing
the cost function, such a&7.3, to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maujeleast
action principle. You yawn your way through it in every megita course—but as
we shall now see, it is a very hands-on numerical method fdirfgcycles.

Indeed, the simplest and numerically most robust methoddé&ermining
cycles of planar billiards is given by the principle of leastion, or equivalently,
by extremizing the length of an approximate orbit that sisitgiven sequence of
disks. In contrast to the multipoint shooting method of sé2t3which requires
variation of 21 phase space points, extremization of a cycle length resjuagation
of only n bounce positions;.

The problem is to find the extremum values of cycle lergtf) wheres =
(s1,..., ), that is find the roots ofiL(s) = 0. Expand to first order

GL(s0+069) = GiL(S0) + ) BidjL(S0)dS; + ...
i
[exercise 27.1]
and useM;jj(s)) = 0i9jL(s) in the n-dimensional Newton-Raphson iteration
scheme of sectl2.2.2

S S — EJ] (ﬁ) a;L(s) (27.15)

1]

The extremization is achieved by recursive implementatidhe above algorithm,
with proviso that if the dynamics is pruned, one also has &rklthat the final

extremal length orbit does not penetrate a billiard wall. )
[exercise 27.2]

As an example, the short periods and stabilities of 3-diskesycomputed thiglexercise 12.10]

way are listed tabl@7.2

Résum é

Unlike the Newton-Raphson method, variational methods@mgrobust. As each
step around a cycle is short, they do noffsufrom exponential instabilities, and
with rather coarse initial guesses one can determine cptladbitrary length.
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Commentary

Remark 27.1 Piecewise linear maps. The Lozi map 8.20 is linear, and 100,000's
of cycles can be easily computed by [2x2] matrix multiplioatand inversion.

Remark 27.2 Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problemsy]. The method described above was introduced
by Biham and Wenzell], who have also generalized it (in the case of the Heénon map)
to determination o&ll 2" cycles of perioch, real or complex]. The applicability and
reliability of the method is discussed in detail by GrasgkerKantz and Moening?],

who give examples of the ways in which the method fails: (apight reach a limit
cycle rather than a equilibrium saddle point (that can besdied by the complex Biham-
Wenzel algorithm ]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). tRemmore, Hansen (ref/T

and chapter 4. of ref.g]) has pointed out that the method cannot find certain cycles
for specific values of the Henon map parameters. In pradtieerelaxation method for
determining periodic orbits of maps appears to fbeative almost always, but not always.
Itis much slower than the multipoint shooting method of sé2t3 but also much quicker

to program, as it does not require evaluation of stabilityriv@s and their inversion. If the
complete set of cycles is required, the method has to be sogpited by other methods.

Remark 27.3 Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect.27.2was introduced by Schmelcheral [9]. The method was extended to flows
by means of the Poincaré surface of section technique if¥élf It is also possible to
combine the Newton-Raphson method a#d.(3 in the construction of a transformed
map [L4]. In this approach, each step of the iteration scheme iseatisuperposition of
a step of the stability transformed system and a step of thetdfeRaphson algorithm.
Far from the linear neighborhood the weight is dominantlytenglobally acting stability
transformation algorithm. Close to the fixed point, the stefthe iteration are dominated
by the Newton-Raphson procedure.

Remark 27.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repellex §ufficiently large), such as the one given in fig@&e2 the
signso; € {1,-1} are in a 1-to-1 correspondence with the Smale horshesholeadigm
dynamicss € {0, 1}:

S={O ifoj=-1, %<0 (27.16)

1 ifoj=+1, x>0

For arbitrary parameter values with a finite subshift syngynamics or with arbitrarily
complicated pruning, the relation of sign sequenges o, -+, 0oy} to the itineraries
{s1, %, -, S} can be much subtler; this is discussed in r&f. [

Remark 27.5 lkeda map. lkeda map 27.1) was introduced in ref.1[7] is a model
which exhibits complex dynamics observed in nonlinearagptiing cavities.

Remark 27.6 Relaxation for continuous time flows.  For ad-dimensional flowx =
v(x), the method described above can be extended by considerfgjncaré surface
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of section. The Poincaré section yields a mfawvith dimensiond-1, and the above investigations in the complex plane, Falcolini and de lavkl§23] do find it useful to
discrete iterative maps procedures can be carried out. Aodehat keeps the trial orbit minimize insteadsS, analogous to our cost functiof7.3.

continuous throughout the calculation is the Newton des@ewariational method for

finding periodic orbits of continuous time flows, is descdlierefs. [L5, 16].

Remark 27.7 Stability ordering. The parametear in (27.13 is a key quantity here.
It is related to the stability of the desired cycle in the sfammed system: The more
unstable a fixed point is, the small&r has to be to stabilize it. With increasing cycle
periods, the unstable eigenvalue of the fundamental matcbeases and thereforer
has to be reduced to achieve stabilization of all fixed poidtsmany cases the least
unstable cycles of a given periadare of physically most important []. In this context
At operates as a stability filter. It allows the selective dizdtion of only those cycles
which posses Lyapunov exponents smaller than a fiutatue. If one starts the search for
cycles within a given period with a valueAr ~ O(10™%), and gradually lowerar one
obtains the sequence of all unstable orbits of ordssrted with increasing values of their
Lyapunov exponents. For the specific choic€dhe relation betweeAr and the stability
codficients of the fixed points of the original system is strictlgmatonous. Transformed
dynamical systems with oth&’s do not obey such a strict behavior but show a rough
ordering of the sequence of stability eigenvalues of thelfp@ints stabilized in the course
of decreasing values farr. As explained in seci.8.5 stability ordered cycles are needed
to order cycle expansions of dynamical quantities of cleasytstems for which a symbolic
dynamics is not known. For such systems, an ordering of sywiéh respect to their
stability has been proposedd 14, 17], and shown to yield good results in practical
applications.

[section 18.5]

Remark 27.8 Action extremization method.  The action extremization (sec7.3

as a numerical method for finding cycles has been introducéependently by many
people. We have learned it from G. Russberg, and from M. 8®hed F. Steiner’s
hyperbola billiard computations [, 18]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CBtbads with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-hatheory of area-preserving
twist maps (known in the condensed matter literature asiekel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dyital systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubryatfler theoremZ(] on
existence of quasi-periodic solutions are variational.wdts quickly realized that the
variational methods can also yield reliable, high precisiomputations of long periodic
orbits of twist map models in 2 or more dimensions, neede&fArM. renormalization
studies [9].

A fictitious time gradient flow similar to the one discussedehim sect.27.1was
introduced by Anegent’[]] for twist maps, and used by Golé€7] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regidnstability of K.A.M.
tori are notoriously restrictive compared to the numerindications, and de la Llave,
Falcolini and Tompaidis{3, 24] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. dlié&§y as well as proving
the Aubry-Mather theorem for extended systems (for a pegiagbintroduction, see the
lattice dynamics section of ref2f]).

All of the twist-maps work is based on extremizing the digedynamics version of
the actionS (in this context sometimes called a “generating functiohfpwever, in their
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Exercises
27.1. Evaluation of billiard cycles by minimization*. may be obtained by varying slowly (adiabatically) the

27.2.

Given a symbol sequence, you can construct a guess
trajectory by taking a point on the boundary of each
disk in the sequence, and connecting them by straight
lines. If this were a rubber band wrapped through 3
rings, it would shrink into the physical trajectory, which
minimizes the action (in this case, the length) of the
trajectory.

Write a program to find the periodic orbits for your
billiard simulator. Use the least action principle to
extremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, taBle2
(One such method is given in se@7.3) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
[fTp(X) — X|?

Tracking cycles adiabatically. Once a cycle has
been found, orbits for dierent system parameters values
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