Chapter 18

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

amical zeta functions1(/.19 are really only a shorthand notation - the

zeros of the individual factors armt the zeros of the zeta function, and
convergence of such objects is far from obvious. Now we dfigt meaning
to the dynamical zeta functions and spectral determinanexpanding them as
cycle expansions, series representations ordered byasingetopological cycle
length, with products in17.9, (17.15 expanded as sums ovpseudocycles,
products ofty’s. The zeros of correctly truncated cycle expansions ythkel
desired eigenvalues, and the expectation values of oliesvare given by the
cycle averaging formulas obtained from the partial derrest of dynamical zeta
functions (or spectral determinants).

THE EuLEr PRODUCT representations of spectral determinaritg.§) and dyn-

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such ds/(19 evaluated? We start by computing
the lengths and stability eigenvalues of the shortest sycldis always requires
numerical work, such as the Newton method searches fordiersmlutions; we
shall assume that the numerics is under control, andalhathort cycles up to

a given (topological) length have been found. Examples efdidta required for
application of periodic orbit formulas are the lists of ®&biven in tabl7.2and
exercisel2.11 Itis important not to misany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cyclagelothan the shortest
omitted does not improve the accuracy (more precisely, ovgs it, but painfully
slowly).

Expand the dynamical zeta functioh7(19 as a formal power series,
Ye=]la-t)=1- > Dty .ty (18.1)
p {P1P2...px}
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CHAPTER 18. CYCLE EXPANSIONS 300

where the prime on the sum indicates that the sum is overstihdt non-repeating
combinations of prime cycles. As we shall frequently usénsuens, let us denote
byt, = (—1)"+1tpltIOZ ...th an element of the set of all distinct products of the
prime cycle weights,. The formal power series 8.1) is now compactly written
as

1Y=1->"t. (18.2)

Fork > 1, t, are weights opseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequemg®, ... px along segmentp,,
P2,..., pk. >,/ denotes the restricted sum, for which any given prime cycle
contributes at most once to a given pseudocycle weijght

The pseudocycle weight, i.e., the product of weiglifs.10 of prime cycles
comprising the pseudocycle,

1
t = (—1)k+lmegA”_ST”Zn” , (18.3)

depends on the pseudocycle topological lemgtlintegrated observabk,, period
T,, and stabilityA

nﬂ- = npl++npk, Tﬂ:TP1++Tpk

Throughout this text, the terms “periodic orbit” and “cytége used interchangeably;
while “periodic orbit” is more precise, “cycle” (which hasamy other uses in
mathematics) is easier on the ear than “pseudo-periodit“ovVhile in Soviet
times acronyms were a rage (and in France they remain so)hyvavgay from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a systemiloegdy a complete
binary symbolic dynamics. In this case the Euler prodat15 is given by

1/ = (1-1o)(1—1t1)(1 - tor)(1 - toor)(1 — to11) (18.5)
(1 - tooon)(1 — too11)(1 — to111)(1 — toooo) (1 — tooo11)
(1 - to010)(1 — too11)(L — to101)(L — to1119) - . .

(see tabld.0.1), and the first few terms of the expansidi8 (2 ordered by increasing
total pseudocycle length are:

1/ = 1-tg—1ty—1to1—toor— tor1 — tooor— toor1—tor11—-..
+loty + toto1 + toats + toloor + tolora + tooats + to1ats
—totorty — ... (18.6)
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CHAPTER 18. CYCLE EXPANSIONS 301

We refer to such series representation of a dynamical zetifun or a spectral
determinant, expanded as a sum over pseudocycles, ancardgrincreasing
cycle length and instability, asaycle expansion.

The next step is the key step: regroup the terms into the dortfundamental
contributionst; and the decreasingurvature correctionscy, eachc, split into
prime cyclesp of length n,=n grouped together with pseudocycles whose full
itineraries build up the itinerary gf. For the binary case this regrouping is given

by

1/¢

1-1to—1t1 —[(tor — t1to)] — [(too1 — to1to) + (tor1 — tost1)]
—[(tooo1 — totoo) + (to111 — to11ta)

+(too11 — tooats — toto11 + totoats)] — . ..

= 1->ti- > & (18.7)
f n

All terms in this expansion up to length, = 6 are given in tabld8.1.1  We
refer to such regrouped seriescasvature expansions. .

Such separation into “fundamental” and “curvature” paftsyale expansions
is possibleonly for dynamical systems whose symbolic dynamics has finitegrar.
The fundamental cyclds, t; have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits lba approximately
pieced together from them. The fundamental part of a cygmesion is given
by the sum of the products of all non-intersecting loops efdksociated Markov
graph.  The terms grouped in brackets are the curvaturectioms; the terms section 13.3]
grouped in parenthesis are combinations of longer cyclésamesponding seque%gggign 18: 4
of “shadowing” pseudocycles. If all orbits are weighted &ltyu(t, = z%), such
combinations cancel exactly, and the dynamical zeta foncgduces to the topological
polynomial (L3.2]). If the flow is continuous and smooth, orbits of similar syotib
dynamics will traverse the same neighborhoods and will lsrglar weights,
and the weights in such combinations will almost cancel. Utigy of cycle
expansions of dynamical zeta functions and spectral datants, in contrast
to direct averages over periodic orbits such as the tragaulais discussed in
sect.20.5 lies precisely in this organization into nearly cancelammnbinations:
cycle expansions are dominated by short cycles, with lootgsygiving exponentially
decaying corrections.

In the case where we know of no finite grammar symbolic dynarttat
would help us organize the cycles, the best thing to usestiabdity cutoff which
we shall discuss in secl.8.5 The idea is to truncate the cycle expansion by
including only the pseudocycles such thap, - - - Ap,| < Amax With the cutdf
Amax equal to or greater than the most unstabjgin the data set.
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CHAPTER 18. CYCLE EXPANSIONS 302

Table 18.1: The binary curvature expansiohd.7) up to length 6, listed in such way that
the sum of terms along thath horizontal line is the curvatuig associated with a prime
cycle p, or a combination of prime cycles such as thg101+ tioo110pAair.

- to

- tl

-110 + 111p

- T100 + T10l0

-tioa + t1oly

- T1000 + T100l0

-ti000  +ti00l2 + t101fo - tatioto

- t1011 + t101t1

-T10000  + T1000dl0

-tio001  +tligofto  +ticoctz - fotioofz

-t10000  + tiooli0

-t10100  + t1o1tio

-t10011  t+tioaalo  +tipofs - folzoita

-li0111 + o1y

- T100000 + T1000d0

-t100001 + tio00ffo  + tiooodr - totzoodtz

-ti00010 +tio01do + tioootio - totiootio

-t100011 +tioo1fo  + tipooitr - totzooits

-t100101 - tioo110 +ticord1r  + ti011d0
+ tioliop1  + troot101 - toliotio1 - tatiotioo

-t101110 +tio1adr  + tioratio - tatioatio

-t100111  +tioo1ds  +tip11ato - fotzoidts

-ti01111  + tip111a

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatederically by first
computing the weights, = tp(3, s) of all prime cyclesp of topological length

np, < N for given fixedg ands. Denote by subscripti) the ith prime cycle
computed, ordered by the topological lengify < ni.1). The dynamical zeta
function 1/{n truncated to the, < N cycles is computed recursively, by multiplying

1/Z6y = 1/¢i-1y(1 - t2"0), (18.8)

and truncating the expansion at each step to a finite polyalamz”, n < N. The
result is theNth order polynomial approximation

N
Yin=1-) 2", (18.9)
n=1

In other words, a cycle expansion is a Taylor expansion indimy variable
z raised to the topological cycle length. If both the numbecwiles and their
individual weights grow not faster than exponentially witie cycle length, and
we multiply the weight of each cycl@ by a factorz'™, the cycle expansion
converges for diiciently small|Z.

If the dynamics is given by iterated mapping, the leading z&r(18.9 as
function of z yields the leading eigenvalue of the appropriate evolutiparator.
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CHAPTER 18. CYCLE EXPANSIONS 303

For continuous time flowsz is a dummy variable that we set o= 1, and the
leading eigenvalue of the evolution operator is given byl¢laeling zero 0f18.9
as function ofs.

18.2.2 Evaluation of traces, spectral determinants
Due to the lack of factorization of the full pseudocycle wejg
det(1 - Mp,p,) # det(1— My, ) det(1 - Mp,) ,

the cycle expansions for the spectral determinantd are somewhat less transparent
than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectrafrditant by
computing recursively the trace formula6(10 truncated to all prime cyclep
and their repeats such thajr < N:

2r Mr=N- (g A -sTo)r "

- ‘ | o
1_15’0) trl—ZL(i—1)+n(l) ; |H(1‘A[i),j)|

tr

N
= Zan”, Cn=trL". (18.10)

n=1

zL
1-z£

tr

N

This is done numerically: the periodic orbit data set cdasif the list of the
cycle periodsT p, the cycle stability eigenvalues, 1, Ap2, . .., Apd, and the cycle
averages of the observabfg, for all prime cyclesp such thatn, < N. The
codficient of Z%" is then evaluated numerically for the gives §) parameter
values. Now that we have an expansion for the trace formidzd(as a power

series, we compute théth order approximation to the spectral determinat ),
N
det(1- zL)ly = 1 - Z QnZ'., Q= nth cumulant (18.11)
n=1

as follows. The logarithmic derivative relatioh?q.4) yields

zL d
(tr . ZL) det(1-zL£) = —zd—zdet (1-zL)
(C1z+CoZ + - )1 - Quz— Q7 —-+)) = Quz+2Q7 +3QsZ -+

so thenth order term of the spectral determinant cycle (or in thiecthe cumulant)
expansion is given recursively by the trace formula exmansodficients

Qu=:(Cn-CoaQ—-CiQn1). Qi =Ci. (1812)
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Table 18.2: 3-disk repeller escape rates computed from the cycle eigpan®f the
spectral determinanfL{.6 and the dynamical zeta functiodq.19, as function of the
maximal cycle lengthN. The first column indicates the disk-disk center separation
to disk radius ratidR:a, the second column gives the maximal cycle length used, and
the third the estimate of the classical escape rate fromuhdamental domain spec-
tral determinant cycle expansion. As for larger disk-digparations the dynamics
is more uniform, the convergence is better Rla = 6 than forRa = 3. For
comparison, the fourth column lists a few estimates froomftbe fundamental domain
dynamical zeta function cycle expansidi8(7), and the fifth from the full 3-disk cycle
expansion18.39. The convergence of the fundamental domain dynamicalfeetdion
is significantly slower than the convergence of the corraedpay spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functias still poorer convergence.
(P.E. Rosenqvist.)

Ra N . det(s— A) 1/£(9) 1/£(93-disk
0.39 0.407
0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383 0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192
041
0.72
0.675
0.67797
0.677921
0.6779227
0.6779226894
0.6779226896002
0.677922689599532
0.67792268959953606

=
QOONOUITRWNHFOOOONOUIMNWNH
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CHAPTER 18. CYCLE EXPANSIONS 305

Given the trace formulal@.10 truncated taz", we now also have the spectral
determinant truncated @'

The same program can also be reused to compute the dynamtiadlinction
cycle expansion18.9, by replacing[] (1— A[i)’j) in (18.10 by the product of
expanding eigenvaluesj = [[eA).e (See sectl7.3).

The calculation of the leading eigenvalue of a given comtirsuflow evolution
operator is now straightforward. After the prime cycles trelpseudocycles have
been grouped into subsets of equal topological length, dhenady variable can be
set equal t@ = 1. Withz = 1, expansion8.11]) is the cycle expansion fof.{.6),
the spectral determinant dat{ A) . We varysin cycle weights, and determine
the eigenvalues, by finding s = s, for which (18.11) vanishes. As an example,
the convergence of a leading eigenvalue for a nice hyperkbgéitem is illustrated
in table 18.2.2by the listing of pinball escape rateestimates computed from
truncations of {8.7) and (L8.11) to different maximal cycle lengths. chapter 21]

The pleasant surprise is that the fim@ents in these cycle expansions can be
proven to fall df exponentially or even faster, due to analyticity of det(A) or
1/Z(s) for svalues well beyond those for which the corresponding traceatila
diverges.

[chapter 21]

18.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

,
J The cycle expansions of spectral determinants yield thenesjues of the
evolution operator beyond the leading one. A convenient teaearch for these
is by plotting either the absolute magnitudedat (s— A)| or the phase of spectral
determinants and dynamical zeta functions as functionseo€bmplex variables.
The eye is guided to the zeros of spectral determinants amanaigal zeta func-
tions by means of compleg plane contour plots, with flierent intervals of the
absolute value of the function under investigation asslgfifierent colors; zeros
emerge as centers of elliptic neighborhoods of rapidly ghrancolors. Detailed
scans of the whole area of the compkeglane under investigation and searches
for the zeros of spectral determinants, figlig2l, reveal complicated patterns of
resonances even for something so simple as the 3-disk gapiak&ll. With

a good starting guess (such as a location of a zero suggegtie lzomplexs
scan of figurel8.1), a zero 1£(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorith?, with the mth
Newton estimate given by

_ 1/4(sm)
My

1
Sme = Sm— (asn)a%rl(sﬂ)) = & (18.13)

The dominator(T), required for the Newton iteration is given below, by the
cycle expansion8.29. We need to evaluate it anyhow, @&, enters our cycle
averaging formulas.
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CHAPTER 18. CYCLE EXPANSIONS 306

Figure 18.1: Examples of the comples plane
scans: contour plots of the logarithm of the

absolute values of (a)/4(s), (b) spectral deter- e & 1.1
minant det 6—.A) for the 3-disk system, separation 5 E ]
a: R=6,A; subspace are evaluated numerically

The eigenvalues of the evolution operatfrare -l
given by the centers of elliptic neighborhoods of 7
the rapidly narrowing rings. While the dynamical 2.0 4

zeta function is analytic on a strip Ims -1, the
spectral determinant is entire and reveals furthe
families of zeros. (P.E. Rosenqvist)

[Eal
Lr
[Ny}
T

Figure 18.2: The eigenvalue condition is satisfied on ' )S
the curveF = 0 the (3, s) plane. The expectation value \

of the observablel5.12 is given by the slope of the /—U\'

curve.

18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that weelgiven so far -
the level sumZ0.18, the dynamical zeta functiori8.2), the spectral determinant

(18.1D:
(n)
1= >t, t=t@sp), n=n, (18.14)
0 = 1-3"t.  t=t@ASp) (18.15)
0 = 1->'Qu.  Qu=Qu(s SB), (18.16)
n=1

is an implicit equation for the eigenvalie= s(8) of form F(B, s(8)) = 0. The
eigenvalues = s(B) as a function of3 is sketched in figurd 8.2, the eigenvalue
condition is satisfied on the curfe = 0. The cycle averaging formulas for the
slope and the curvature efg) are obtained as inlf.12 by taking derivatives of
the eigenvalue condition. Evaluated aldag- O, the first derivative leads to

d
0 = @F(ﬁ, s(B))

OF ds oF ds oF OF

AN a_ & 18.17
B B BSlesy A8 9B os’ (18.17)
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CHAPTER 18. CYCLE EXPANSIONS 307

and the second derivative B3, s(8)) = 0 yields

2 2 2 2 2
ds __|F  ,0s&F (ds\"oF| OF (18.18)
dp? B2 dsaopos \dB) os?| ds
Denoting by
OF OF
We = - e
F B j.ss " Oslpssp)
, &°F
(A=), = -5 (18.19)
B g s-stp)

respectively the mean cycle expectation valud.ahe mean cycle period, and the
second derivative df computed for- (3, s(8)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observalie 12, and its variance:

e

@ = (18.20)
(@-@)) = <T1_>F<(A‘<A>)2>F' (18.21)

These formulas are the central result of the periodic oHabty. As we shall
now show, for each choice of the eigenvalue condition famd&(3, s) in (20.18,
(18.2 and (18.11), the above quantities have explicit cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function conditioh8(15, the cycle averaging formulas
(18.17, (18.2) require evaluation of the derivatives of dynamical zetaction
at a given eigenvalue. Substituting the cycle expansl@i?( for dynamical zeta
function we obtain

a1 ,
Ay, = ~%Z " D7 Adty (18.22)

(9 1 4 8 l ’
M = 57 = DU Tate, ()= Z5,7 = D Nt

where the subscript it - ), stands for the dynamical zeta function average over
prime cyclesA;, T,, andn, are evaluated on pseudocyclés @), and pseudocycle
weightst, = t,(z B, S(B)) are evaluated at the eigenvalg(g). In most applications

B = 0, andg(B) of interest is typically the leading eigenvalsg = $(0) of the
evolution generataA.
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CHAPTER 18. CYCLE EXPANSIONS 308

For bounded flows the leading eigenvalue (the escape raiees s(0) = 0,
the exponenBA, — sT, in (18.3 vanishes, so the cycle expansions take a simple
form

Ap1+Ap2"'+Apk
IAI01 o 'Apkl ,

(A = Y (1) (18.23)

and similarly for(T),, (n),. For example, for the complete binary symbolic
dynamics the mean cycle perig@), is given by

T T T To+T
M, = 1o, T +( Too _To+Ty 1) (18.24)
Aol A1l \[Aozl  [AoA4l
( Toor  Tor+ To) . ( Toir  Tor+ Tl) N
[Aood  |Ao1Aol Aol |Ao1A1]

Note that the cycle expansions for averages are groupedhi@tsame shadowing
combinations as the dynamical zeta function cycle expandi8.?), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value efdhservabléa)
follow by substitution into {8.21). Assuming zero mean drife) = 0, the cycle
expansion 18.11) for the variance(A - <A>)2>§ is given by

(A A A
(A7), = D (1 1|Ap1,2”Apk| . (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a p&atlgisimple structure,
with the shadowing apparent already by a term-by-term ictspe of table18.2.2
For “nice” hyperbolic systems the shadowing ensures exp@ieconvergence
of the dynamical zeta function cycle expansions. This, Mawas not the best
achievable convergence. As has been explained in chaptéor such systems
the spectral determinant constructed from the same cytéeldsse is entire, and
its cycle expansion converges faster than exponentialty.prictice, the best
convergence is attained by the spectral determinant cygansion {8.16 and
its derivatives. Thé/ds, d/0B derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycleaggon contributions
(18.12 and (8.10.

The cycle averaging formulas are exact, and highly conveifge nice hyperbolic
dynamical systems. An example of its utility is the cycle axgion formula for
the Lyapunov exponent of exampl8.1 Further applications of cycle expansions
will be discussed in chapt&0.
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CHAPTER 18. CYCLE EXPANSIONS 309
18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation valoegaa flow, in

continuous time, and sometimes it might be easier to compimediscrete time,
from a Poincaré return map. Return tim&slf might vary wildly, and it is not at
all clear that the continuous and discrete time averagesstatd in any simple
way. The relationship turns on to be both elegantly simpid, tatally general.

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or tregawviast return time.
For example, if we have evaluated a billiard expectatiouegh) in terms of
continuous time, and would like to also have the correspundiveragea)yscr
measured in discrete time, given by the number of reflectahbilliard walls,
the two averages are related by

@dscr= @ (T), /<N, , (18.26)
where(n), is the average of the number of bouncgsalong the cyclep.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 15.3 we defined the Lyapunov exponent for a 1-d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

, log|Ap, | + -+ log|A
AziZ(—l)k” 91| 9lAnd (18.27)
(), |Apy -+~ Apyl

For a repeller, the 1/|Ap| weights are replaced by normalized measure (20.10) exp(/np)/IApl,
where vy is the escape rate.

We mention here without proof that fordHamiltonian flows such as our game
of pinball there is only one expanding eigenvalue at®lZ7) applies as it stands.

18.4 Cycle expansions for finite alphabets

,
J A finite Markov graph like the one given in figufie3.3(d) is a compact

encoding of the transition or the Markov matrix for a givelbshift. It is a sparse

matrix, and the associated determindr&.(7) can be written down by inspection:
it is the sum of all possible partitions of the graph into prots of non-intersecting
loops, with each loop carrying a minus sign:

det(1-T) = 1 —to — too11 — tooo1 — tooo11 + totoo11 + too11tooor (18.28)
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CHAPTER 18. CYCLE EXPANSIONS 310

The simplest application of this determinant is to the ex@dun of the topological
entropy; if we set, = z", wheren,, is the length of thep-cycle, the determinant
reduces to the topological polynomidl3.18.

The determinant1(8.28 is exact for the finite graph figur&3.3(e), as well
as for the associated finite-dimensional transfer opem@t@xamplel5.2 For
the associated (infinite dimensional) evolution operatas, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/ = 1-1tg—1too11— tooo1+ toooitoo11
—(tooo11— totoo11+ . .. curvatures).. (18.29)

The cycle, 0001 and)011 are théundamental cycles introduced ini8.7); they
are not shadowed by any combinations of shorter cycles, @tti@basic building
blocks of the dynamics.All other cycles appear togetheh witeir shadows (for
example, théyoo11—totoor1cOmMbination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bdth and the pseudocycle combination
tarb = tatp in (18.2) have the same weighta*™, so all curvature combinations
tan — taty Vanish exactly, and the topological polynomiaB(21) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functionsicedo polynomials,
we are assured that there are just a few fundamental cydighanall long cycles
can be grouped into curvature combinations. For exammdutidamental cycles
in exercise9.2 are the three 2-cycles which bounce back and forth between tw
disks and the two 3-cycles which visit every disk. It is orftgathese fundamental
cycles have been included that a cycle expansion is expézt&drt converging
smoothly, i.e., only fom larger than the lengths of the fundamental cycles are
the curvatureg, (in expansion 18.7)), a measure of the deviations between long
orbits and their short cycle approximants, expected toofélapidly with n.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovi€)

Most dynamical systems of interest have no finite grammagtsmy order in

Z a cycle expansion may contain unmatched terms which do nogditly into
the almost cancelling curvature corrections. Similarty, intermittent systems
that we shall discuss in chapt&s, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For systkras schemes
which collect the pseudocycle terms according to somerimiteother than the
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topology of the flow may converge more quickly than exparsibased on the
topological length.

All chaotic systems exhibit some degree of shadowing, anubd ¢runcation
criterion should do its best to respect the shadowing at @sroximately. If
a long cycle is shadowed by two or more shorter cycles and ¢ieifl smooth,
the period and the action will be additive in sense that thiéogeof the longer
cycle is approximately the sum of the shorter cycle perid8inilarly, stability
is multiplicative, so shadowing is approximately presdrig including all terms
with pseudocycle stability

|Ap, -+ Ap < Amax (18.30)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which appedgly respect
shadowing are truncations by the pseudocycle period (@rgcaind the stability
ordering that we shall discuss here. In these schemes a thala®ta function or
a spectral determinant is expanded keeping all terms foctwihie period, action
or stability for a combination of cycles (pseudocycle) ssl¢han a given cufb

The two settings in which the stability ordering may be pratide to the
ordering by topological cycle length are the cases of baghgrar and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of thatetspace generates the
“optimal” symbolic dynamics. Stability ordering does netjuire understanding
dynamics in such detail: if you can find the cycles, you cansiigbility ordered
cycle expansions. Stability truncation is thus easier tplément for a generic
dynamical system than the curvature expansi@Bs/ which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctraje for near
recurrences. The long trajectory method for detectingesygbreferentially finds
the least unstable cycles, regardless of their topolodgcajth. Another practical
advantage of the method (in contrast to Newton method segyd$ that it only
finds cycles in a given connected ergodic component of siaees ignoring
isolated cycles or other ergodic regions elsewhere in tite space.

Why should stability ordered cycle expansion of a dynamiedh function
converge better than the rude trace formul0.9? The argument has essentially
already been laid out in sedt3.7: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations anty waacel, while only
the relatively small subsefiacted by the longer and longer pruning rules is not
shadowed. So the error is typically of the order phlsmaller by factog" than
the trace formulaZ0.9 error, whereh is the entropy and typical cycle length
for cycles of stabilityA.
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18.5.2 Smoothing

,
J The breaking of exact shadowing cancellations deservéssiucomment.
Partial shadowing which may be present can be (partialstpred by smoothing
the stability ordered cycle expansions by replacing the Weight for each term
with pseudocycle stabilith = Ap, --- Ap, by f(A)/A. Here,f(A) is a monotonically
decreasing function fronfi(0) = 1 to f(Amayx) = 0. No smoothing corresponds to
a step function.

A typical “shadowing error” induced by the cufads due to two pseudocycles
of stability A separated byAA, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of theiling term is of order
1/A - 1/(A + AA) ~ AA/A?. With smoothing there is an extra term of the form
f’(A)AA/A, which we want to minimise. A reasonable guess might be tp kee
f’(A)/A constant and as small as possible, that is

A 2
f(A):l—(A )

max

The results of a stability ordered expansid®8.30 should always be tested
for robustness by varying the ctité\mayx. If this introduces significant variations,
smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

,
J Longer but less unstable cycles can give larger contribstio a cycle
expansion than short but highly unstable cycles. In suckatitn truncation by
length may require an exponentially large number of verytalsie cycles before
a significant longer cycle is first included in the expansidhis situation is best
illustrated by intermittent maps that we shall study in detachapter23, the
simplest of which is the Farey map

f(x)={ fo=x/(1-%X 0<x<1/2

fi=(1-x/x 1/2<x<1 , (18.31)

a map which will reappear in the intermittency chagiar

For this map the symbolic dynamics is of complete binary tygmelack of
shadowing is not due to lack of a finite grammar, but ratheh&intermittency
caused by the existence of the marginal fixed pggnt O, for which the stability
equalsAg = 1. This fixed point does not participate directly in the dyimaand is
omitted from cycle expansions. Its presence is felt in thbilties of neighboring
cycles withn consecutive repeats of the symbol 0’s whose stability &dlanly as
A ~ n?, in contrast to the most unstable cycles withonsecutive 1's which are
exponentially unstabléAgm| ~ [( V5 + 1)/2]2".
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Figure 18.3: Comparison of cycle expansion

truncation schemes for the Farey mag.gJ); the 0.5
deviation of the truncated cycles expansion for

|1/¢n(0)] from the exact flow conservation value 0.2
1/£(0) = 0 is a measure of the accuracy of

the truncation. The jagged line is logarithm of ¢y o
the stability ordering truncation error; the smooth 0.05
line is smoothed according to sed8.5.2 the

diamonds indicate the error due the topological 0.02

length truncation, with the maximal cycle length

1P

0.01

N shown. They are placed along the stability
cutaT axis at points determined by the condition

that the total number of cycles is the same for both
truncation schemes.

The symbolic dynamics is of complete

10 100 1000 10000

Amax

binary type. A quickrtdn the style

of sect.13.5.2leads to a total of 74,248,450 prime cycles of length 30 @&, lest
including the marginal poinky = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the leastblestycle omitted
has stability of roughly\;g0 ~ 30° = 900, and so amounts to al@b correction.
The situation may be much worse than this estimate sugdestause the next,

103! cycle contributes a similar amount,

and could easily readothe error.

Adding up all such omitted terms, we arrive at an estimatedr ef about 3%,
for a cycle-length truncated cycle expansion based on rhare1@ pseudocycle
terms! On the other hand, truncating by stability at 8aysx = 3000, only 409
prime cycles sfiice to attain the same accuracy of about 3% error, figgra

As the Farey map maps the unit interval onto itself, the legdiigenvalue

of the Perron-Frobenius operator should

egat 0, so YZ(0) = 0. Deviation

from this exact result serves as an indication of the comvwerg of a given cycle
expansion. The errors offtierent truncation schemes are indicated in figl8 e

We see that topological length truncation schemes are ésglgl bad in this case;
stability length truncations are somewhat better, but tther bad. In simple

cases like this one, where intermittency is

caused by aesmglrginal fixed point,

the convergence can be improved by going to infinite alplsabet

18.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

,
J A Dirichlet series is defined as

f(s) = Z ajetis
=

(18.32)

wheres, a; are complex numbers, arid;} is a monotonically increasing series

of real numbersl; < A < --- < Aj < -+
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series is the Riemann zeta function for whgh= 1, 1; = In j. In the present
context, formal series over individual pseudocycles suc{l@. 2 ordered by the
increasing pseudocycle periods are often Dirichlet serfes example, for the
pseudocycle weightl@.3), the Dirichlet series is obtained by ordering pseudosycle
by increasing periods, = Tp, + Tp, +... + Tp,, with the codlicients

B (Ap +Apy+..+Ap)

ar =
|ApAp, ... Ap

7/

whered, is a degeneracy factor, in the case ttapseudocycles have the same
weight.

If the series}; |a;| diverges, the Dirichlet series is absolutely convergent fo
Re s> o, and conditionally convergent for Resso, whereo, is theabscissa of
absolute convergence

N
. 1
Oa= I\Illﬂlo sup% In JZ:; ajl, (18.33)

ando is theabscissa of conditional convergence

N

Sa.

. 1
o¢ = lim sup—In
N— oo A =

N

(18.34)

We shall encounter another example of a Dirichlet serieshéngemiclassical
guantization, the quantum chaos part@faosBook. org.

Résum é

A cycle expansion is a series representation of a dynamical zeta functiooetra
formula or a spectral determinant, with products 17.l5 expanded as sums
over pseudocycles, products of the prime cycle weightis

If a flow is hyperbolic and has a topology of a Smale horseshogubshift
of finite type), the dynamical zeta functions are holomarpline spectral det-
erminants are entire, and the spectrum of the evolutionadpeis discrete. The
situation is considerably more reassuring than what gii@eérs of quantum chaos
fear; there is no “abscissa of absolute convergence” aneenwdpy barier,” the
exponential proliferation of cycles is no problem, spdaeterminants are entire
and converge everywhere, and the topology dictates theehadi cycles to be
used in cycle expansion truncations.
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In that case, the basic observation is that the motion in myce systems of
few degrees of freedom is in this case organized around &ufmamental cycles,
with the cycle expansion of the Euler product

1Y=1-3t- ) &
f n

regrouped into dominarfundamental contributionsts and decreasingurvature
correctionscy. The fundamental cyclas have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that afiger orbits can be
approximately pieced together from them. A typical curvatcontribution tocy

is adifference of a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tap — tath = tap(1 — tatp/tan)

The orbits that follow the same symbolic dynamics, suctalsand a “pseudocycle”
{a}{b}, lie close to each other, have similar weights, and for loragel longer
orbits the curvature corrections falifadapidly. Indeed, for systems that satisfy
the "axiom A” requirements, such as the 3-disk billiard, vature expansions
converge very well.

Once a set of the shortest cycles has been found, and thepeyades, stabilities
and integrated observable computed, the cycle averagimgufas such as the
ones associated with the dynamical zeta function

@ = (A /(T
(9 1 4 a l ’
W = =gz = ) A D=5z = ) Tl

yield the expectation value (the chaotic, ergodic average the non—wandering
set) of the observabla(x).

Commentary

Remark 18.1 Pseudocycle expansions. Bowen'’s introduction of shadowingpseudoorbitsi4]
was a significant contribution to Smale’s theory. Expressiseudoorbits” seems to have

been introduced in the Parry and Pollicott’s 1983 pagkrHollowing them M. Berry §]

had used the expression “pseudoorbits” in his 1986 papeliemadhn zeta and quantum
chaos. Cycle and curvature expansions of dynamical zetifuns and spectral deter-
minants were introduced in refs.(, 2]. Some literaturel3] refers to the pseudoorbits as
“composite orbits,” and to the cycle expansions as “Diktlskries” (see also rematR.6

and sect18.9.
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Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature expansions
are very reminiscent of cumulant expansions. Indeg8,1) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinarg.@ifference is that in cycle
expansions eacQ, codficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles.  Going fromN, ~ N"
periodic points of lengtim to M,, prime cycles reduces the number of computations from
N, to M ~ N™1/n. Use of discrete symmetries (chapi&) reduces the number oth
level terms by another factor. While the reformulation @& theory from the tracel6.29

to the cycle expansiori8.7) thus does not eliminate the exponential growth in the numbe
of cycles, in practice only the shortest cycles are used fanthem the computational
labor saving can be significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table18.1.1leads to the temptation of associating curvatures to idd&fi cycles, such as
€o001 = tooo1 — totoor. Such combinations tend to be numerically small (see fompta
ref. [3], table 1). However, splitting,,"into individual cycle curvatures is not possible in
general P(; the first example of such ambiguity in the binary cycle exgian is given by
thetipo10s t1001200 < 1 symmetric pair of 6-cycles; the countertegitos1 in table18.1.1

is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlgvist
and Russbergl[] in a study of chaotic dynamics for thg?§/?)*/2 potential. The presentation
here runs along the lines of Dettmann and Morrisg] [for the Lorentz gas which is
hyperbolic but the symbolic dynamics is highly pruned, attann and Cvitanovic.[]

for a family of intermittent maps. In the applications dissed in the above papers, the
stability ordering yields a considerable improvement dkiertopological length ordering.

In quantum chaos applications cycle expansion canceltoa #fected by the phases
of pseudocycles (their actions), heriod ordering rather than stability is frequently
employed.

Remark 18.6 Are cycle expansions Dirichlet series?

Even though some literaturéd] refers to cycle expansions as “Dirichlet series,” they
are not Dirichlet series. Cycle expansions collect coatidns of individual cycles into
groups that correspond to the ¢deients in cumulant expansions of spectral determin-
ants, and the convergence of cycle expansions is contioyigeneral properties of spec-
tral determinants. Dirichlet series order cycles by theirigds or actions, and are only
conditionally convergent in regions of interest. The abs&iof absolute convergenceisin
this context called the “entropy barrier”; contrary to theduently voiced anxieties, this
number does not necessarily has much to do with the actuaéogence of the theory.
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Exercises
18.1. Cycle expansions.  Write programs that implement (b) Show that

18.2.

18.3. Escape rate for the Ulam map.

binary symbolic dynamics cycle expansions for (a)
dynamical zeta functions, (b) spectral determinants.
Combined with the cycles computed for a 2-branch
repeller or a 3-disk system they will be useful in problem
that follow.

Escape rate for a 1d repeller.
exercisel?7.1- easy, but long)
Consider again the quadratic mdy (31

(Continuation of

f(X) = Ax(1 - X)

on the unit interval, for definitiveness take either=
9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabdD, 1} (0’ if the iterate is in the
first half of the interval and "1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph df and determine its two fixed
pointsO andl, together with their stabilities.

_ n
Ael...én - i2

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

{h=1-to—ty— (tor — toty) — -+

You might note that the convergence as function
of the truncation cycle length is slow. Try to
fix that by treating theAg = 4 cycle separately.
(Continued as exercisi3.12)

18.4. Pinball escape rate, semi-analytical. Estimate the 3-

disk pinball escape rate f& : a = 6 by substituting
analytical cycle stabilities and periods (exerci3e
and exercise9.4) into the appropriate binary cycle
expansion. Compare with the numerical estimate
exercisel5.3

(b) Sketch the two branches df'. Determine all 18.5. Pinball escape rate, from numerical cycles. Compute

the prime cycles up to topological length 4 using
your pocket calculator and backwards iteration of
f (see sectl2.2.)).

(c) Determine the leading zero of the zeta function
(17.19 using the weights, = Z%/|Ap| whereA,
is the stability of thep cycle.

(d) Show that forA = 9/2 the escape rate of
the repeller is 61509 .. using the spectral
determinant, with the same cycle weight. If
you have takenA = 6, the escape rate is
in 0.83149298.., as shown in solutiornl8.2
Compare the cdgcients of the spectral determin-

the escape rate foR : a = 6 3-disk pinball
by substituting list of numerically computed cycle
stabilities of exercisel2.5 into the binary cycle
expansion.

18.6. Pinball resonances, in the complex plane. Plot the

logarithm of the absolute value of the dynamical zeta
function andor the spectral determinant cycle expansion
(18.5 as contour plots in the complex plane. Do

you find zeros other than the one corresponding to the

complex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

ant and the zeta function cycle expansions. Whictg.7. Counting the 3-disk psudocycles. (Continuation of

expansion converges faster?

(Per Rosenqvist)

(Medium; repeat of
exercisel2.1) We will try to compute the escape rate for
the Ulam map12.19

f(xX) = 4x(1 - X),

using the method of cycle expansions. The answer

should be zero, as nothing escapes.

(@) Compute a few of the stabilities for this map.
Show thathp = 4, A1 = =2, A1 = —4, Ago1 = -8
andA011 = 8.
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exercisel3.12) Verify that the number of terms in the
3-disk pinball curvature expansiohg.39 is given by

1_[(1+tp) =

p

1-32-25
1-32-228

~ 26+ 12z+ 27)
= 1+322+223+m

= 1+32+272+62+127
+2028 + 487 + 8472 + 18472 + . ..

This means that, for example; has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.39.
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18.8.

18.9.

3—disk unfactorized zeta cycle expansions. Check
that the curvature expansiorl§.2 for the 3-disk
pinball, assuming no symmetries between disks, is given

by

(1-Zto)(1 - Zti3)(1 - Z2a)

(1 - Zt123)(1 - Zt1z2) (1 - 21219

(1 - Zt1232)(1 — 2tz (1 - 2Pti2109 -+
1 - Ztyp — Zyg — Ztar — Z(trzs + t13)
~ZY(t1213— tazt13) + (tr232— taotes)
+(t1323— t13t23)]

~Z[(t12123— tiot1g) + -+ ] — -+ (18.35)

1/¢

The symmetrically arranged 3-disk pinball cycle
expansion of the Euler productq.? (see tablel3.5.2
and figure9.3) is given by:

(1-Zt12)%(1 - Pt129)*(1 - Z't1219)°
(1 - 2t12129°(1 — Pt121219°
(1-2tiz1329°. ..

1-372 t1o — 27 t103— 37 (t1213— tiz)
—62 (t12123— t12t129)

1/¢

18.10.

~2° (Bt121213+ 3ti21323+ B, — Otuotiiz— thy0)

7 2
—62" (t1212123+ t1212313+ t1213103+ 151123
—3t1ot12123— t123t1213)
~32 (2t12121213+ 12121313+ 2t12121323

+2 112123103+ 2112123213+ 12132123
2 2
+ 3t tio13+ tiotyys — 6tiotini013

— 3tiotio1303— Ati2ati2123— t50y0) —(18.36)

Remark 18.7 Unsymmetrized cycle expansions.

The above 3-disk cycle expansions might be useful
for cross-checking purposes, but, as we shall see
in chapter19, they are not recommended for actual

computations, as the factorized zeta functions yield
much better convergence.

4—disk unfactorized dynamical zeta function cycle
expansions  For the symmetriclly arranged 4-disk
pinball the symmetry group is & of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table13.5.2:

(1- Zt12)*(1 - Pt13)*(1 - Pt129)°

(1 - 211219%(1 - Zt121)*(1 - Z't1230)°

(1- 21249 (1 - 2Pt12129%(1 - 25t12124)818'
(1 - 2t1213)%(1 - 2t12149°

(1 - Pt12519%(1 - 2t12419° -

1/¢

(18.37)
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and the cycle expansion is given by

1/¢

1-Z(dt12+ 2t13) — 82 t13

~Z (81213 + 4tio1a+ 2tioaa+ Atiag
—6t%2 - t§3 — 8t1ot13)

~82(t12123+ 12124+ to13a+ t2143+ t2a13
+112413— 4t1ot123 — 2113t123)

—426(2 Sg+ Ss+ ti’z + 3@2 t13+ t12t§3
—81t1ot1213— 4t1oti14

—2tyot1234 — 4tioti243

—Atatiz13— 2tiatizia— tiatizas

—2tyatipas— Tthhg) — -+ (18.38)

where in the coicient toZ the abbreviation§s and

S, stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4,
respectively; the orbits are listed in talil®.5.2

Tail resummations. A simple illustration of such tail
resummation is thé function for the Ulam mapl(2.19
for which the cycle structure is exceptionally simple: the
eigenvalue of thex 0 fixed point is 4, while the
eigenvalue of any othen-cycle is+2". Typical cycle
weights used in thermodynamic averaging igre 47z,
ti =t =27t, =t"for p# 0. The simplicity of the
cycle eigenvalues enables us to evaluate/tfignction
by a simple trick: we note that if the value of amcycle
eigenvalue werd”", (17.20) would yield /¢ = 1 - 2t.
There is only one cycle, thg, fixed point, that has a
different weight (1 to), so we factor it out, multiply the
rest by (1-t)/(1 - t), and obtain a rationdl function

(1-25(1-to)
(1-1)

1/¢(2 = (18.39)
Consider how we would have detected the pole at

1/t without the above trick. As th@ fixed point is
isolated in its stability, we would have kept the factor
(1-tp) in (18.7) unexpanded, and noted that all curvature
combinations in 18.7) which include thety factor are
unbalanced, so that the cycle expansion is an infinite
series:

1-t,) = (A-to)(1-t—t2—t3—t*—.. )(18.40)
P
p

(we shall return to such infinite series in chap?s).
The geometric series in the brackets sums ud839.

Had we expanded the{1y) factor, we would have noted
that the ratio of the successive curvatures is exactly
Cn1/Cn = t; summing we would recover the rational
function (18.39.

Escape rate for the Rossler flow. (continuation

of exercisel2.7) Try to compute the escape rate for
the Rossler flow 4.17) using the method of cycle
expansions. The answer should be zero, as nothing



