Chapter 18

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

amical zeta functions1(7.19 are really only a shorthand notation - the

zeros of the individual factors amot the zeros of the zeta function, and
convergence of such objects is far from obvious. Now we shig# meaning
to the dynamical zeta functions and spectral determinantxpanding them as
cycle expansions, series representations ordered byasingetopological cycle
length, with products in1(7.9), (17.15 expanded as sums ovpseudocycles,
products ofty’s. The zeros of correctly truncated cycle expansions yibkl
desired eigenvalues, and the expectation values of olidesvare given by the
cycle averaging formulas obtained from the partial derrest of dynamical zeta
functions (or spectral determinants).

THE EuLERr PRODUCT representations of spectral determinaritg.9 and dyn-

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such ds7(15 evaluated? We start by computing
the lengths and stability eigenvalues of the shortest sycléis always requires
numerical work, such as the Newton method searches forgiersolutions; we
shall assume that the numerics is under control, andahathort cycles up to

a given (topological) length have been found. Examples @fddta required for
application of periodic orbit formulas are the lists of @&hiven in tabl€7.2and
exercisel2.11 It is important not to misany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cyclegelothan the shortest
omitted does not improve the accuracy (more precisely, avgs it, but painfully
slowly).

Expand the dynamical zeta functioh7(15 as a formal power series,
ve=la-tp=1- 3" 0%t 1, (18.1)
p {P1P2... P}
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where the prime on the sum indicates that the sum is overstihdt non-repeating
combinations of prime cycles. As we shall frequently usésuens, let us denote
by t, = (=1)tp,tp, ...ty an element of the set of all distinct products of the
prime cycle weights,. The formal power seried.8.1) is now compactly written
as

17=1-3"t. (18.2)

Fork > 1, t, are weights opseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequems®, ... px along segmentgy,
P2,..., pk. > denotes the restricted sum, for which any given prime cycle
contributes at most once to a given pseudocycle wejght

The pseudocycle weight, i.e., the product of weighifg.10 of prime cycles
comprising the pseudocycle,

te = (fl)k“ﬁe“"’“"zm . (18.3)
T

depends on the pseudocycle topological lemgtlintegrated observabk,, period
T,, and stabilityA

N; = Np +...+Np, Ti=Tp +...+Tp
Ar = Ap+...+ A, Ax = ApAp, - Ap,. (18.4)

Throughout this text, the terms “periodic orbit” and “cytcdee used interchangeably;
while “periodic orbit” is more precise, “cycle” (which hasamy other uses in
mathematics) is easier on the ear than “pseudo-periodit-o¥Vhile in Soviet
times acronyms were a rage (and in France they remain so)hyavgay from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a systembleddy a complete
binary symbolic dynamics. In this case the Euler prod@ict19 is given by

17 = (1-1t0)(1—t)(1 - tor)(L - toor)(1 - to11) (18.5)
(1~ too01)(1 — too11)(1 — tor11)(L — toooon) (1 — tooo11)
(1 - too100)(1 - too119)(1 — tor011)(L — to111) - - -

(see table.0.1), and the first few terms of the expansidi8(2 ordered by increasing
total pseudocycle length are:

1/ = 1-to—1t1—1to1—1too1 — to11 — tooo1— too11 — tozaz—- .-
+lota + toto1 + toats + totoos + totoaa + tooats + to1ats
—totorts — . .. (186)
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CHAPTER 18. CYCLE EXPANSIONS 301

We refer to such series representation of a dynamical zetdifun or a spectral
determinant, expanded as a sum over pseudocycles, ancarogrincreasing
cycle length and instability, as@cle expansion.

The next step is the key step: regroup the terms into the dortfumdamental
contributionst; and the decreasingurvature correctionscy, eachc;, split into
prime cyclesp of length n,=n grouped together with pseudocycles whose full
itineraries build up the itinerary gf. For the binary case this regrouping is given
by

1/¢ = 1-to—1t1—[(tor — tato)] — [(too1 — torto) + (tor1 — toats)]
~[(tooo1 — totoo1) + (toxz1 — torats)

+(too11 — tooats — toto1 + totoats)] —

= l—th—Zén. (18.7)
f n

All terms in this expansion up to lengtly = 6 are given in tablé8.1.1  We
refer to such regrouped seriescasvature expansions. .

Such separation into “fundamental” and “curvature” paftsycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finitegrar.
The fundamental cycles, t; have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits loa approximately
pieced together from them. The fundamental part of a cygimesion is given
by the sum of the products of all non-intersecting loops efdksociated Markov
graph.  The terms grouped in brackets are the curvaturectioms; the terms

[%Pctlom 13.3]

grouped in parenthesis are combinations of longer cyclésamesponding sequelbec S 18.4]
of “shadowing” pseudocycles. If all orbits are weighted &ltyu(t, = z*), such
combinations cancel exactly, and the dynamical zeta fancgduces to the topological
polynomial (L3.21). If the flow is continuous and smooth, orbits of similar syotid
dynamics will traverse the same neighborhoods and will feawelar weights,
and the weights in such combinations will almost cancel. Ttily of cycle
expansions of dynamical zeta functions and spectral détants, in contrast
to direct averages over periodic orbits such as the trageulas discussed in
sect.20.5 lies precisely in this organization into nearly cancelemnbinations:
cycle expansions are dominated by short cycles, with looesygiving exponentially
decaying corrections.

In the case where we know of no finite grammar symbolic dynarttiat
would help us organize the cycles, the best thing to usestiabdity cutoff which
we shall discuss in secl8.5 The idea is to truncate the cycle expansion by
including only the pseudocycles such thap, - -- Ap,| < Amax With the cutdf
Amaxequal to or greater than the most unstabjgin the data set.
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Table 18.1: The binary curvature expansiohd.7) up to length 6, listed in such way that
the sum of terms along thath horizontal line is the curvatuig associated with a prime
cyctle p, or a combination of prime cycles such as thg101+ tioo110palir.

-l

- tl

-T10 + 11l

-Ti00 + T10l0

-t + tiots

-Tioo0  + Tioolo

-tioor  +lioon  +tioato - tatioto

-tionn ol

-Tio000  + T10odlo

-tiooo1  +ticoifo  +tioodts - totioots

-ti0010  + tioolio

-tio101  + troatio

-tioo1r  +ltioufo  +tiooafs - totioata

-t +tioaaly

-Ti00000  + T1000do

- ti00001  + tiooofo  + tio0oda - totioogts

-ti00010 + tiooado  + tioodtzo - totiootio

- 1100011 +looilo  + lipooxl1 - Tolipoala

-tioo101 - tiop110  + tio01da  + tro1ado

+ tiotiopr  + taootior - tolaotyon - tatiotioo

-tion110 +tionada  +tioaatio - tatioatio

-tioo111  +ticorta  + tioaasfo - totioaafs

-tio1111  + tionath

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluabederically by first
computing the weights, = tp(8, ) of all prime cyclesp of topological length

np < N for given fixedg ands. Denote by subscripti) the ith prime cycle
computed, ordered by the topological lengify < ng.1). The dynamical zeta
function 1/¢y truncated to the, < N cycles is computed recursively, by multiplying

Y = 14— - tn2"), (18.8)

and truncating the expansion at each step to a finite polyeddmz”, n < N. The
result is theNth order polynomial approximation

N
Yin=1- Z . (18.9)

In other words, a cycle expansion is a Taylor expansion indihamy variable
z raised to the topological cycle length. If both the numbecygles and their
individual weights grow not faster than exponentially wiitie cycle length, and
we multiply the weight of each cyclg by a factorz™, the cycle expansion
converges for diciently small|z.

If the dynamics is given by iterated mapping, the leading z#r(18.9 as
function ofz yields the leading eigenvalue of the appropriate evolutiperator.
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For continuous time flows is a dummy variable that we set o= 1, and the
leading eigenvalue of the evolution operator is given byl¢la€eling zero of18.9
as function ofs.

18.2.2 Evaluation of traces, spectral determinants
Due to the lack of factorization of the full pseudocycle wejg
det(1— Mp,p,) # det(1 - My, ) det(1 - Mp,) ,

the cycle expansions for the spectral determinantd) are somewhat less transparent
than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectratrditant by
computing recursively the trace formulag(10 truncated to all prime cyclep
and their repeats such thaggr < N:

rsN- (A -sTo)r

=, - vl f
tr o= tr—=| +ng) —_— 0
ezl " T ™™ & i)
2L | -
i nZ:;Lcnz", Ch=trL". (18.10)

This is done numerically: the periodic orbit data set cdesi$ the list of the
cycle periodsT, the cycle stability eigenvaluesp 1, Ap2. ..., Apgd, and the cycle
averages of the observabhg, for all prime cyclesp such thatn, < N. The
codficient of Z%" is then evaluated numerically for the givef, §) parameter
values. Now that we have an expansion for the trace formified( as a power
series, we compute thdth order approximation to the spectral determinat®,

N
det(1-zL)ly=1- ) QuZ',  Qn = nth cumulant (18.11)
n=1

as follows. The logarithmic derivative relatiohq.4) yields

L _ d
(tr 1= LE) det(1-z£) = —zd—zdet 1-zL)

(Ciz+CoZ + )1~ Quz- Q7 — )

Q1z+2Q7 +3QZ - -

so thenth order term of the spectral determinant cycle (or in thiecthe cumulant)
expansion is given recursively by the trace formula exgansoéficients

1
Qn= ﬁ (Cn-Cn1Q1----CiQna) s Q1 =Cy. (18.12)
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Table 18.2: 3-disk repeller escape rates computed from the cycle eigasf the
spectral determinanfl{.6 and the dynamical zeta functiodq.19, as function of the
maximal cycle lengthN. The first column indicates the disk-disk center separation
to disk radius raticR:a, the second column gives the maximal cycle length used, and
the third the estimate of the classical escape rate fromuhdamental domain spec-
tral determinant cycle expansion. As for larger disk-digparations the dynamics
is more uniform, the convergence is better fRla = 6 than forRa = 3. For
comparison, the fourth column lists a few estimates frormftbe fundamental domain
dynamical zeta function cycle expansidi8(7), and the fifth from the full 3-disk cycle
expansion18.39. The convergence of the fundamental domain dynamicalfaetzion
is significantly slower than the convergence of the corredpw spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functias still poorer convergence.
(P.E. Rosenqvist.)
Ra . det(s— A) 1/4(s) 1/5(5)3—disL
0.39 0.407

0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383  0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192

0.41

0.72

0.675

0.67797

0.677921

0.6779227

0.6779226894

0.6779226896002

0.677922689599532

0.67792268959953606

=

COONOUIAWNHOOVONOUTAWNHZ
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Given the trace formulal@.10) truncated tazV, we now also have the spectral
determinant truncated @,

The same program can also be reused to compute the dynaetiadlinction
cycle expansioni1@8.9), by replacing[] (1— Aim) in (18.10 by the product of
expanding eigenvalues;) = []cAg).e (See sectl7.3).

The calculation of the leading eigenvalue of a given comtirsflow evolution
operator is now straightforward. After the prime cycles #relpseudocycles have
been grouped into subsets of equal topological length, tihendy variable can be
set equal te = 1. Withz = 1, expansion18.1]) is the cycle expansion fofL.7.6),
the spectral determinant det{ A) . We varysin cycle weights, and determine
the eigenvalues, by finding s = s, for which (18.11) vanishes. As an example,
the convergence of a leading eigenvalue for a nice hyperbgfitem is illustrated
in table 18.2.2by the listing of pinball escape rateestimates computed from
truncations of {8.7) and (L8.11) to different maximal cycle lengths.

The pleasant surprise is that the fiméents in these cycle expansions can be
proven to fall df exponentially or even faster, due to analyticity of det(#A) or
1/¢(s) for svalues well beyond those for which the corresponding traceadila
diverges.

18.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

s
J The cycle expansions of spectral determinants yield theneues of the
evolution operator beyond the leading one. A convenient waearch for these
is by plotting either the absolute magnitudédat (s— A)| or the phase of spectral
determinants and dynamical zeta functions as functioniseofdmplex variable.
The eye is guided to the zeros of spectral determinants amandigal zeta func-
tions by means of comples plane contour plots, with ffierent intervals of the
absolute value of the function under investigation assigfierent colors; zeros
emerge as centers of elliptic neighborhoods of rapidly ghancolors. Detailed
scans of the whole area of the compkeglane under investigation and searches
for the zeros of spectral determinants, figliB1, reveal complicated patterns of
resonances even for something so simple as the 3-disk gamietafll.  With

a good starting guess (such as a location of a zero suggegtét tromplexs
scan of figurel8.1), a zero ¥£(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorith#n4, with the mth
Newton estimate given by

1/4(sm)
M

[z e)
St = S (Lls) (sn>) . (18.13)

The dominator(T), required for the Newton iteration is given below, by the
cycle expansion1(8.22. We need to evaluate it anyhow, &), enters our cycle
averaging formulas.
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Figure 18.1: Examples of the comples plane -0.
scans: contour plots of the logarithm of the
absolute values of (a)/Z(s), (b) spectral deter-
minant det §—A) for the 3-disk system, separation
a: R =6, A subspace are evaluated numerically
The eigenvalues of the evolution operatfrare
given by the centers of elliptic neighborhoods of
the rapidly narrowing rings. While the dynamical -2,
zeta function is analytic on a strip Ims -1, the

spectral determinant is entire and reveals furthe
families of zeros. (P.E. Rosenqvist)
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Figure 18.2: The eigenvalue condition is satisfied on.
the curveF = 0 the @3, s) plane. The expectation value
of the observablel.19 is given by the slope of the

curve.

18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that weetgiven so far -
the level sumZ20.18, the dynamical zeta functiori.2), the spectral determinant

(18.11):
®
1= X6 t=tBsE), n=n (18.14)
0= 1-3"t.  t=tzpsp) (18.15)
0 = 1-) Qn, Qn = Qn(B. 5(8)) (18.16)
n=1

is an implicit equation for the eigenvalie= s(g) of form F(B, s(8)) = 0. The
eigenvalues = s(B) as a function of3 is sketched in figurd 8.2, the eigenvalue
condition is satisfied on the cunfe = 0. The cycle averaging formulas for the
slope and the curvature gfg) are obtained as inl6.19 by taking derivatives of
the eigenvalue condition. Evaluated aldhg- 0, the first derivative leads to

d
0 = @F(ﬂ, s(B))

— + = s
B dB Isls=sp) das 0B’ s
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and the second derivative B, s(8)) = 0 yields

Ps PF  _dsdPF  (ds\?9%F| oF
w{w o (@) 5 /7: (18.49)
Denoting by
oF 9F
(A = - — R Te=— s

F 9B lp.s=5(p) P~ Oslyssp
<(A— (A))2> = BZ_F (18.19)

F B g s-sip) -

respectively the mean cycle expectation valud,dhe mean cycle period, and the
second derivative df computed foi- (3, s(8)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observalife 19, and its variance:

_ P
@ = o (18.20)
(@-@)y?) = ;—>F<(A—<A))2)F‘ (18.21)

These formulas are the central result of the periodic oHgbty. As we shall
now show, for each choice of the eigenvalue condition famd&(3, s) in (20.19,
(18.2 and (18.11), the above quantities have explicit cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function conditioh8(15, the cycle averaging formulas
(18.17), (18.21) require evaluation of the derivatives of dynamical zetacfion
at a given eigenvalue. Substituting the cycle expansi@?( for dynamical zeta
function we obtain

01l ’
(A, = %7 = Z Adty (18.22)

01 ’ 01 ’
My = 357 - Z Tate, () 1= _Za_ZZ = Z Netr,

where the subscript iy - -), stands for the dynamical zeta function average over

prime cyclesA,, T,, andn, are evaluated on pseudocyclé8 (), and pseudocycle
weightst, = t,(z 8, S(8)) are evaluated at the eigenvals(g). In most applications
B = 0, andg(B) of interest is typically the leading eigenvalsg = $(0) of the
evolution generataf.
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For bounded flows the leading eigenvalue (the escape rateshes s(0) = 0,
the exponengA, — ST, in (18.3 vanishes, so the cycle expansions take a simple
form

Aps + Apy -+ Ap,

R 18.23
R Al (18.23)

(A = Z,(’l)m

and similarly for(T),, (n),. For example, for the complete binary symbolic
dynamics the mean cycle peri¢@), is given by

To T Tox To+ Ty
M, = _+_+( - ) 18.24
7 Aol Al \IAoal  TAoA] (18.24)
( Toor Toi+ To) ( Tour  Toi+ Tl)
[Aoodl  1Ao1Aol Aowal  [AoiAdl )

Note that the cycle expansions for averages are groupethi@teame shadowing
combinations as the dynamical zeta function cycle expandi®.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value efdbhservablea)y
follow by substitution into {8.21). Assuming zero mean drifg) = 0, the cycle
expansion 18.11) for the variance((A - (A))2>[ is given by

, (Ap + Ap ---+Apk)2
(#), = > FDMW. (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a péatlgisimple structure,
with the shadowing apparent already by a term-by-term ictgpe of table18.2.2
For “nice” hyperbolic systems the shadowing ensures exp@ieconvergence
of the dynamical zeta function cycle expansions. This, hawes not the best
achievable convergence. As has been explained in chaptdéor such systems
the spectral determinant constructed from the same cytéetdsse is entire, and
its cycle expansion converges faster than exponentially.practice, the best
convergence is attained by the spectral determinant cyglansion {8.16 and
its derivatives. Thé/ds, 9/9p derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycleamsgion contributions
(18.12 and (8.10.

The cycle averaging formulas are exact, and highly conveifge nice hyperbolic
dynamical systems. An example of its utility is the cycle axgion formula for
the Lyapunov exponent of exampl8.1 Further applications of cycle expansions
will be discussed in chapt@0.
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18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation valorgaa flow, in

continuous time, and sometimes it might be easier to conipimtediscrete time,
from a Poincaré return map. Return tim&slj might vary wildly, and it is not at
all clear that the continuous and discrete time averagesetated in any simple
way. The relationship turns on to be both elegantly simpie, tatally general.

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or tregeviast return time.
For example, if we have evaluated a billiard expectatioruevah)y in terms of
continuous time, and would like to also have the correspandiveragea)qscr
measured in discrete time, given by the number of reflectashbilliard walls,
the two averages are related by

(@dscr= (@ (T), /(M) , (18.26)
where(n), is the average of the number of bounegsalong the cyclep.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 15.3 we defined the Lyapunov exponent for a 1-d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

log|Ap,| +---+log|Ap,|

1 ’
A= — _pet =P T PR 18.27
(), Z 1) [Ap, -+ Apl ( )

For a repeller, the 1/|Ap| weights are replaced by normalized measure (20.10) expnp)/|Apl,

where v is the escape rate.

We mention here without proof that for®Hamiltonian flows such as our game
of pinball there is only one expanding eigenvalue atflZ7) applies as it stands.

18.4 Cycle expansions for finite alphabets

y
J A finite Markov graph like the one given in figufe3.3(d) is a compact

encoding of the transition or the Markov matrix for a giveibshift. It is a sparse

matrix, and the associated determindli.(7) can be written down by inspection:
it is the sum of all possible partitions of the graph into proid of non-intersecting
loops, with each loop carrying a minus sign:

det(1-T) = 1-to — too11 — tooo1 — tooor1 + totoo11 + tooritooos (18.28)
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The simplest application of this determinant is to the eatidun of the topological
entropy; if we set, = Z%, wheren, is the length of thep-cycle, the determinant
reduces to the topological polynomidl3.19.

The determinant1(8.29 is exact for the finite graph figuré3.3(e), as well
as for the associated finite-dimensional transfer opemft@xamplel15.2 For
the associated (infinite dimensional) evolution operatas, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/¢ = 1-to—too11— tooo1+ toooatoo11
—(tooo11— totoo11+ . . . CUrvatures). . (18.29)

The cycle<, 0001 andD011 are théundamental cycles introduced in1@®.7); they
are not shadowed by any combinations of shorter cycles, @tti@basic building
blocks of the dynamics.All other cycles appear togetheh vifieir shadows (for
example, théyoo11—totop11 cOMbination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bdtg and the pseudocycle combination
tarb = tatp in (18.2 have the same weiglta*™, so all curvature combinations
tab —tatp Vanish exactly, and the topological polynomiaB(21) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functionsicedo polynomials,
we are assured that there are just a few fundamental cydiethanall long cycles
can be grouped into curvature combinations. For exampduthdamental cycles
in exercise9.2 are the three 2-cycles which bounce back and forth between tw
disks and the two 3-cycles which visit every disk. Itis onfieathese fundamental
cycles have been included that a cycle expansion is expéztgdrt converging
smoothly, i.e., only fom larger than the lengths of the fundamental cycles are
the curvatures,, (in expansion 18.7)), a measure of the deviations between long
orbits and their short cycle approximants, expected toofaliapidly withn.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovit)

Most dynamical systems of interest have no finite grammagtsmy order in
za cycle expansion may contain unmatched terms which do noeditly into
the almost cancelling curvature corrections. Similary, ihtermittent systems
that we shall discuss in chapt28, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For sygtkras schemes
which collect the pseudocycle terms according to someriiteother than the
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topology of the flow may converge more quickly than exparsibased on the
topological length.

All chaotic systems exhibit some degree of shadowing, amubd ¢runcation
criterion should do its best to respect the shadowing at kgsroximately. If
a long cycle is shadowed by two or more shorter cycles and dheifl smooth,
the period and the action will be additive in sense that théogeof the longer
cycle is approximately the sum of the shorter cycle perid8ignilarly, stability
is multiplicative, so shadowing is approximately presdrbg including all terms
with pseudocycle stability

[Aps - Ap] < Amax (18.30)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which appedgly respect
shadowing are truncations by the pseudocycle period (@rgcand the stability
ordering that we shall discuss here. In these schemes a dyaia®ta function or
a spectral determinant is expanded keeping all terms fociwtie period, action
or stability for a combination of cycles (pseudocycle) ssl¢han a given cuf

The two settings in which the stability ordering may be pratiée to the

ordering by topological cycle length are the cases of baghgrar and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of thetstspace generates the
“optimal” symbolic dynamics. Stability ordering does netjuire understanding
dynamics in such detail: if you can find the cycles, you canstiability ordered
cycle expansions. Stability truncation is thus easier tplément for a generic
dynamical system than the curvature expansi@fs/ which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctraje for near
recurrences. The long trajectory method for detectingesygbreferentially finds
the least unstable cycles, regardless of their topolodgcejth. Another practical
advantage of the method (in contrast to Newton method ses)ydb that it only
finds cycles in a given connected ergodic component of sgadees ignoring
isolated cycles or other ergodic regions elsewhere in tte space.

Why should stability ordered cycle expansion of a dynamiegh function
converge better than the rude trace formu0.9? The argument has essentially
already been laid out in sedt3.7: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations anlty ceacel, while only
the relatively small subsetffacted by the longer and longer pruning rules is not
shadowed. So the error is typically of the order phlsmaller by factoe™ than
the trace formulaZ0.9 error, whereh is the entropy and typical cycle length
for cycles of stabilityA.
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18.5.2 Smoothing

y
J The breaking of exact shadowing cancellations deservéseiucomment.
Partial shadowing which may be present can be (partiallstpred by smoothing
the stability ordered cycle expansions by replacing the Weight for each term
with pseudocycle stabilith = Ap, --- Ap, by f(A)/A. Here,f(A) is a monotonically
decreasing function fronfi(0) = 1 to f(Amax) = 0. No smoothing corresponds to
a step function.

A typical “shadowing error” induced by the cuids due to two pseudocycles
of stability A separated byAA, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of treulting term is of order
1/A — 1/(A + AA) ~ AA/AZ. With smoothing there is an extra term of the form
f’(A)AA/A, which we want to minimise. A reasonable guess might be tp kee
f’(A)/A constant and as small as possible, that is

f(A) = 1—(AA )2

max

The results of a stability ordered expansid8.30 should always be tested
for robustness by varying the ciifd\max. If this introduces significant variations,
smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

y
J Longer but less unstable cycles can give larger contribatio a cycle
expansion than short but highly unstable cycles. In suclatin truncation by
length may require an exponentially large number of verytabis cycles before
a significant longer cycle is first included in the expansi®his situation is best
illustrated by intermittent maps that we shall study in detachapter23, the
simplest of which is the Farey map

_[ fo=x/(1-x 0<x<1/2
f(X)_{fg=(1—X)/x 1/2<x<1 . (18.31)

a map which will reappear in the intermittency chagier

For this map the symbolic dynamics is of complete binary thygmelack of
shadowing is not due to lack of a finite grammar, but rathehéoimntermittency
caused by the existence of the marginal fixed pgint 0, for which the stability
equalsAg = 1. This fixed point does not participate directly in the dymesand is
omitted from cycle expansions. Its presence is felt in thbibties of neighboring
cycles withn consecutive repeats of the symbol 0's whose stability Gltnly as
A ~ 2, in contrast to the most unstable cycles withonsecutive 1's which are
exponentially unstabléAon| ~ [( V5 + 1)/2]2".
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Figure 18.3: Comparison of cycle expansion
truncation schemes for the Farey mag.@J); the
deviation of the truncated cycles expansion for
|1/Zn(0)) from the exact flow conservation value
1/¢£(0) = 0 is a measure of the accuracy of
the truncation. The jagged line is logarithm of ¢
the stability ordering truncation error; the smooth
line is smoothed according to sedi8.5.2 the
diamonds indicate the error due the topological
length truncation, with the maximal cycle length
N shown. They are placed along the stability
cutdf axis at points determined by the condition
that the total number of cycles is the same for both
truncation schemes.
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The symbolic dynamics is of complete binary type. A quickmdn the style
of sect.13.5.2leads to a total of 74,248,450 prime cycles of length 30 &, Iest
including the marginal poinky = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the leasablestycle omitted
has stability of roughlyA; o ~ 30% = 900, and so amounts to al®b correction.
The situation may be much worse than this estimate sugdestause the next,
10%* cycle contributes a similar amount, and could easily rewrgothe error.
Adding up all such omitted terms, we arrive at an estimatedr exf about 3%,
for a cycle-length truncated cycle expansion based on rhare1d pseudocycle
terms! On the other hand, truncating by stability at 8ayax = 3000, only 409
prime cycles sfiice to attain the same accuracy of about 3% error, figra

As the Farey map maps the unit interval onto itself, the legdiigenvalue
of the Perron-Frobenius operator should ecggat 0, so ¥£(0) = 0. Deviation
from this exact result serves as an indication of the comrerg of a given cycle
expansion. The errors offtiérent truncation schemes are indicated in figle3
We see that topological length truncation schemes are ésglgl bad in this case;
stability length truncations are somewhat better, but istther bad. In simple
cases like this one, where intermittency is caused by aesimgrginal fixed point,
the convergence can be improved by going to infinite alplsabet

18.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

§
J A Dirichlet series is defined as

f(9) = Z aje™is
=t

(18.32)

wheres, a; are complex numbers, arid;} is a monotonically increasing series
of real numbersl; < 12 < --- < Aj < ---
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series is the Riemann zeta function for whgh= 1, 1; = Inj. In the present
context, formal series over individual pseudocycles swcfi@ 2 ordered by the
increasing pseudocycle periods are often Dirichlet serfes example, for the
pseudocycle weighil.3), the Dirichlet series is obtained by ordering pseudosycle
by increasing periods, = Tp, + Tp, + ... + Tp,, With the codficients

B (Apy+Apy+..+Ap)

= —————
|AP1AP2 o 'Apk|

T s

whered, is a degeneracy factor, in the case tiapseudocycles have the same
weight.

If the series}, |a;| diverges, the Dirichlet series is absolutely convergent fo

Re s> o, and conditionally convergent for Resso, whereo is theabscissa of
absolute convergence

N
. 1
o= hIll_rp00 supm In Jz:; lajl, (18.33)

ando is theabscissa of conditional convergence

N

Saf.

=1

. 1
oc= ’\llinwsupm In (18.34)

We shall encounter another example of a Dirichlet seriesh@nsemiclassical
guantization, the quantum chaos part@faosBook.org.

Résum é

A cycle expansion is a series representation of a dynamical zeta functionetra
formula or a spectral determinant, with products 7.5 expanded as sums
over pseudocycles, products of the prime cycle weightis

If a flow is hyperbolic and has a topology of a Smale horseshogubshift
of finite type), the dynamical zeta functions are holomaephine spectral det-
erminants are entire, and the spectrum of the evolutionabpeis discrete. The
situation is considerably more reassuring than what gi@eérs of quantum chaos
fear; there is no “abscissa of absolute convergence” ancgnwdpy barier,” the
exponential proliferation of cycles is no problem, spdaleterminants are entire
and converge everywhere, and the topology dictates theehaficycles to be
used in cycle expansion truncations.
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In that case, the basic observation is that the motion inmjcel systems of
few degrees of freedom is in this case organized around &feamental cycles,
with the cycle expansion of the Euler product

Yo=1-) 1t~ ) tn.
f n

regrouped into dominarfundamental contributionst; and decreasingurvature
correctionscy. The fundamental cycles have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that afider orbits can be
approximately pieced together from them. A typical curvatcontribution toch

is adifference of a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tap — tath = tan(1 — taln/tab)

"

The orbits that follow the same symbolic dynamics, sucfablsand a “pseudocycle
{a}{b}, lie close to each other, have similar weights, and for loragel longer
orbits the curvature corrections falffaapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, vaiure expansions
converge very well.

Once a set of the shortest cycles has been found, and thepeyies, stabilities
and integrated observable computed, the cycle averagimgufas such as the
ones associated with the dynamical zeta function

@ = (A /(T
01

’ (') 1 ’
B = =gpz = D A (Me=gez = 3Tl

yield the expectation value (the chaotic, ergodic average the non—-wandering
set) of the observabla(x).

Commentary

Remark 18.1 Pseudocycle expansions. Bowen'’s introduction of shadowingpseudoorbits]4]

was a significant contribution to Smale’s theory. Expras§pseudoorbits” seems to have
been introduced in the Parry and Pollicott’s 1983 pagkrHollowing them M. Berry ]
had used the expression “pseudoorbits” in his 1986 papeli@ndhn zeta and quantum
chaos. Cycle and curvature expansions of dynamical zetifurs and spectral deter-
minants were introduced in refs.(, 2]. Some literature13] refers to the pseudoorbits as
“composite orbits,” and to the cycle expansions as “Ditskeries” (see also rematk.6
and sect18.6).
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Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature expansions

are very reminiscent of cumulant expansions. Inde#8,1Q) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinang.@ifference is that in cycle
expansions eacf, codficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles.  Going fromN, ~ N"
periodic points of lengtim to M, prime cycles reduces the number of computations from
N, to My, = N™1/n. Use of discrete symmetries (chapi€) reduces the number oth
level terms by another factor. While the reformulation @& theory from the tracel.29

to the cycle expansiori8.7) thus does not eliminate the exponential growth in the numbe
of cycles, in practice only the shortest cycles are used,fanthem the computational
labor saving can be significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table18.1.1leads to the temptation of associating curvatures to iddafi cycles, such as
€001 = tooo1 — totoor. Such combinations tend to be numerically small (see fompte
ref. [3], table 1). However, splitting,,’into individual cycle curvatures is not possible in
general P(]; the first example of such ambiguity in the binary cycle exgian is given by
thetigo10s t1001100 « 1 symmetric pair of 6-cycles; the countertetgmtoss in table18.1.1

is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlgvist
and Russberd [] in a study of chaotic dynamics for thg?/?)*/2 potential. The presentation
here runs along the lines of Dettmann and Morrisg] ffor the Lorentz gas which is
hyperbolic but the symbolic dynamics is highly pruned, aettBann and Cvitanovié ]

for a family of intermittent maps. In the applications dissed in the above papers, the
stability ordering yields a considerable improvement dkiertopological length ordering.

In quantum chaos applications cycle expansion cancelatoa #fected by the phases
of pseudocycles (their actions), hermiod ordering rather than stability is frequently
employed.

Remark 18.6 Are cycle expansions Dirichlet series?

Even though some literaturéd] refers to cycle expansions as “Dirichlet series,” they
are not Dirichlet series. Cycle expansions collect coatiins of individual cycles into
groups that correspond to the ¢deents in cumulant expansions of spectral determin-
ants, and the convergence of cycle expansions is contiojieeéneral properties of spec-
tral determinants. Dirichlet series order cycles by theirigds or actions, and are only
conditionally convergentin regions of interest. The afseiof absolute convergence s in
this context called the “entropy barrier”; contrary to thedfuently voiced anxieties, this
number does not necessarily has much to do with the actuatogence of the theory.
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Exercises
18.1. Cycle expansions.  Write programs that implement (b) Show that

18.2.

18.3.

binary symbolic dynamics cycle expansions for (a)
dynamical zeta functions, (b) spectral determinants.
Combined with the cycles computed for a 2-branch
repeller or a 3-disk system they will be useful in problem
that follow.

Escape rate for a 1€ repeller.
exercisel7.1- easy, but long)
Consider again the quadratic may (31

(Continuation of

f(x) = Ax(1-x)

on the unit interval, for definitiveness take eith®r=
9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabdD, 1} (0’ if the iterate is in the
first half of the interval and "1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph df and determine its two fixed
pointsO and1, together with their stabilities.

— 4o
Agy.ey = £2

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

{t=1-to—ty - (tor — tots) — -+

You might note that the convergence as function
of the truncation cycle length is slow. Try to
fix that by treating the\o = 4 cycle separately.
(Continued as exercisis.12)

18.4. Pinball escape rate, semi-analytical. Estimate the 3-

disk pinball escape rate f&® : a = 6 by substituting
analytical cycle stabilities and periods (exerci8&
and exercise9.4) into the appropriate binary cycle
expansion. Compare with the numerical estimate
exercisel5.3

(b) Sketch the two branches 6f*. Determine all 18.5. Pinball escape rate, from numerical cycles. Compute

the prime cycles up to topological length 4 using
your pocket calculator and backwards iteration of
f (see sectl2.2.]).

(c) Determine the leading zero of the zeta function
(17.19 using the weights, = Z%/|A,| whereA,

is the stability of thep cycle.

Show that forA = 9/2 the escape rate of
the repeller is B61509.. using the spectral
determinant, with the same cycle weight. If
you have takenA = 6, the escape rate is
in 0.83149298.., as shown in solutionl8.2
Compare the cdgcients of the spectral determin-

«

=

the escape rate foR : a = 6 3-disk pinball
by substituting list of numerically computed cycle
stabilities of exercisel2.5 into the binary cycle
expansion.

18.6. Pinball resonances, in the complex plane. Plot the

logarithm of the absolute value of the dynamical zeta

function andor the spectral determinant cycle expansion

(18.5 as contour plots in the complex plane. Do

you find zeros other than the one corresponding to the
complex one? Do you see evidence for a finite radius of

convergence for either cycle expansion?

antand the zeta function cycle expansions. Whictg.7. Counting the 3-disk psudocycles. (Continuation of

expansion converges faster?

(Per Rosenqyvist)

Escape rate for the Ulam map. (Medium; repeat of
exercisel2.1) We will try to compute the escape rate for
the Ulam map (2.19

f(x) = 4x(1 - x),

using the method of cycle expansions. The answer

should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatAg = 4, A1 = -2, Ag1 = —4, Ago1 = -8
andAo1; = 8.
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exercisel3.12) Verify that the number of terms in the
3-disk pinball curvature expansiohg.39 is given by

I_l(1+ tp)

p

1-32-278
1-32-228

_ 26+ 12z + 27)
= 1+322+223+41—3z2—223

= 1+32+22+6Z+122
+202° + 487" + 847 + 1847° + . ..

This means that, for example; has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.39.

EXERCISES

18.8.

18.9.

3-disk unfactorized zeta cycle expansions. Check
that the curvature expansiorl§.2 for the 3-disk
pinball, assuming no symmetries between disks, is given

by

(1-Zt12)(1 - Ztia)(1 - Zt2a)

(1- 2129 (1 - Ptig)(1 - Zt1219)

(1 - Zt1232)(1 - Ptasad)(1 — Ptizazd -
= 1- 2ty Plys— Plar - Ptazs + iz
~Z{(t1213— tiztya) + (1232 — tiotos)
+(t1323— taatza)]

—2[(t12123— taztaza) + -] — -+ (18.35)

Y =

The symmetrically arranged 3-disk pinball cycle
expansion of the Euler product.? (see tablel3.5.2
and figure9.3) is given by:

(1-2t12)°(1 - Ptiz9*(1 - Pt1219°
(1-2t12129%(1 - Pt121219°
(1-Zti21zd®. ..

= 1-32t;- 2Pt~ 37 (tip1z— 2,)
—62 (t12123— t1zti23)

~2 (Bt121213+ 3ti21303+ 15y — Otaotiniz— t359)
—62" (t1212123+ t1o12313+ tr213103+ Ifztlzg

¢ =

—3t12t12123— t12at1219)
-32 (212121215t 2121315+ 212121328
+2112123123+ 212123213+ 112132123

+ 3t 213 + tiath,g — Blistizizis

- Btyati1323— Atroatizizs— tiy9) —(18.36)

Remark 18.7 Unsymmetrized cycle expansions.

The above 3-disk cycle expansions might be useful
for cross-checking purposes, but, as we shall see
in chapter19, they are not recommended for actual

computations, as the factorized zeta functions yield
much better convergence.

4—disk unfactorized dynamical zeta function cycle
expansions  For the symmetriclly arranged 4-disk
pinball the symmetry group is 4 of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table13.5.2:

(1-Zt12)*"(1 - 2t13)*(1 - Ptig)®

(1 - 211219%(1 - Zt1210*(1 — Pt123d)?

(1- 21249 (1 - Pti2129%(1 - 25t12124)81 ’
(1-Pt12139%(1 - Pt12149°

(1 - Ptiza19%(1 - Ptizard® -

Y¢ =

8.11.

(18.37)
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and the cycle expansion is given by

1/, = 1-Z(4tp+2ts) - 82t

~Z(8ti21a+ Atio1a+ 2tioaa+ Alioas
—612, — t2; - 8t1st13)

—82(t12123+ tiz124+ tiz1sa+ tiznas+ t;
+t12413— 411ot103 — 2t13t123)
—48(2Sg + Sa+ £, + 3, tiz + tyof]
—8t1oti213— 4tiotiz1g

—2t1ot1234 — 4tiotioaz

—4tigtio13— 2tiatizia — tistizas
—~2tiatipa3— Ttyg) — -+ (18

where in the cofficient toZ® the abbreviation$g an
S, stand for the sums over the weights of the 12 ¢
with multiplicity 8 and the 5 orbits of multiplicity
respectively; the orbits are listed in taklg.5.2

Tail resummations. A simple illustration of such t:
resummation is thé function for the Ulam map1(2.18
for which the cycle structure is exceptionally simple
eigenvalue of thex, = O fixed point is 4, while tf
eigenvalue of any otham-cycle is+2". Typical cycl
weights used in thermodynamic averaging @are 47z
t1 =t =27t, =t% for p# 0. The simplicity of th
cycle eigenvalues enables us to evaluate(tifienctior
by a simple trick: we note that if the value of amcycle
eigenvalue werg¢", (17.21) would yield /¢ = 1 - 2t
There is only one cycle, thg, fixed point, that has
different weight (% to), so we factor it out, multiply tl
rest by (1-t)/(1 - t), and obtain a rational function

(1-20)(1-to)

R

(18.39
Consider how we would have detected the pole a
1/t without the above trick. As th@ fixed point i
isolated in its stability, we would have kept the fa
(1-to) in (18.7 unexpanded, and noted that all curve
combinations in 18.7) which include thety factor ar
unbalanced, so that the cycle expansion is an ir
series:

1-tp) = (I-to)(1-t-t2—t3-t%—.. )(18.4C
[T(-%)
P

(we shall return to such infinite series in chap?&)
The geometric series in the brackets sums ug&39
Had we expanded the{1y) factor, we would have not
that the ratio of the successive curvatures is ex
Cni1/Cn = t; summing we would recover the rationy
function (18.39.

Escape rate for the Rssler flow. (continuatio
of exercisel2.7) Try to compute the escape rate
the Rossler flow Z.17 using the method of cy«
expansions. The answer should be zero, as n



