
Chapter 18

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

T E  representations of spectral determinants (17.9) and dyn-
amical zeta functions (17.15) are really only a shorthand notation - the
zeros of the individual factors arenot the zeros of the zeta function, and

convergence of such objects is far from obvious. Now we shallgive meaning
to the dynamical zeta functions and spectral determinants by expanding them as
cycle expansions, series representations ordered by increasing topological cycle
length, with products in (17.9), (17.15) expanded as sums overpseudocycles,
products oftp’s. The zeros of correctly truncated cycle expansions yieldthe
desired eigenvalues, and the expectation values of observables are given by the
cycle averaging formulas obtained from the partial derivatives of dynamical zeta
functions (or spectral determinants).

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (17.15) evaluated? We start by computing
the lengths and stability eigenvalues of the shortest cycles. This always requires
numerical work, such as the Newton method searches for periodic solutions; we
shall assume that the numerics is under control, and thatall short cycles up to
a given (topological) length have been found. Examples of the data required for
application of periodic orbit formulas are the lists of cycles given in table27.2and
exercise12.11. It is important not to missany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cycles longer than the shortest
omitted does not improve the accuracy (more precisely, improves it, but painfully
slowly).

Expand the dynamical zeta function (17.15) as a formal power series,

1/ζ =
∏

p

(1− tp) = 1−
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk (18.1)
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where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weightstp. The formal power series (18.1) is now compactly written
as

1/ζ = 1−
∑′

π

tπ . (18.2)

For k > 1, tπ are weights ofpseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequencep1p2 . . . pk along segmentsp1,
p2, . . ., pk.

∑′ denotes the restricted sum, for which any given prime cyclep
contributes at most once to a given pseudocycle weighttπ.

The pseudocycle weight, i.e., the product of weights (17.10) of prime cycles
comprising the pseudocycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπznπ , (18.3)

depends on the pseudocycle topological lengthnπ, integrated observableAπ, period
Tπ, and stabilityΛπ

nπ = np1 + . . . + npk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , Λπ = Λp1Λp2 · · ·Λpk . (18.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used interchangeably;
while “periodic orbit” is more precise, “cycle” (which has many other uses in
mathematics) is easier on the ear than “pseudo-periodic-orbit.” While in Soviet
times acronyms were a rage (and in France they remain so), we shy away from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a complete
binary symbolic dynamics. In this case the Euler product (17.15) is given by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011) (18.5)

(1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

(1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

(see table10.1), and the first few terms of the expansion (18.2) ordered by increasing
total pseudocycle length are:

1/ζ = 1− t0 − t1 − t01− t001− t011− t0001− t0011− t0111− . . .
+t0t1 + t0t01+ t01t1 + t0t001+ t0t011+ t001t1 + t011t1
−t0t01t1 − . . . (18.6)
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We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as acycle expansion.

The next step is the key step: regroup the terms into the dominantfundamental
contributionst f and the decreasingcurvature corrections ˆcn, each ˆcn split into
prime cyclesp of length np=n grouped together with pseudocycles whose full
itineraries build up the itinerary ofp. For the binary case this regrouping is given
by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)] − [(t001− t01t0) + (t011− t01t1)]

−[(t0001− t0t001) + (t0111− t011t1)

+(t0011− t001t1 − t0t011+ t0t01t1)] − . . .
= 1−

∑

f

t f −
∑

n

ĉn . (18.7)

All terms in this expansion up to lengthnp = 6 are given in table18.1.1. We
refer to such regrouped series ascurvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finite grammar.
The fundamental cyclest0, t1 have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits can be approximately
pieced together from them. The fundamental part of a cycle expansion is given
by the sum of the products of all non-intersecting loops of the associated Markov
graph. The terms grouped in brackets are the curvature corrections; the terms

[section 13.3]

[section 18.4]
grouped in parenthesis are combinations of longer cycles and corresponding sequences
of “shadowing” pseudocycles. If all orbits are weighted equally (tp = znp), such
combinations cancel exactly, and the dynamical zeta function reduces to the topological
polynomial (13.21). If the flow is continuous and smooth, orbits of similar symbolic
dynamics will traverse the same neighborhoods and will havesimilar weights,
and the weights in such combinations will almost cancel. Theutility of cycle
expansions of dynamical zeta functions and spectral determinants, in contrast
to direct averages over periodic orbits such as the trace formulas discussed in
sect.20.5, lies precisely in this organization into nearly cancelingcombinations:
cycle expansions are dominated by short cycles, with long cycles giving exponentially
decaying corrections.

In the case where we know of no finite grammar symbolic dynamics that
would help us organize the cycles, the best thing to use is astability cutoff which
we shall discuss in sect.18.5. The idea is to truncate the cycle expansion by
including only the pseudocycles such that|Λp1 · · ·Λpk | ≤ Λmax, with the cutoff
Λmax equal to or greater than the most unstableΛp in the data set.
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Table 18.1: The binary curvature expansion (18.7) up to length 6, listed in such way that
the sum of terms along thepth horizontal line is the curvature ˆcp associated with a prime
cycle p, or a combination of prime cycles such as thet100101+ t100110pair.
- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatednumerically by first
computing the weightstp = tp(β, s) of all prime cyclesp of topological length
np ≤ N for given fixedβ and s. Denote by subscript (i) the ith prime cycle
computed, ordered by the topological lengthn(i) ≤ n(i+1). The dynamical zeta
function 1/ζN truncated to thenp ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1− t(i)z
n(i)) , (18.8)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is theNth order polynomial approximation

1/ζN = 1−
N

∑

n=1

cnzn . (18.9)

In other words, a cycle expansion is a Taylor expansion in thedummy variable
z raised to the topological cycle length. If both the number ofcycles and their
individual weights grow not faster than exponentially withthe cycle length, and
we multiply the weight of each cyclep by a factor znp , the cycle expansion
converges for sufficiently small|z|.

If the dynamics is given by iterated mapping, the leading zero of (18.9) as
function of z yields the leading eigenvalue of the appropriate evolutionoperator.
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For continuous time flows,z is a dummy variable that we set toz = 1, and the
leading eigenvalue of the evolution operator is given by theleading zero of (18.9)
as function ofs.

18.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det
(

1− Mp1p2

)

, det
(

1− Mp1

)

det
(

1− Mp2

)

,

the cycle expansions for the spectral determinant (17.9) are somewhat less transparent
than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (16.10) truncated to all prime cyclesp
and their repeats such thatnpr ≤ N:

tr
zL

1− zL

∣

∣

∣

∣

∣

(i)
= tr

zL
1− zL

∣

∣

∣

∣

∣

(i−1)
+ n(i)

n(i)r≤N
∑

r=1

e(β·A(i)−sT(i))r
∣

∣

∣

∣

∏

(

1− Λr
(i), j

)

∣

∣

∣

∣

zn(i)r

tr
zL

1− zL

∣

∣

∣

∣

∣

N
=

N
∑

n=1

Cnzn , Cn = trLn . (18.10)

This is done numerically: the periodic orbit data set consists of the list of the
cycle periodsTp, the cycle stability eigenvaluesΛp,1,Λp,2, . . . ,Λp,d, and the cycle
averages of the observableAp for all prime cyclesp such thatnp ≤ N. The
coefficient of znpr is then evaluated numerically for the given (β, s) parameter
values. Now that we have an expansion for the trace formula (16.9) as a power
series, we compute theNth order approximation to the spectral determinant (17.3),

det (1− zL)|N = 1−
N

∑

n=1

Qnzn , Qn = nth cumulant, (18.11)

as follows. The logarithmic derivative relation (17.4) yields

(

tr
zL

1− zL

)

det (1− zL) = −z
d
dz

det (1− zL)

(C1z +C2z2 + · · ·)(1− Q1z − Q2z2 − · · ·) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so thenth order term of the spectral determinant cycle (or in this case, the cumulant)
expansion is given recursively by the trace formula expansion coefficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (18.12)
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Table 18.2: 3-disk repeller escape rates computed from the cycle expansions of the
spectral determinant (17.6) and the dynamical zeta function (17.15), as function of the
maximal cycle lengthN. The first column indicates the disk-disk center separation
to disk radius ratioR:a, the second column gives the maximal cycle length used, and
the third the estimate of the classical escape rate from the fundamental domain spec-
tral determinant cycle expansion. As for larger disk-disk separations the dynamics
is more uniform, the convergence is better forR:a = 6 than for R:a = 3. For
comparison, the fourth column lists a few estimates from from the fundamental domain
dynamical zeta function cycle expansion (18.7), and the fifth from the full 3-disk cycle
expansion (18.36). The convergence of the fundamental domain dynamical zetafunction
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functionhas still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det (s − A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Given the trace formula (18.10) truncated tozN , we now also have the spectral
determinant truncated tozN .

The same program can also be reused to compute the dynamical zeta function
cycle expansion (18.9), by replacing

∏

(

1− Λr
(i), j

)

in (18.10) by the product of
expanding eigenvaluesΛ(i) =

∏

eΛ(i),e (see sect.17.3).

The calculation of the leading eigenvalue of a given continuous flow evolution
operator is now straightforward. After the prime cycles andthe pseudocycles have
been grouped into subsets of equal topological length, the dummy variable can be
set equal toz = 1. With z = 1, expansion (18.11) is the cycle expansion for (17.6),
the spectral determinant det (s − A) . We varys in cycle weights, and determine
the eigenvaluesα by finding s = sα for which (18.11) vanishes. As an example,
the convergence of a leading eigenvalue for a nice hyperbolic system is illustrated
in table 18.2.2by the listing of pinball escape rateγ estimates computed from
truncations of (18.7) and (18.11) to different maximal cycle lengths.

[chapter 21]

The pleasant surprise is that the coefficients in these cycle expansions can be
proven to fall off exponentially or even faster, due to analyticity of det (s −A) or

[chapter 21]
1/ζ(s) for s values well beyond those for which the corresponding trace formula
diverges.

18.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues of the
evolution operator beyond the leading one. A convenient wayto search for these
is by plotting either the absolute magnitude ln|det (s−A)| or the phase of spectral
determinants and dynamical zeta functions as functions of the complex variables.
The eye is guided to the zeros of spectral determinants and dynamical zeta func-
tions by means of complexs plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different colors; zeros
emerge as centers of elliptic neighborhoods of rapidly changing colors. Detailed
scans of the whole area of the complexs plane under investigation and searches
for the zeros of spectral determinants, figure18.1, reveal complicated patterns of
resonances even for something so simple as the 3-disk game ofpinball. With
a good starting guess (such as a location of a zero suggested by the complexs
scan of figure18.1), a zero 1/ζ(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (12.4), with themth
Newton estimate given by

sm+1 = sm −
(

ζ(sm)
∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)
〈T〉ζ

. (18.13)

The dominator〈T〉ζ required for the Newton iteration is given below, by the
cycle expansion (18.22). We need to evaluate it anyhow, as〈T〉ζ enters our cycle
averaging formulas.
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Figure 18.1: Examples of the complexs plane
scans: contour plots of the logarithm of the
absolute values of (a) 1/ζ(s), (b) spectral deter-
minant det (s−A) for the 3-disk system, separation
a : R = 6, A1 subspace are evaluated numerically.
The eigenvalues of the evolution operatorL are
given by the centers of elliptic neighborhoods of
the rapidly narrowing rings. While the dynamical
zeta function is analytic on a strip Im s≥ −1, the
spectral determinant is entire and reveals further
families of zeros. (P.E. Rosenqvist)

Figure 18.2: The eigenvalue condition is satisfied on
the curveF = 0 the (β, s) plane. The expectation value
of the observable (15.12) is given by the slope of the
curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far -
the level sum (20.18), the dynamical zeta function (18.2), the spectral determinant
(18.11):

1 =

(n)
∑

i

ti , ti = ti(β, s(β)) , ni = n , (18.14)

0 = 1−
∑′

π

tπ , tπ = tπ(z, β, s(β)) (18.15)

0 = 1−
∞
∑

n=1

Qn , Qn = Qn(β, s(β)) , (18.16)

is an implicit equation for the eigenvalues = s(β) of form F(β, s(β)) = 0. The
eigenvalues = s(β) as a function ofβ is sketched in figure18.2; the eigenvalue
condition is satisfied on the curveF = 0. The cycle averaging formulas for the
slope and the curvature ofs(β) are obtained as in (15.12) by taking derivatives of
the eigenvalue condition. Evaluated alongF = 0, the first derivative leads to

0 =
d

dβ
F(β, s(β))

=
∂F
∂β
+

ds
dβ
∂F
∂s

∣

∣

∣

∣

∣

s=s(β)
=⇒ ds

dβ
= −∂F
∂β
/
∂F
∂s
, (18.17)
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and the second derivative ofF(β, s(β)) = 0 yields

d2s

dβ2
= −















∂2F

∂β2
+ 2

ds
dβ
∂2F
∂β∂s

+

(

ds
dβ

)2
∂2F

∂s2















/
∂F
∂s
. (18.18)

Denoting by

〈A〉F = − ∂F
∂β

∣

∣

∣

∣

∣

β,s=s(β)
, 〈T〉F =

∂F
∂s

∣

∣

∣

∣

∣

β,s=s(β)
,

〈

(A − 〈A〉)2
〉

F
=
∂2F

∂β2

∣

∣

∣

∣

∣

∣

β,s=s(β)

(18.19)

respectively the mean cycle expectation value ofA, the mean cycle period, and the
second derivative ofF computed forF(β, s(β)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observable (15.12), and its variance:

〈a〉 = 〈A〉F
〈T〉F

(18.20)

〈

(a − 〈a〉)2
〉

=
1
〈T〉F

〈

(A − 〈A〉)2
〉

F
. (18.21)

These formulas are the central result of the periodic orbit theory. As we shall
now show, for each choice of the eigenvalue condition function F(β, s) in (20.18),
(18.2) and (18.11), the above quantities have explicit cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (18.15), the cycle averaging formulas
(18.17), (18.21) require evaluation of the derivatives of dynamical zeta function
at a given eigenvalue. Substituting the cycle expansion (18.2) for dynamical zeta
function we obtain

〈A〉ζ := − ∂
∂β

1
ζ
=

∑′
Aπtπ (18.22)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles,Aπ, Tπ, andnπ are evaluated on pseudocycles (18.4), and pseudocycle
weightstπ = tπ(z, β, s(β)) are evaluated at the eigenvalues(β). In most applications
β = 0, ands(β) of interest is typically the leading eigenvalues0 = s0(0) of the
evolution generatorA.
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For bounded flows the leading eigenvalue (the escape rate) vanishes,s(0) = 0,
the exponentβAπ − sTπ in (18.3) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (18.23)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(

T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)

(18.24)

+

(

T001

|Λ001|
− T01+ T0

|Λ01Λ0|

)

+

(

T011

|Λ011|
− T01+ T1

|Λ01Λ1|

)

+ . . . .

Note that the cycle expansions for averages are grouped intothe same shadowing
combinations as the dynamical zeta function cycle expansion (18.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable〈a〉
follow by substitution into (18.21). Assuming zero mean drift〈a〉 = 0, the cycle
expansion (18.11) for the variance

〈

(A − 〈A〉)2
〉

ζ
is given by

〈

A2
〉

ζ
=

∑′
(−1)k+1

(

Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,
with the shadowing apparent already by a term-by-term inspection of table18.2.2.
For “nice” hyperbolic systems the shadowing ensures exponential convergence
of the dynamical zeta function cycle expansions. This, however, is not the best
achievable convergence. As has been explained in chapter21, for such systems
the spectral determinant constructed from the same cycle data base is entire, and
its cycle expansion converges faster than exponentially. In practice, the best
convergence is attained by the spectral determinant cycle expansion (18.16) and
its derivatives. The∂/∂s, ∂/∂β derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycle expansion contributions
(18.12) and (18.10).

The cycle averaging formulas are exact, and highly convergent for nice hyperbolic
dynamical systems. An example of its utility is the cycle expansion formula for
the Lyapunov exponent of example18.1. Further applications of cycle expansions
will be discussed in chapter20.
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18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow, in
continuous time, and sometimes it might be easier to computeit in discrete time,
from a Poincaré return map. Return times (3.1) might vary wildly, and it is not at
all clear that the continuous and discrete time averages arerelated in any simple
way. The relationship turns on to be both elegantly simple, and totally general.

The mean cycle period〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average〈a〉dscr
measured in discrete time, given by the number of reflectionsoff billiard walls,
the two averages are related by

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ , (18.26)

where〈n〉ζ is the average of the number of bouncesnp along the cyclep.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 15.3 we defined the Lyapunov exponent for a 1-d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (18.27)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (20.10) exp(γnp)/|Λp|,
where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such as our game
of pinball there is only one expanding eigenvalue and (18.27) applies as it stands.

18.4 Cycle expansions for finite alphabets

A finite Markov graph like the one given in figure13.3(d) is a compact
encoding of the transition or the Markov matrix for a given subshift. It is a sparse
matrix, and the associated determinant (13.17) can be written down by inspection:
it is the sum of all possible partitions of the graph into products of non-intersecting
loops, with each loop carrying a minus sign:

det (1− T ) = 1− t0 − t0011− t0001− t00011+ t0t0011+ t0011t0001 (18.28)
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The simplest application of this determinant is to the evaluation of the topological
entropy; if we settp = znp , wherenp is the length of thep-cycle, the determinant
reduces to the topological polynomial (13.18).

The determinant (18.28) is exact for the finite graph figure13.3 (e), as well
as for the associated finite-dimensional transfer operatorof example15.2. For
the associated (infinite dimensional) evolution operator,it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1− t0 − t0011− t0001+ t0001t0011

−(t00011− t0t0011+ . . . curvatures). . . (18.29)

The cycles0, 0001 and0011 are thefundamental cycles introduced in (18.7); they
are not shadowed by any combinations of shorter cycles, and are the basic building
blocks of the dynamics.All other cycles appear together with their shadows (for
example, thet00011−t0t0011combination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bothtab and the pseudocycle combination
ta+b = tatb in (18.2) have the same weightzna+nb , so all curvature combinations
tab− tatb vanish exactly, and the topological polynomial (13.21) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polynomials,
we are assured that there are just a few fundamental cycles and that all long cycles
can be grouped into curvature combinations. For example, the fundamental cycles
in exercise9.2 are the three 2-cycles which bounce back and forth between two
disks and the two 3-cycles which visit every disk. It is only after these fundamental
cycles have been included that a cycle expansion is expectedto start converging
smoothly, i.e., only forn larger than the lengths of the fundamental cycles are
the curvatures ˆcn (in expansion (18.7)), a measure of the deviations between long
orbits and their short cycle approximants, expected to falloff rapidly with n.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, soat any order in
z a cycle expansion may contain unmatched terms which do not fitneatly into
the almost cancelling curvature corrections. Similarly, for intermittent systems
that we shall discuss in chapter23, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For such systems schemes
which collect the pseudocycle terms according to some criterion other than the
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topology of the flow may converge more quickly than expansions based on the
topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing at least approximately. If
a long cycle is shadowed by two or more shorter cycles and the flow is smooth,
the period and the action will be additive in sense that the period of the longer
cycle is approximately the sum of the shorter cycle periods.Similarly, stability
is multiplicative, so shadowing is approximately preserved by including all terms
with pseudocycle stability

∣

∣

∣Λp1 · · ·Λpk

∣

∣

∣ ≤ Λmax (18.30)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately respect
shadowing are truncations by the pseudocycle period (or action) and the stability
ordering that we shall discuss here. In these schemes a dynamical zeta function or
a spectral determinant is expanded keeping all terms for which the period, action
or stability for a combination of cycles (pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the state space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can usestability ordered
cycle expansions. Stability truncation is thus easier to implement for a generic
dynamical system than the curvature expansions (18.7) which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for detecting cycles preferentially finds
the least unstable cycles, regardless of their topologicallength. Another practical
advantage of the method (in contrast to Newton method searches) is that it only
finds cycles in a given connected ergodic component of state space, ignoring
isolated cycles or other ergodic regions elsewhere in the state space.

Why should stability ordered cycle expansion of a dynamicalzeta function
converge better than the rude trace formula (20.9)? The argument has essentially
already been laid out in sect.13.7: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations and nearly cancel, while only
the relatively small subset affected by the longer and longer pruning rules is not
shadowed. So the error is typically of the order of 1/Λ, smaller by factorehT than
the trace formula (20.9) error, whereh is the entropy andT typical cycle length
for cycles of stabilityΛ.
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18.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further comment.
Partial shadowing which may be present can be (partially) restored by smoothing
the stability ordered cycle expansions by replacing the 1/Λ weight for each term
with pseudocycle stabilityΛ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) is a monotonically
decreasing function fromf (0) = 1 to f (Λmax) = 0. No smoothing corresponds to
a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudocycles
of stability Λ separated by∆Λ, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of the resulting term is of order
1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is an extra term of the form
f ′(Λ)∆Λ/Λ, which we want to minimise. A reasonable guess might be to keep
f ′(Λ)/Λ constant and as small as possible, that is

f (Λ) = 1−
(

Λ

Λmax

)2

The results of a stability ordered expansion (18.30) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion.This situation is best
illustrated by intermittent maps that we shall study in detail in chapter23, the
simplest of which is the Farey map

f (x) =

{

f0 = x/(1− x) 0 ≤ x ≤ 1/2
f1 = (1− x)/x 1/2 ≤ x ≤ 1 ,

(18.31)

a map which will reappear in the intermittency chapter23.

For this map the symbolic dynamics is of complete binary type, so lack of
shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed pointx0 = 0, for which the stability
equalsΛ0 = 1. This fixed point does not participate directly in the dynamics and is
omitted from cycle expansions. Its presence is felt in the stabilities of neighboring
cycles withn consecutive repeats of the symbol 0’s whose stability fallsof only as
Λ ∼ n2, in contrast to the most unstable cycles withn consecutive 1’s which are
exponentially unstable,|Λ01n | ∼ [(

√
5+ 1)/2]2n.
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Figure 18.3: Comparison of cycle expansion
truncation schemes for the Farey map (18.31); the
deviation of the truncated cycles expansion for
|1/ζN (0)| from the exact flow conservation value
1/ζ(0) = 0 is a measure of the accuracy of
the truncation. The jagged line is logarithm of
the stability ordering truncation error; the smooth
line is smoothed according to sect.18.5.2; the
diamonds indicate the error due the topological
length truncation, with the maximal cycle length
N shown. They are placed along the stability
cutoff axis at points determined by the condition
that the total number of cycles is the same for both
truncation schemes.
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The symbolic dynamics is of complete binary type. A quick count in the style
of sect.13.5.2leads to a total of 74,248,450 prime cycles of length 30 or less, not
including the marginal pointx0 = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the least unstable cycle omitted
has stability of roughlyΛ1030 ∼ 302 = 900, and so amounts to a 0.1% correction.
The situation may be much worse than this estimate suggests,because the next,
1031 cycle contributes a similar amount, and could easily reinforce the error.
Adding up all such omitted terms, we arrive at an estimated error of about 3%,
for a cycle-length truncated cycle expansion based on more than 109 pseudocycle
terms! On the other hand, truncating by stability at sayΛmax = 3000, only 409
prime cycles suffice to attain the same accuracy of about 3% error, figure18.3.

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equals0 = 0, so 1/ζ(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given cycle
expansion. The errors of different truncation schemes are indicated in figure18.3.
We see that topological length truncation schemes are hopelessly bad in this case;
stability length truncations are somewhat better, but still rather bad. In simple
cases like this one, where intermittency is caused by a single marginal fixed point,
the convergence can be improved by going to infinite alphabets.

18.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

A Dirichlet series is defined as

f (s) =
∞
∑

j=1

a je
−λ j s (18.32)

wheres, a j are complex numbers, and{λ j} is a monotonically increasing series
of real numbersλ1 < λ2 < · · · < λ j < · · ·. A classical example of a Dirichlet
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series is the Riemann zeta function for whicha j = 1, λ j = ln j. In the present
context, formal series over individual pseudocycles such as (18.2) ordered by the
increasing pseudocycle periods are often Dirichlet series. For example, for the
pseudocycle weight (18.3), the Dirichlet series is obtained by ordering pseudocycles
by increasing periodsλπ = Tp1 + Tp2 + . . . + Tpk , with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )
∣

∣

∣Λp1Λp2 . . .Λpk

∣

∣

∣

dπ ,

wheredπ is a degeneracy factor, in the case thatdπ pseudocycles have the same
weight.

If the series
∑ |a j| diverges, the Dirichlet series is absolutely convergent for

Re s> σa and conditionally convergent for Re s> σc, whereσa is theabscissa of
absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N

∑

j=1

|a j| , (18.33)

andσc is theabscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

a j

∣

∣

∣

∣

∣

∣

∣

∣

. (18.34)

We shall encounter another example of a Dirichlet series in the semiclassical
quantization, the quantum chaos part ofChaosBook.org.

Résum é

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (17.15) expanded as sums
overpseudocycles, products of the prime cycle weightstp.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a subshift
of finite type), the dynamical zeta functions are holomorphic, the spectral det-
erminants are entire, and the spectrum of the evolution operator is discrete. The
situation is considerably more reassuring than what practitioners of quantum chaos
fear; there is no “abscissa of absolute convergence” and no “entropy barier,” the
exponential proliferation of cycles is no problem, spectral determinants are entire
and converge everywhere, and the topology dictates the choice of cycles to be
used in cycle expansion truncations.
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In that case, the basic observation is that the motion in dynamical systems of
few degrees of freedom is in this case organized around a fewfundamental cycles,
with the cycle expansion of the Euler product

1/ζ = 1−
∑

f

t f −
∑

n

ĉn,

regrouped into dominantfundamental contributionst f and decreasingcurvature
corrections ˆcn. The fundamental cyclest f have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ˆcn

is adifference of a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tab − tatb = tab(1− tatb/tab)

The orbits that follow the same symbolic dynamics, such as{ab} and a “pseudocycle”
{a}{b}, lie close to each other, have similar weights, and for longer and longer
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, curvature expansions
converge very well.

Once a set of the shortest cycles has been found, and the cycleperiods, stabilities
and integrated observable computed, the cycle averaging formulas such as the
ones associated with the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = − ∂
∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–wandering
set) of the observablea(x).

Commentary

Remark 18.1 Pseudocycle expansions. Bowen’s introduction of shadowingǫ-pseudoorbits [24]
was a significant contribution to Smale’s theory. Expression “pseudoorbits” seems to have
been introduced in the Parry and Pollicott’s 1983 paper [4]. Following them M. Berry [9]
had used the expression “pseudoorbits” in his 1986 paper on Riemann zeta and quantum
chaos. Cycle and curvature expansions of dynamical zeta functions and spectral deter-
minants were introduced in refs. [10, 2]. Some literature [13] refers to the pseudoorbits as
“composite orbits,” and to the cycle expansions as “Dirichlet series” (see also remark18.6
and sect.18.6).
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Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature expansions
are very reminiscent of cumulant expansions. Indeed, (18.12) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinant.The difference is that in cycle
expansions eachQn coefficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles. Going from Nn ≈ Nn

periodic points of lengthn to Mn prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (chapter19) reduces the number ofnth
level terms by another factor. While the reformulation of the theory from the trace (16.28)
to the cycle expansion (18.7) thus does not eliminate the exponential growth in the number
of cycles, in practice only the shortest cycles are used, andfor them the computational
labor saving can be significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table18.1.1leads to the temptation of associating curvatures to individual cycles, such as
ĉ0001 = t0001− t0t001. Such combinations tend to be numerically small (see for example
ref. [3], table 1). However, splitting ˆcn into individual cycle curvatures is not possible in
general [20]; the first example of such ambiguity in the binary cycle expansion is given by
thet100101, t1001100↔ 1 symmetric pair of 6-cycles; the countertermt001t011 in table18.1.1
is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [12] in a study of chaotic dynamics for the (x2y2)1/a potential. The presentation
here runs along the lines of Dettmann and Morriss [13] for the Lorentz gas which is
hyperbolic but the symbolic dynamics is highly pruned, and Dettmann and Cvitanović [14]
for a family of intermittent maps. In the applications discussed in the above papers, the
stability ordering yields a considerable improvement overthe topological length ordering.
In quantum chaos applications cycle expansion cancelations are affected by the phases
of pseudocycles (their actions), henceperiod ordering rather than stability is frequently
employed.

Remark 18.6 Are cycle expansions Dirichlet series?

Even though some literature [13] refers to cycle expansions as “Dirichlet series,” they
are not Dirichlet series. Cycle expansions collect contributions of individual cycles into
groups that correspond to the coefficients in cumulant expansions of spectral determin-
ants, and the convergence of cycle expansions is controlledby general properties of spec-
tral determinants. Dirichlet series order cycles by their periods or actions, and are only
conditionally convergent in regions of interest. The abscissa of absolute convergence is in
this context called the “entropy barrier”; contrary to the frequently voiced anxieties, this
number does not necessarily has much to do with the actual convergence of the theory.
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Exercises

18.1. Cycle expansions. Write programs that implement
binary symbolic dynamics cycle expansions for (a)
dynamical zeta functions, (b) spectral determinants.
Combined with the cycles computed for a 2-branch
repeller or a 3-disk system they will be useful in problem
that follow.

18.2. Escape rate for a 1-d repeller. (Continuation of
exercise17.1- easy, but long)
Consider again the quadratic map (17.31)

f (x) = Ax(1− x)

on the unit interval, for definitiveness take eitherA =
9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabet{0, 1} (’0’ if the iterate is in the
first half of the interval and ’1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph off and determine its two fixed
points0 and1, together with their stabilities.

(b) Sketch the two branches off −1. Determine all
the prime cycles up to topological length 4 using
your pocket calculator and backwards iteration of
f (see sect.12.2.1).

(c) Determine the leading zero of the zeta function
(17.15) using the weightstp = znp/|Λp| whereΛp

is the stability of thep cycle.

(d) Show that for A = 9/2 the escape rate of
the repeller is 0.361509. . . using the spectral
determinant, with the same cycle weight. If
you have takenA = 6, the escape rate is
in 0.83149298. . ., as shown in solution18.2.
Compare the coefficients of the spectral determin-
ant and the zeta function cycle expansions. Which
expansion converges faster?

(Per Rosenqvist)

18.3. Escape rate for the Ulam map. (Medium; repeat of
exercise12.1) We will try to compute the escape rate for
the Ulam map (12.18)

f (x) = 4x(1− x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatΛ0 = 4,Λ1 = −2,Λ01 = −4,Λ001 = −8
andΛ011 = 8.

(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1− t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function
of the truncation cycle length is slow. Try to
fix that by treating theΛ0 = 4 cycle separately.
(Continued as exercise18.12.)

18.4. Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate forR : a = 6 by substituting
analytical cycle stabilities and periods (exercise9.3
and exercise9.4) into the appropriate binary cycle
expansion. Compare with the numerical estimate
exercise15.3.

18.5. Pinball escape rate, from numerical cycles.Compute
the escape rate forR : a = 6 3-disk pinball
by substituting list of numerically computed cycle
stabilities of exercise12.5 into the binary cycle
expansion.

18.6. Pinball resonances, in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(18.5) as contour plots in the complexs plane. Do
you find zeros other than the one corresponding to the
complex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

18.7. Counting the 3-disk psudocycles. (Continuation of
exercise13.12.) Verify that the number of terms in the
3-disk pinball curvature expansion (18.35) is given by

∏

p

(

1+ tp

)

=
1− 3z4 − 2z6

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 +
z4(6+ 12z + 2z2)

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.36).
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18.8. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (18.2) for the 3-disk
pinball, assuming no symmetries between disks, is given
by

1/ζ = (1− z2t12)(1− z2t13)(1− z2t23)

(1− z3t123)(1− z3t132)(1− z4t1213)

(1− z4t1232)(1− z4t1323)(1− z5t12123) · · ·
= 1− z2t12− z2t23 − z2t31 − z3(t123+ t132)

−z4[(t1213− t12t13) + (t1232− t12t23)

+(t1323− t13t23)]

−z5[(t12123− t12t123) + · · ·] − · · · (18.35)

The symmetrically arranged 3-disk pinball cycle
expansion of the Euler product (18.2) (see table13.5.2
and figure9.3) is given by:

1/ζ = (1− z2t12)3(1− z3t123)2(1− z4t1213)3

(1− z5t12123)
6(1− z6t121213)

6

(1− z6t121323)3 . . .

= 1− 3z2 t12 − 2z3 t123− 3z4 (t1213− t212)

−6z5 (t12123− t12t123)

−z6 (6 t121213+ 3 t121323+ t312 − 9 t12t1213− t2123)

−6z7 (t1212123+ t1212313+ t1213123+ t212t123

−3 t12t12123− t123t1213)

−3z8 (2 t12121213+ t12121313+ 2 t12121323

+2 t12123123+ 2 t12123213+ t12132123

+ 3 t212t1213+ t12t2123− 6 t12t121213

− 3 t12t121323− 4 t123t12123− t21213) − · · ·(18.36)

Remark 18.7 Unsymmetrized cycle expansions.
The above 3-disk cycle expansions might be useful
for cross-checking purposes, but, as we shall see
in chapter19, they are not recommended for actual
computations, as the factorized zeta functions yield
much better convergence.

18.9. 4–disk unfactorized dynamical zeta function cycle
expansions For the symmetriclly arranged 4-disk
pinball the symmetry group is C4v, of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table13.5.2):

1/ζ = (1− z2t12)4(1− z2t13)2(1− z3t123)8

(1− z4t1213)8(1− z4t1214)4(1− z4t1234)2

(1− z4t1243)4(1− z5t12123)8(1− z5t12124)8

(1− z5t12134)
8(1− z5t12143)

8

(1− z5t12313)8(1− z5t12413)8 · · · (18.37)

and the cycle expansion is given by

1/ζ = 1− z2(4 t12+ 2 t13) − 8z3 t123

−z4(8 t1213+ 4 t1214+ 2 t1234+ 4 t1243

−6 t212− t213 − 8 t12t13)

−8z5(t12123+ t12124+ t12134+ t12143+ t12313

+t12413− 4 t12t123− 2 t13t123)

−4z6(2S 8 + S 4 + t312 + 3 t212 t13 + t12t
2
13

−8 t12t1213− 4 t12t1214

−2 t12t1234− 4 t12t1243

−4 t13t1213− 2 t13t1214− t13t1234

−2 t13t1243− 7 t2123) − · · · (18.38)

where in the coefficient to z6 the abbreviationsS 8 and
S 4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4,
respectively; the orbits are listed in table13.5.2.

18.10. Tail resummations. A simple illustration of such tail
resummation is theζ function for the Ulam map (12.18)
for which the cycle structure is exceptionally simple: the
eigenvalue of thex0 = 0 fixed point is 4, while the
eigenvalue of any othern-cycle is±2n. Typical cycle
weights used in thermodynamic averaging aret0 = 4τz,
t1 = t = 2τz, tp = tnp for p , 0. The simplicity of the
cycle eigenvalues enables us to evaluate theζ function
by a simple trick: we note that if the value of anyn-cycle
eigenvalue weretn, (17.21) would yield 1/ζ = 1 − 2t.
There is only one cycle, thex0 fixed point, that has a
different weight (1− t0), so we factor it out, multiply the
rest by (1− t)/(1− t), and obtain a rationalζ function

1/ζ(z) =
(1− 2t)(1− t0)

(1− t)
(18.39)

Consider how we would have detected the pole atz =
1/t without the above trick. As the0 fixed point is
isolated in its stability, we would have kept the factor
(1−t0) in (18.7) unexpanded, and noted that all curvature
combinations in (18.7) which include thet0 factor are
unbalanced, so that the cycle expansion is an infinite
series:

∏

p

(

1− tp

)

= (1−t0)(1−t−t2−t3−t4−. . .)(18.40)

(we shall return to such infinite series in chapter23).
The geometric series in the brackets sums up to (18.39).
Had we expanded the (1−t0) factor, we would have noted
that the ratio of the successive curvatures is exactly
cn+1/cn = t; summing we would recover the rationalζ
function (18.39).

18.11. Escape rate for the R̈ossler flow. (continuation
of exercise12.7) Try to compute the escape rate for
the Rössler flow (2.17) using the method of cycle
expansions. The answer should be zero, as nothing
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