Appendix L

Noise/quantum corrections

(G. Vattay)

mechanics whef is small. Can we improve the trace formula by addi &b
quantum corrections to the semiclassical terms? A simileastion can
be posed when the classical deterministic dynamics is ristliby some way
Gaussian white noise with strengih The deterministic dynamics then can be
considered as the weak noise libit— 0. The éfect of the noise can be taken
into account by adding noise corrections to the classieaktformula. A formal
analogy exists between the noise and the quantum problemm.amhlogy allows
us to treat the noise and quantum corrections together.

THE GuUTZWILLER TRACE FORMULA iS only a good approximation to the quantum

L.1 Periodic orbitsasintegrable systems

From now on, we use the language of quantum mechanics, siaeeare convenient
to visualize the results there. Where it is necessary wedigiuss the dierence
between noise and quantum cases.

First, we would like to introduce periodic orbits from an goal point of
view, which can convince you, that chaotic and integrabletesys are in fact
not as diferent from each other, than we might think. If we start orbitshe
neighborhood of a periodic orbit and look at the picture amFBoincaré section
we can see a regular picture. For stable periodic orbits thetg form small
ellipses around the center and for unstable orbits they forperbolas (See Fig.
L.1).

The motion close to a periodic orbits is regular in both cagéss is due to
the fact, that we can linearize the Hamiltonian close to #it,cand linear systems

Figure L.1: Poincaré section close to a stable and an unstable peddulic
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APPENDIX L. NOISE/QUANTUM CORRECTIONS 781

are always integrable. The linearized Hamilton’s equaticlose to the periodic
orbit (qp(t) + 0, pp(t) + p) look like

+054H(@p(1). Pp(B)d + 5,H(Gp(t), Pp(t) P, (L.1)
—24H(p(t), Pp(®))d — 92oH (Gp(1), Po(t) P, (L2)

where the new coordinatesand p are relative to a periodic orbit. This linearized
equation can be regarded asdimensional oscillator with time periodic frequencies.
These equations are representing the equation of motioreiduendant way since
more than one combination gf p andt determines the same point of the phase
space. This can be cured by an extra restriction on the Vasiah constraint the
variables should fulfill. This constraint can be derivedrrthe time independence

or stationarity of the full Hamiltonian

OH(ap(t) + g, pp(t) + p) = 0. (L.3)

Using the linearized form of this constraint we can eliménane of the linearized
equations. Itis very useful, although technicallgfidult, to do one more transformation
and to introduce a coordinate, which is parallel with the kemian flow (x;)

and others which are orthogonal. In the orthogonal direstiwe again get linear
equations. These equations wihdependent rescaling can be transformed into
normal coordinates, so that we get tiny oscillators in the neordinates with
constant frequencies. This result has first been deriveamcBré for equilibrium
points and later it was extended for periodic orbits by Vinél'd and co-workers.

In the new coordinates, the Hamiltonian reads as

d-1
1 1
Ho(X1. Py % Pr) = 5F + U(X) + > 5(PA = i), (L4)
n=1

which is the general form of the Hamiltonian in the neighloarth of a periodic
orbit. The=x sign denotes, that for stable modes the oscillator polaatsitive
while for an unstable mode it is negative. For the unstablelesow is the
Lyapunov exponent of the orbit

(J)n = In Ap’n/Tp, (L5)

where A is the expanding eigenvalue of the Jacobi matrix. For thbleta
directions the eigenvalues of the Jacobi matrix are coedeeithw as

Ap’n = e_iwnTp. (LG)

The Hamiltonian close to the periodic orbit is integrablel @an be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Somnieide@antization for
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the oscillators gives the energy spectra

En fiwn (jn + %)for stable modes, (L.7)

. 1
En —ihwn (Jn + §) for unstable modes,

wherej, = 0,1,.... Itis convenient to introduce the indesx = 1 for stable and
s, = —i for unstable directions. The parallel mode can be quantizgdicitly
trough the classical action function of the mode:

% 95 pidx = %Sn(Em) = h(m+ %) (L.8)

wheremy, is the topological index of the motion in the parallel difeot This
latter condition can be rewritten by a very useful trick ithe equivalent form

(1- eiSH(Em)/h—impn/Z) =0 (L.9)

The eigen-energies of a semiclassically quantized permdit are all the possible
energies

d-1
E = Em + Z En. (L'lo)
n=1

This relation allows us to change ih.Q) Ey, with the full energy minus the
oscillator energieg, = E- Y, En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Ap(E) = n (1 — SIE-Znlishwn(in+1/2))/h-impr/2) (L.11)

J1seesJd-1
If we Taylor expand the action arourgto first order
S||(E + 6) X S||(E) + T(E)E, (L.12)

whereT (E) is the period of the orbit, and use the relations)@nd the eigenvalues
of the Jacobi matrix, we get the expression of the Selberdymto

IS p(E)/hi—impr/2
Ap(E) = ]—[ [1——.. (L.13)
(1/2+]n)
JaseesJd-1 HnAp,n

If we use the right convention for the square root we get éx#oe d dimensional
expression of the Selberg product formula we derived froenGlutzwiller trace
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formula in ? . Just here we derived it in dfdrent way! The functiom\y(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to condtiaufunction
which is zero, whenever the energy coincides with the BS tigethenergy of one
of the periodic orbits, we have to take the product of theserdenants:

AE) = [ Ap(E). (L.14)
p

The miracle of the semiclassical zeta function is, that iftalee infinitely many
periodic orbits, the infinite product will have zeroes naihese energies, but close
to the eigerenergies of the whole system !

So we learned, that both stable and unstable orbits areattiegsystems and
can be individually quantized semiclassically by the olhB8ommerfeld rules.
So we almost completed the program of Sommerfeld to quagéreral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximatioh?). Sommerfeld
would never do this ! At that point we loose some importantipien compared
to the BS rules and we get somewhat worse results than a sesigdl formula
is able to do. We will come back to this point later when wewdisadhe quantum
corrections.To complete the program of full scale Bohr-Sommerfeld gzatibn
of chaotic systems we have to go beyond the linear approximatround the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel andmal coordinates
can be written as the *harmonic’ plus ‘anaharmonic’ perdtidn

H (X, Py Xn> Pr) = Ho(X> Pyi» Xns Pn) + HA(K> Xn, Pn)s (L.15)

where the anaharmonic part can be written as a sum of homoggipelynomials
of x, and p, with x; dependent cdicients:

HACY, %o, ) = > H (), X0, Pr) (L.16)
k=3

H g%, ) = > HE L Og)XTpRe (L17)
> Ih+ma=k

This classical Hamiltonian is hopeless from Sommerfeldmpof view, since it

is non integrable. However, Birkiffoin 1927 introduced the concept of normal

form, which helps us out from this problem by giving succesgitegrable approximation
to a non-integrable problem. Let’s learn a bit more about it!

31t is really a pity, that in 1926 Schrodinger introduced th@ve mechanics and blocked the
development of Sommerfeld’s concept.
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L.2 TheBirkhoff normal form

Birkhoff studied the canonical perturbation theory close to an ibgiuiin point of

a Hamiltonian. Equilibrium point is where the potential lrasinimumVU = 0
and small perturbations lead to oscillatory motion. We ¢a@drize the problem
and by introducing normal coordinatgsand conjugate momentunpg the quadratic
part of the Hamiltonian will be a set of oscillators

d
1
Ho(%n. pr) = > 5(Pf + wfx). (L.18)
n=1

The full Hamiltonian can be rewritten with the new coordesat
H(Xn, Pn) = Ho(Xn, Pn) + HA(Xn, Pn). (L.19)

whereHp is the anaharmonic part of the potential in the new coordmaitlhe
anaharmonic part can be written as a series of homogenebtuwpuals

Ha(Xn, Pn) H! (%, pn), (L.20)

Ms

J

Il
w

HI (Xn, Pn) hl xp™, (L.21)

ll+mi=j

where hljrn are real constants and we used the multi-indices (I, ...,14) with
definitions

ol Jige
Il = Z In, X = X{ XX

Birkhoff showed, that that by successive canonical transformatioasan introduce
new momentums and coordinates such, that in the new coteditiee anaharmonic
part of the Hamiltonian up to any givempolynomial will depend only on the
variable combination

1
= 5(Ph + @), (L.22)

wherex, and p, are the new coordinates and momentums,diuis the original
frequency. This is called the Birkftonormal form of degred\:

N

HO, pn) = ) HI(71, ..., 7a), (L.23)
j=2
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whereH! are homogeneous degr¢eolynomials ofr-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the rémdar, which consists of
polynomials of degree higher th&h We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find af §g#tegersm, such
that the linear combination

d
Z wnrrh’
n=1

vanishes. This extra problem has been solved by Gustavst®6it and we call

the the object Birkhfi-Gustavson normal form. The procedure of the successive
canonical transformations can be computerized and canrliectaut up to high
orders ¢ 20).

Of course, we pay a price for forcing the system to be intdgrap to degree
N. For a non-integrable system the high order terms behave wuldly and the
series is not convergent. Therefore we have to use this twefuly. Now, we
learned how to approximate a non-integrable system witlgaesece of integrable
systems and we can go back and carry out the BS quantization.

L.3 Bohr-Sommerfeld quantization of periodic orbits

There is some dierence between equilibrium points and periodic orbits. The
Hamiltonian (.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an datdr Hamiltonian, but this
would make the problem extremehfid¢ult. Therefore, we carry out the canonical
transformations dictated by the Birkfiprocedure only in the orthogonal directions.
The x; coordinate plays the role of a parameter. After the transétion up to
orderN the Hamiltonian I(.17) is

N
H(x, pys 71, ---Td-1) = Ho(Xy, Py» 71, ---,Td—1)+z Ul (%, 71, .or Td-1), (L.24)
=

whereU! is a jth order homogeneous polynomiale§ with X, dependent cdicients.
The orthogonal part can be BS quantized by quantizing thigithél oscillators,
replacingr-s as we did inl(.8). This leads to a one dimensiondiective potential
indexed byjq, ..., jd-1

d-1

o 1 :
HO4, Py s -5 Ja-1) = Epﬁ +UQ) + > hswwn(in + 1/2) + (L.25)
n=1

N
+ > UK, hsiwn(jn + 1/2) hsswa(ja + 1/2), ... hso-1wa-a(ja1 + 1/2))
=2
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where j, can be any non-negative integer. The term with inkléx proportional
with 7K due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given sgsof

Sp(E, jl, vees jd—l) = §p|d)q| = (L26)

Sgd)qIJ Zhsnwn(ln"'l/z) U(X, J1s o Jd-1) = 20(M+ mp/2),

whereU contains all thex; dependent terms of the Hamiltonian. The spectral
determinant becomes

Ap(E) = [] (- &SeElmdon/imon2) (L.27)

J1seesjd-1

This expression completes the Sommerfeld method and selisew to quantize
chaotic or general Hamiltonian systems. Unfortunatelgrjum mechanics postponed
this nice formula until our book.

This formula has been derived with the help of the semiatas&ohr-Sommerfeld
quantization rule and the classical normal form theory.etu] if we expand,
in the exponent in the powers bf

N
Sp= ) HSk,
k=0

we get more than just a constant and a linear term. This f@ralieady gives
us corrections to the semiclassical zeta function in all grswof. There is a
very attracting feature of this semiclassical expansiénn S, shows up only
in the combinatioris,wn(jn + 1/2). A term proportional withi¥ can only be a
homogeneous expression of the oscillator energies(jn + 1/2). For example
in two dimensions there is only one possibility of the fuanal form of the order
k term

Sk = &(E) - wi(j + 1/2)%,

wherecy(E) is the only function to be determined.

The corrections derived sofar ateublysemiclassical, since they give semiclassical
corrections to the semiclassical approximation. What aaentum mechanics
add to this ? As we have stressed in the previous section, et guantum
mechanics is not invariant under canonical transformatidm other context, this
phenomenon is called the operator ordering problem. Sime®perators and
p do not commute, we run into problems, when we would like tatevdown
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operators for classical quantities likép?. On the classical level the four possible
orderingsxpxp ppxx pxpxandxxppare equivalent, but they arefidirent in
the quantum case. The expression for the endrg®6] is not exact. We have to
go back to the level of the Schrodinger equation if we woikd to get the exact
expression.

L.4 Quantum calculation of 7 corrections

The Gutzwiller trace formula has originally been deriveanirthe saddle point
approximation of the Feynman path integral form of the pgapar. The exact
trace is a path-sum for all closed paths of the system

TrG(x, X, t) = f dxG(x, x, t) = f DxeSxO/M, (L.28)

Wheref Dx denotes the discretization and summation for all pathswé tength
tin the limit of the infinite refinement an8(x, t) is the classical action calculated
along the path. The trace in the saddle point calculationsam for classical
periodic orbits and zero length orbits, since these are xhreraa of the action
6S(x,t) = 0 for closed paths:

TrG(x, X, t) = go(t) + Z f DépSEtoO/ (L.29)
pePO

wheregy(t) is the zero length orbit contribution. We introduced the/ceordinate

&p with respect to the periodic orbip(t), X = &p + Xp(t). Now, each path sum
f@fp is computed in the vicinity of periodic orbits. Since the diadpoints
are taken in the configuration space, only spatially distperiodic orbits, the
so called prime periodic orbits, appear in the summatioriarSwthing new has
been invented. If we continue the standard textbook calounlacheme, we have
to Taylor expand the action i, and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Thercan compute the
path integrals with the help of Gaussian integrals. The la@gtgere is that we
don’t compute the path sum directly. We use the correspaedbéptween path
integrals and partial ¢ierential equations. This idea comes from Maslovand

a good summary is in ref5]. We search for that Schrodinger equation, which
leads to the path sum

f D @S0/, (L.30)

where the action around the periodic orbit is in a multi disienal Taylor expanded
form:

S(x 1) = D" s()(x = xp(0)"/nt. (L.31)
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The symboln = (ng, ny, ..., Ng) denotes the multi index id dimensions,n! =
[T, ni! the multi factorial and X — xp())" = [1%,(% — Xp.i ()™, respectively.
The expansion cdgcients of the action can be determined from the Hamilton-
Jacobi equation

1
XS + §(VS)2 +U =0, (L.32)

in which the potential is expanded in a multidimensionalldageries around the
orbit

UG = > tn(t)(x = xp(t))"/nt. (L.33)

The Schrodinger equation

2
indw = Hy = —%Alﬁ + Uy, (L.34)

with this potential also can be expanded around the peradit. Using the WKB
ansatz

Tl (L.35)

we can construct a Schrodinger equation correspondinggivea order of the
Taylor expansion of the classical action. The Schrodireggration induces the
Hamilton-Jacobi equation.(32) for the phase and the transport equation of Maslov
and Fjedoriuk T] for the amplitude:

O + VoVS + %QDAS - %Agp =0. (L.36)

This is the partial dferential equation, solved in the neighborhood of a periodic
orbit with the expanded actioh. (31), which belongs to the local path-suin 80).

If we know the Green’s functio@ (¢, £’, t) corresponding to the local equation
(L.36), then the local path sum can be converted back into a trace:
f D/ EnSnCoOISHMN - TrG (£, ¢, 1). (L.37)
The saddle point expansion of the trace in terms of locakgdlcen becomes

TIG(x X, 1) = TIGw(x, X, 1) + > TIGy(£,£,1), (L.38)
p
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whereGw(x, X', t) denotes formally the Green’s function expanded around zer
length (non moving) periodic orbits, known as the Weyl tetih [Each Green's
function can be Fourier-Laplace transformed indepengemttl by definition we
get in the energy domain:

TIG(x X, E) = go(E) + Y TrGp(£,£', E). (L.39)
p

Notice, that we do not need here to take further saddle paoirtisne, since we
are dealing with exact time and energy domain Green’s fansti indexGreen'’s
function!energy dependent

The spectral determinant is a function which has zeroeseatitien-energies
En of the Hamilton operatoH. Formally it is

A(E) = det€ - H) = | [(E - En).

The logarithmic derivative of the spectral determinanthis trace of the energy
domain Green'’s function:

1 d
TrG(x, X, E) = —— = —logA(E). L.40
(<X.B)= 2, g, = gg ©9A® (L.40)

We can define the spectral determinag(E) also for the local operators and we
can write

d
TrGp(¢,¢',E) = 3E log Ap(E). (L.41)

Using (L.39) we can express the full spectral determinant as a produdhéo
sub-determinants

A(E) = eV® ]_[ Ap(E),
p

whereW(E) = fE 0o(E")dE’ is the term coming from the Weyl expansion.

The construction of the local spectral determinants candme easily. We
have to consider the stationary eigenvalue problem of ted Bchrodinger problem
and keep in mind, that we are in a coordinate system movinetheg with the
periodic orbit. If the classical energy of the periodic ddmincides with an eigen-
energyE of the local Schrodinger equation around the periodictpthien the
corresponding stationary eigenfunction fulfills

l/’p(f’t + Tp) = fdf/Gp(f’ g”t + Tp)l//p(g’, t) = e_iETp/hl//p(f’ t)’ (L42)
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whereT), is the period of the prime orbjp. If the classical energy of the periodic
orbit is not an eigeaenergy of the local Schriodinger equation, the non-statipn
eigenfunctions fulfill

W€ t+ Tp) = f de'Gp(&, &, t+ Tp)wp(¢' 1) = e ETP/MAL(E) (1), (L.43)

wherel = (I3, 15, ...) is a multi-index of the possible quantum numbers of thelloca
Schrodinger equation. If the eigenvalué,g(E) are known the local functional
determinant can be written as

Ap(E) = | | @~ 2(E) (L.44)
|

sinceAy(E) is zero at the eigerenergies of the local Schrodinger problem. We
can insert the ansat .35) and reformulatel(.43) as

e SETIEl (4 Tp) = e ETo/ L (E)ei SOl (t). (L.45)

The phase change is given by the action integral for one @p&(o+ T,) — S(t) =
foT" L(t)dt. Using this and the identity for the acti®y(E) of the periodic orbit

§
So(E) = 9§pdq= fo "Ldt+ ET,, (L.46)
we get
e Sp Oyl (t + Tp) = ALE)L(W). (L.47)

Introducing the eigen-equation for the amplitude

ot + Tp) = Rip(E)eh(t). (L.48)

the local spectral determinant can be expressed as a prémuttie quantum
numbers of the local problem:

Ap(E) = [ (1~ Rip(E)erSO). (L.49)
|

Since’ is a small parameter we can develop a perturbation seriethéor

amplitudeSgo'p(t) = Z;‘;O(%)mgo'ém)(t) which can be inserted into the equation

(L.36) and we get an iterative scheme starting with the semicalssolutiony'(®:

8@ + v Ovs + %w'(%s = 0 (L.50)

1
atgol(m+1)+Vg0|(m+l)VS+ ES0|(m+1)AS — Agol(m).
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The eigenvalue can also be expanded in powerik/at

Rp(E) = exp{Z(z) f?} (L.51)

| in
=expC (1 + ch,ngr(E)( €2+ cﬁ})+.... (L.52)

The eigenvalue equatioir.@8) in 7 expanded form reads as

o (t+Tp) = expCep (1),
e t+To) = expCiplen (t) + Clep ()
1
e (t+To) = expClen”® +ClRes () + (CF + S(C) ) klem)

and so on. These equations are the conditions selectingigbavectors and
eigenvalues and they hold for all

It is very convenient to expand the functiaﬁgn)(x, t) in Taylor series around
the periodic orbit and to solve the equatiohs5({) in this basis 1], since only
a couple of cofficients should be computed to derive the first correctionss Th
technical part we are going to publish elsewhéile One can derive in general
the zero order tern€® = invy + S (Ii + 3) upi, whereup; = logAp; are
the logarithms of the eigenvalues of the monodromy matfix and vy, is the
topological index of the periodic orbit. The first correctiis given by the integral

!
o _ Te ai2ee® )

I, 1(0
P o T O

When the theory is applied for billiard systems, the wavecfiom should
fulfill the Dirichlet boundary condition on hard walls, eigshould vanish on the
wall. The wave function determined frorh.86) behaves discontinuously when
the trajectoryx,(t) hits the wall. For the simplicity we consider a two dimemsib
billiard system here. The wave function on the wall before blounce t( ¢ ) is
given by

l/’in(x, y(X)’ t) = QD(Xv y(X)a t—O)eiS(X’y(X)’t_O)/h’ (L54)

wherey(X) = Yox2/2! + Y3x3/3! + Y4x*/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functiorthe wall after the
bounce ;o) is

Wout(% Y(X), 1) = @(X, Y(X), t,0)g SOV L)/t (L.55)
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The sum of these wave functions should vanish on the hard Waik implies that
the incoming and the outgoing amplitudes and the phaseglated as

S(%, ¥(X),t0) = S(X, ¥(X), t+0), (L.56)
and
(%, Y(X), t-0) = —p(X, Y(X), t+0)- (L.57)

The minus sign can be interpreted as the topological phasingdrom the hard
wall.

Now we can reexpress the spectral determinant with the &gaehvalues:

AE) = O [ [ [ [@ - Rup(E)eF®). (L.58)
p |

This expression is the quantum generalization of the sassaal Selberg-product
formula [L1]. A similar decomposition has been found for quantum Bakapsn
in ref. [1Z]. The functions

GYE) = [ |- Rp(E)ei®E) (L.59)
p

are the generalizations of the Ruelle typé€][zeta functions. The trace formula
can be recovered froni (40):

1 _dlogR p(E), Rp(E)eiS®
TIG(E) = go(E) + = D (To(E)-in dEp )—P < 5-(L60)
! p.l 1-R p(E)enrr
We can rewrite the denominator as a sum of a geometric seriewe get
dlo E i
TrG(E) = go(E) + % D (To(E) - ih%"())(&p(E))reﬁfsp(EX (L.61)

p.r.l

The new index can be interpreted as the repetition number of the primd orbi
p. This expression is the generalization of the semiclassiaae formula for
the exact quantum mechanics. We would like to stress heaethb perturbation
calculus introduced above is just one way to compute thene@dees of the local
Schrodinger problems. Non-perturbative methods can bd ts calculate the
local eigenvalues for stable, unstable and marginal orbitserefore, our trace
formula is not limited to integrable or hyperbolic systentscan describe the
most general case of systems with mixed phase space.
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Figure L.2: A typical bounce on a billiard wall. The wall can be charaized by the local
expansiony(x) = Yox?/2! + Yax3/3! + Yux*/4! +

The semiclassical trace formula can be recovered by drgghasub-leading
term-izdlogR ,(E)/dE and using the semiclassical elgenvdRﬁ%(E) =& =

e e Zilli+1/2Ui - Symmation for the indexdsyields the celebrated semiclassical
amplitude

©) . e—il’vpn
2RPEY = gy (62)

To have an impression about the improvement caused by thmmnatorrections
we have developed a numerical codé][which calculates the first correcti
for general two dimensional billiard systems . The first eotion depends onIy on
some basic data of the periodic orbit such as the length®dfdke flights between
bounces, the angles of incidence and the first three Tayjmresion cofficients
Y, Y3, Y4 of the wall in the point of incidence. To check that our newaloc
method gives the same result as the direct calculation dfélgaman integral, we
computed the first corrchonC () o for the periodic orbits of the 3-disk scattering
system [4] where the quantum correctlons have been We have foundragrae
up to the fifth decimal digit, while our method generates ¢hmsmbers with any
desired precision. Unfortunately, tthez O codficients cannot be compared to
ref. [15], since thd dependence was not realized there due to the lack of general
formulas (.58) and (.59). However, thd dependence can be checked on the 2
disk scattering systeni f]. On the standard examplé4, 15, 16, 18], when the
distance of the center&)is 6 times the disk radiug), we got

1
c® = ——_(-0.625° - 0.31292 + 1.4375 + 0.625)
' VZE

Forl = 0 and 1 this has been confirmed by A. Wirzlia]] who was able to
computeCél) from his exact quantum calculation. Our method makes itipless
to utilize the symmetry reduction of Cvitanovi¢ and Ecldtaand to repeat the
fundamental domain cycle expansion calculation of r&f] yvith the first quantum
correction. We computed the correction to the leading 2%@&eperiodic orbits
with 10 or less bounces in the fundamental domain. Tableowstthe numerical
values of the exact quantum calculaticii], the semiclassical cycle expansiari]
and our corrected calculation. One can see, that the ertbe abrrected calculation
vs. the error of the semiclassical calculation decreasés the wave-number.
Besides the improved results, a fast convergence up to sirndédigits can be
observed, which is just three decimal digits in the full damzalculation [.5].
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