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are always integrable. The linearized Hamilton’s equatiolose to the periodic
orbit (gp(t) + 0, pp(t) + p) look like

+0%4H(Ap(t), Pp(t))d + 93,H(@p(1), Pp(t))P. (L.1)
~03gH (@Ap(®), Pp(1))a — A3oH(Ap (). Pp(®) P, (L2)

Appendix L
where the new coordinategand p are relative to a periodic orbit. This linearized
equation can be regarded addimensional oscillator with time periodic frequencies.

. . These equations are representing the equation of motioreidumdant way since

N O| %/q u ant u m COI‘ r eC'“ Ons more than one combination gf p andt determines the same point of the phase
space. This can be cured by an extra restriction on the Vesiah constraint the
variables should fulfill. This constraint can be derivedirthe time independence
or stationarity of the full Hamiltonian

(G. Vatiay) AH(@p(0) + 0. Po(t) + p) = O (L3)
) L Using the linearized form of this constraint we can eliminaie of the linearized
HE GUTZWILLER TRACE FORMULA iS only a good approximation to the quantum equations. Itis very useful, although technicallffidiilt, to do one more transformation
mechanics whe is small. Can we improve the trace formula by addi @% and to introduce a coordinate, which is parallel with the Hamian flow (x;)
quantum corrections to the semiclassical terms? A similastion can and others which are orthogonal. In the orthogonal direstiwe again get linear
be posed when the classical deterministic dynamics isrtistiby some way ™ equations. These equations withdependent rescaling can be transformed into
Gaussian white noise with strength The deterministic dynamics then can be normal coordinates, so that we get tiny oscillators in ther neordinates with
considered as the weak noise lirfiit— 0. The dfect of the noise can be taken constant frequencies. This result has first been derivesmeBré for equilibrium
into account by adding noise corrections to the classieaktformula. A formal points and later it was extended for periodic orbits by Viéid and co-workers.
analogy exists between the noise and the quantum probleis.amblogy allows In the new coordinates, the Hamiltonian reads as

us to treat the noise and quantum corrections together.

1 =
. , _ Ho(4, Pi Xa Pn) = ST+ U04) + D 5(Ph = whXd), (L.4)
L.1 Periodic orbitsasintegrable systems o 2" ! nZiz e

which is the general form of the Hamiltonian in the neighloadh of a periodic
orbit. The+ sign denotes, that for stable modes the oscillator potestositive
while for an unstable mode it is negative. For the unstablelespw is the
Lyapunov exponent of the orbit

From now on, we use the language of quantum mechanics, siaeeadre convenient
to visualize the results there. Where it is necessary wedigiluss the dierence
between noise and quantum cases.

First, we would like to introduce periodic orbits from an soal point of
view, which can convince you, that chaotic and integrablgtesys are in fact

not as diferent from each other, than we might think. If we start orbitshe @n=InApn/Tp, (5)
neighborhood of a periodic orbit and look at the picture amRtoincaré section
we can see a regular picture. For stable periodic orbits thetgp form small where Ay is the expanding eigenvalue of the Jacobi matrix. For thbleta
ellipses around the center and for unstable orbits they forperbolas (See Fig. directions the eigenvalues of the Jacobi matrix are cordestthw as
L.1).

The motion close to a periodic orbits is regular in both ca3éss is due to Apn = gente, (L.6)

the fact, that we can linearize the Hamiltonian close to &it,cand linear systems

The Hamiltonian close to the periodic orbit is integrablel @an be quantized by

) N . . the Bohr-Sommerfeld rules. The result of the Bohr-Somnieideiantization for
Figure L.1: Poincaré section close to a stable and an unstable peddulic

780 gmnoise - 19jun2003.tex



APPENDIX L. NOISE/QUANTUM CORRECTIONS 782

the oscillators gives the energy spectra

En

hwn (jn + %)for stable modes, (L.7)

En = —ifhwn (jn + %)for unstable modes,

wherej, = 0,1,.... Itis convenient to introduce the indesx = 1 for stable and
s, = —i for unstable directions. The parallel mode can be quantizgdicitly
trough the classical action function of the mode:

% 95 pydx = %Sn(Em) = h(m+ %) (L.8)

wherem, is the topological index of the motion in the parallel difent This
latter condition can be rewritten by a very useful trick ithe equivalent form

@a- éSH(Em)/h—impn/Z) =0. (L.9)

The eigen-energies of a semiclassically quantized permrdit are all the possible
energies

d-1
E=En+ ) En (L.10)
n=1

This relation allows us to change ih.9) Ey, with the full energy minus the
oscillator energie€, = E - Y, En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Ap(E) = ]—l (1 — &SIE-Znhisnwn(in+1/2))/h-impn/2) (L.11)

a5 d-1
If we Taylor expand the action arourigito first order
S|(E+¢€) = S|(E) + T(E)e, (L.12)

whereT (E) is the period of the orbit, and use the relations@d the eigenvalues
of the Jacobi matrix, we get the expression of the Selberdymto

&Sp(E)/h-impr/2
Ap(E) = | | [1—7. . (L.13)
(1/2+]n)
J1eeaddo1 [n ADVH "

If we use the right convention for the square root we get éxé#uoe d dimensional
expression of the Selberg product formula we derived froenGlutzwiller trace
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formula in ? . Just here we derived it in dférent way! The functiom\p(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to congtiaiéunction
which is zero, whenever the energy coincides with the BS tigethenergy of one
of the periodic orbits, we have to take the product of theserdenants:

A(E) = H Ap(E). (L.14)
P

The miracle of the semiclassical zeta function is, that iftalke infinitely many
periodic orbits, the infinite product will have zeroes nateise energies, but close
to the eigerenergies of the whole system !

So we learned, that both stable and unstable orbits arerattiegsystems and
can be individually quantized semiclassically by the oldhBSommerfeld rules.
So we almost completed the program of Sommerfeld to quagéreral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximatioh?(. Sommerfeld
would never do this ! At that point we loose some importantipien compared
to the BS rules and we get somewhat worse results than a sssiadl formula
is able to do. We will come back to this point later when wewdische quantum
corrections.To complete the program of full scale Bohr-Sommerfeld gatibn
of chaotic systems we have to go beyond the linear approxdmatround the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel andnal coordinates
can be written as the ‘harmonic’ plus ‘anaharmonic’ peratidn

H(i, Py, %0, Pn) = Ho(Xj, Pjis Xn, Pn) + Ha(X), X0, Pn), (L.15)

where the anaharmonic part can be written as a sum of homoggpelynomials
of X, and p, with x; dependent cd&cients:

HAGK X P) = ) HE(OG, X, Pr) (L.16)
k=3

HEOG X0, ) = > HE o xR (L17)
S lp+my=k

This classical Hamiltonian is hopeless from Sommerfeld®pof view, since it
is non integrable. However, Birkffioin 1927 introduced the concept of normal

form, which helps us out from this problem by giving successitegrable approximation

to a non-integrable problem. Let’s learn a bit more about it!

Slt is really a pity, that in 1926 Schrodinger introduced thave mechanics and blocked the
development of Sommerfeld’s concept.
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L.2 TheBirkhoff normal form

Birkhoff studied the canonical perturbation theory close to an ibguin point of

a Hamiltonian. Equilibrium point is where the potential lzasiinimumvVU = 0
and small perturbations lead to oscillatory motion. We éa@drize the problem
and by introducing normal coordinatggsand conjugate momentunpg the quadratic
part of the Hamiltonian will be a set of oscillators

d
1
Ho(xn. Pn) = ) 5(Pf + wi). (L18)
n=1

The full Hamiltonian can be rewritten with the new coordasat

H(%n, pn) = Ho(%n, Pn) + Ha(Xn, Pn), (L.19)

whereHp is the anaharmonic part of the potential in the new coordmafThe
anaharmonic part can be written as a series of homogenebumpuals

)

HaGn Pr) = > HI(, po). (L.20)
=3

HioG,p) = > hixp™, (L.21)
ll+mi=j

wherehljrn are real constants and we used the multi-indices (I4, ..., 1) with
definitions

= Z In, X 1= x'llx'zleé’

Birkhoff showed, that that by successive canonical transformatio@san introduce
new momentums and coordinates such, that in the new coteditiee anaharmonic
part of the Hamiltonian up to any giveampolynomial will depend only on the
variable combination

1

0= 5+ whd). (L22)

wherex, and p, are the new coordinates and momentums,dguis the original
frequency. This is called the Birklficnormal form of degreé\:

N

HO, pr) = ) Hi(ra, .. 7a), (L.23)
j=2
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whereH! are homogeneous degr¢golynomials ofr-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the rémdar, which consists of
polynomials of degree higher th&h We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find @f sgegersm, such
that the linear combination

d
Z WnlMh,
n=1

vanishes. This extra problem has been solved by Gustavst®6ith and we call

the the object Birkhfi-Gustavson normal form. The procedure of the successive
canonical transformations can be computerized and canrdedtaut up to high
orders ¢ 20).

Of course, we pay a price for forcing the system to be intdgrap to degree
N. For a non-integrable system the high order terms behave wildly and the
series is not convergent. Therefore we have to use this tvefudly. Now, we
learned how to approximate a non-integrable system witlgaesee of integrable
systems and we can go back and carry out the BS quantization.

L.3 Bohr-Sommerfeld quantization of periodic orbits

There is some dlierence between equilibrium points and periodic orbits. The
Hamiltonian (.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an datdr Hamiltonian, but this
would make the problem extremelyflicult. Therefore, we carry out the canonical
transformations dictated by the Birkfiprocedure only in the orthogonal directions.
The x; coordinate plays the role of a parameter. After the transédion up to
orderN the Hamiltonian I[(.17) is

N
H(X“, B> 71, ---Td—l) = Ho(X”, Py, 71, “"Td_l)+z UJ(X”, T1yeees Td_]_), (L24)
j=2

whereU! is a jth order homogeneous polynomiale with x; dependent cdgcients.
The orthogonal part can be BS quantized by quantizing thigichdal oscillators,
replacingr-s as we did inl(.8). This leads to a one dimensionalective potential
indexed byja, ..., jd-1

o 1 N :
HOG. Pl J o Ja2) = 5PF + UG + ) hson(in +1/2)+ (L.25)

n=1

N
+ " UK s (j + 1/2), hpwa(jz + 1/2), . ha-10g-1(ju-a + 1/2)),
k=2
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where j, can be any non-negative integer. The term with inkéx proportional
with 7¥ due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given sgof

So(E. 1. jit) = 95 pid = (L.26)

n=1

d-1
- 95 dx, J E~ > iswn(in +1/2) = UK. 1. . ja-1) = 2rA(m + mp/2),

whereU contains all thex; dependent terms of the Hamiltonian. The spectral
determinant becomes

Ap(E) = ]—l (1 — &Sp(Ejrmnla-1)/h=mpn/2) (L.27)

[ Jd-1

This expression completes the Sommerfeld method and tefiew to quantize
chaotic or general Hamiltonian systems. Unfortunatelgrum mechanics postponed
this nice formula until our book.

This formula has been derived with the help of the semiatas&ohr-Sommerfeld
quantization rule and the classical normal form theory.ekdj if we expand,
in the exponent in the powers bf

N
Sp=) 1Sk
k=0

we get more than just a constant and a linear term. This f@ralikady gives
us corrections to the semiclassical zeta function in all grswof7. There is a
very attracting feature of this semiclassical expansiarin S, shows up only
in the combinatiorms,wn(jn + 1/2). A term proportional withi can only be a
homogeneous expression of the oscillator energies(jn + 1/2). For example
in two dimensions there is only one possibility of the fuontl form of the order
k term

Sk = &(E) - wX(j + 1/2)K,

wherecy(E) is the only function to be determined.

The corrections derived sofar ateublysemiclassical, since they give semiclassical
corrections to the semiclassical approximation. What aaantym mechanics
add to this ? As we have stressed in the previous section,xde guantum
mechanics is not invariant under canonical transformatidm other context, this
phenomenon is called the operator ordering problem. Sine@perators and
p do not commute, we run into problems, when we would like totevdown
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operators for classical quantities lix&p?. On the classical level the four possible
orderingsxpxp ppxx pxpxandxxppare equivalent, but they arefidirent in
the quantum case. The expression for the endrg®6] is not exact. We have to
go back to the level of the Schrodinger equation if we woikld to get the exact
expression.

L.4 Quantum calculation of 7 corrections

The Gutzwiller trace formula has originally been deriveohirthe saddle point
approximation of the Feynman path integral form of the pgaper. The exact
trace is a path-sum for all closed paths of the system

TrG(x, X, t) = f dxG(x, x, 1) = f DxdSeI", (L.28)

WherefZ)x denotes the discretization and summation for all pathswé tength
tin the limit of the infinite refinement an8l(x, t) is the classical action calculated
along the path. The trace in the saddle point calculationdgara for classical
periodic orbits and zero length orbits, since these are tireraa of the action
6S(x,t) = O for closed paths:

TIG(X.) =gt + ) [ DeeosO, (L.29)
pePO

wheregp(t) is the zero length orbit contribution. We introduced the/iceordinate

&p with respect to the periodic orbi(t), x = &p + Xp(t). Now, each path sum
fDEp is computed in the vicinity of periodic orbits. Since the diadpoints
are taken in the configuration space, only spatially distperiodic orbits, the
so called prime periodic orbits, appear in the summatiodarSwthing new has
been invented. If we continue the standard textbook calonlacheme, we have
to Taylor expand the action &, and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Thercan compute the
path integrals with the help of Gaussian integrals. The kagtfere is that we
don’t compute the path sum directly. We use the correspaedeptween path
integrals and partial ffierential equations. This idea comes from Maslojvend

a good summary is in ref6]. We search for that Schrodinger equation, which
leads to the path sum

f D @S0, (L30)

where the action around the periodic orbit is in a multi disienal Taylor expanded
form:

S(x t) = Z SiB)(x = Xp(t)"/nl. (L.31)
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The symboln = (ng,ny, ..., ng) denotes the multi index id dimensions,n! =
l_lid:l ! the multi factorial and X — xp(t))" = []f':l(x@ - Xpi (1)), respectively.
The expansion cdgcients of the action can be determined from the Hamilton-
Jacobi equation

&S + %(VS)z +U =0, (L.32)

in which the potential is expanded in a multidimensionalldageries around the
orbit

U9 = D Un(x = xp()"/n!. (L.33)
n
The Schrodinger equation

2
inow = Hy = —%Aw +Uy, (L.34)

with this potential also can be expanded around the peradit. Using the WKB
ansatz

v = S/t (L.35)

we can construct a Schrodinger equation correspondinggivea order of the
Taylor expansion of the classical action. The Schrodireggration induces the
Hamilton-Jacobi equatiorn.(32) for the phase and the transport equation of Maslov
and Fjedoriuk [] for the amplitude:

1 .
O + VoVS + EtpAS - %Ag@ =0. (L.36)
This is the partial dierential equation, solved in the neighborhood of a periodic
orbit with the expanded actioih. (31), which belongs to the local path-suin 0).
Ifwe know the Green'’s functio@p (£, £, t) corresponding to the local equation
(L.36), then the local path sum can be converted back into a trace:
fz)é:pei/h Zn Sn(Xp(®).0E5/n! _ TIGp(£. £, 1). (L37)
The saddle point expansion of the trace in terms of locaksdleen becomes

TIG(x, X, t) = TrGw(X, X, t) + Z TIGp(&, &', 1), (L.38)
p
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whereGw(x, X', t) denotes formally the Green’s function expanded around zer
length (non moving) periodic orbits, known as the Weyl tefih [Each Green’s
function can be Fourier-Laplace transformed indepengemttl by definition we
get in the energy domain:

TIG(x, X, E) = go(E) + Z TIGp(£, &', E). (L.39)
p

Notice, that we do not need here to take further saddle pairtime, since we
are dealing with exact time and energy domain Green’s fansti indexGreen’s
functionlenergy dependent

The spectral determinant is a function which has zeroeseatitien-energies
E, of the Hamilton operatoH. Formally it is

A(E) = det € - H) = l—[(E —Ep).

The logarithmic derivative of the spectral determinanthis trace of the energy
domain Green'’s function:

1 d
TIG(x, X,E) = > ———— = ——logA(E). L.40
(X B)= D g, = gg094®) (L.40)

We can define the spectral determinag{E) also for the local operators and we
can write

d
TIGy(£.£'.E) = 52109 Ap(E). (L.41)

Using (L.39) we can express the full spectral determinant as a produdhé&
sub-determinants

AE) = YO [ ] ap(B),
p

whereW(E) = fE 0o(E")dE’ is the term coming from the Weyl expansion.

The construction of the local spectral determinants candme easily. We
have to consider the stationary eigenvalue problem of tted Bchrodinger problem
and keep in mind, that we are in a coordinate system movinetheg with the
periodic orbit. If the classical energy of the periodic odmincides with an eigen-
energyE of the local Schrodinger equation around the periodictpthien the
corresponding stationary eigenfunction fulfills

UplEt+Ty) = f AEGplE. &, U+ Towple 1) = € EMy(e ), (L42)
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whereT), is the period of the prime orbjt. If the classical energy of the periodic
orbit is not an eigeaenergy of the local Schrodinger equation, the non-statipn
eigenfunctions fulfill

WhE T+ Tp) = f A&/ Gp(é, &, t+ Tplp(€, 1) = e ETo/M AL (Bl (1), (L.43)

wherel = (I, 12, ...) is a multi-index of the possible quantum numbers of thelloca
Schrddinger equation. If the eigenvalué;(E) are known the local functional
determinant can be written as

Ap(E) = | @~ A(E). (L44)
|

sinceAp(E) is zero at the eigerenergies of the local Schrodinger problem. We
can insert the ansatt.35) and reformulatel(.43) as

er ST (1 + Tp) = e ETo/ Al (E)er SOy (). (L.45)

The phase change is given by the action integral for one @&fo+ Tp) — S(t) =
fOT" L(t)dt. Using this and the identity for the acti@p(E) of the periodic orbit

.
Sp(E) = Sgpdq: f "Ldt+ ET,, (L.46)
0
we get
e Bl (t+Tp) = A(E)eh (). (L.47)

Introducing the eigen-equation for the amplitude

@p(t+Tp) = Rp(E)ep (D). (L.48)

the local spectral determinant can be expressed as a prémuttte quantum
numbers of the local problem:

Ap(E) = [ ]2~ Rip(E)ere). (L.49)
|

Sincen is a small parameter we can develop a perturbation seriethéor
. ix\M . . . .
amplitudesgh(t) = 5o (%)" ¢§™ (1) which can be inserted into the equation
(L.36) and we get an iterative scheme starting with the semidalsslutiony'(©:

1
360+ VOV + ZJ08s = 0, (L.50)

oD 4 g mDyg 4 %‘pl(rm-l)AS W)
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The eigenvalue can also be expanded in poweis/@f

Rp(E) = eXp{i(%) Cfr;)} (L.51)

m=0
: 2
_ ©) e, (1) (Lcane, c@
=expC )l + FC +(5 SCp G|+ e (L.52)
The eigenvalue equatioh.@8) in 2 expanded form reads as

Ot + Tp)
o+ Tp)

expCNe (),
expCMIes ) + e O,

1
e (t+Tp) = expCDep (M) + Ces (0 + (€ + 5 ekl ER)

and so on. These equations are the conditions selectingigeavectors and
eigenvalues and they hold for &ll

Itis very convenient to expand the functio,u'é”)(x, t) in Taylor series around
the periodic orbit and to solve the equatiohs5(l) in this basis {], since only
a couple of cogficients should be computed to derive the first correctionss Th
technical part we are (§;oing to publish elsewheile One can derive in general
the zero order tern€(” = izvy + SO (I + 1) up;. whereup; = log Ay, are
the logarithms of the eigenvalues of the monodromy malfix and v, is the
topological index of the periodic orbit. The first correctis given by the integral

1 _ T A‘Pllgo)(t)
Cl,p = dt O
0 wp (1)

When the theory is applied for billiard systems, the wavecfiom should
fulfill the Dirichlet boundary condition on hard walls, eigshould vanish on the
wall. The wave function determined frorh.36) behaves discontinuously when
the trajectoryxy(t) hits the wall. For the simplicity we consider a two dimemsib
billiard system here. The wave function on the wall before lounce t( o ) is
given by

Yin(X Y(X). 1) = (X, Y(¥), t_o)eSCYRLo)/A, (L.54)

wherey(x) = Y2x2/2! + Y3x3/3! + Y4x4/41 + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functioithe wall after the
bounce {,o) is

Wout%, Y(X), 1) = @(X, Y(X), t0)eSCYL)/h, (L.55)
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The sum of these wave functions should vanish on the hard Wait implies that
the incoming and the outgoing amplitudes and the phasesglated as

S(X ¥(X) t-0) = S(X, Y(X), t+0), (L.56)
and
(% Y(¥), t-o) = —¢(X, Y(X), t0). (L.57)

The minus sign can be interpreted as the topological phasengdrom the hard
wall.

Now we can reexpress the spectral determinant with the igehvalues:

AE) = YO [ ][ @ - RpE)S®). (L.58)
p |

This expression is the quantum generalization of the sess@tal Selberg-product
formula [L1]. A similar decomposition has been found for quantum Bakepsn
in ref. [12]. The functions

GYE) = [ |- R p(E)ei*®) (L.59)
P

are the generalizations of the Ruelle typé][zeta functions. The trace formula
can be recovered front (40):

Rp(E)e >
1- R p(E)erse®

dlogRip(E)
dE

1 .
TIG(E) = 6o(E) + o ;wa— in )

We can rewrite the denominator as a sum of a geometric senibwea get

dlogR.p(E)

(R (E)) el (L6D)

TIG(E) = go(E) + % ;(Tp(E) —in

The new indexr can be interpreted as the repetition number of the prime orbi
p. This expression is the generalization of the semiclaksiaae formula for
the exact quantum mechanics. We would like to stress heaettth perturbation
calculus introduced above is just one way to compute theneadiees of the local
Schrddinger problems. Non-perturbative methods can bd te calculate the
local eigenvalues for stable, unstable and marginal orbitserefore, our trace
formula is not limited to integrable or hyperbolic systernitscan describe the
most general case of systems with mixed phase space.
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Figure L.2: A typical bounce on a billiard wall. The wall can be charaieted by the local
expansiony(x) = Y2x2/2! + Y3x3/3! + Yax* /4! + ...

The semiclassical trace formula can be recovered by drgph@ssub-leading
term—izidlog R p(E)/dE and using the semiclassical eigenvdRﬁ%(E) - =
e e Zili+1/2uni  Symmation for the indexésyields the celebrated semiclassical
amplitude

e—ir vpit

O(E)Y =
2R = rqera vy e (L62)

To have an impression about the improvement caused by tméugonaorrections
we have developed a numerical codé][which calculates the first correcti 1|)
for general two dimensional billiard systems . The first eotion depends only on
some basic data of the periodic orbit such as the lengthedfek flights between
bounces, the angles of incidence and the first three Tay[waresion cofficients
Y2, Y3, Yq of the wall in the point of incidence. To check that our newaloc
method gives the same result as the direct calculation di¢lygeaman integral, we
computed the first correction(:él()J for the periodic orbits of the 3-disk scattering
system [4] where the quantum corrections have been We have foundragree
up to the fifth decimal digit, while our method generates ¢hesmbers with any
desired precision. Unfortunately, thez O cosficients cannot be compared to
ref. [15], since thel dependence was not realized there due to the lack of general
formulas (.58) and (.59). However, thd dependence can be checked on the 2
disk scattering system.{]. On the standard examplé4, 15, 16, 18], when the
distance of the center&)is 6 times the disk radius, we got

1
c® = ——_(-0.629° - 0.31292 + 1.4379 + 0.625
! \/ZE( )

For| = 0 and 1 this has been confirmed by A. Wirzba][ who was able to
computecgl) from his exact quantum calculation. Our method makes itiptess
to utilize the symmetry reduction of Cvitanovic and Ecldtaand to repeat the
fundamental domain cycle expansion calculation of r&d] vith the first quantum
correction. We computed the correction to the leading 22@&eperiodic orbits
with 10 or less bounces in the fundamental domain. Tableolwstthe numerical
values of the exact quantum calculatidi], the semiclassical cycle expansiari]
and our corrected calculation. One can see, that the ertbe @brrected calculation
vs. the error of the semiclassical calculation decreas#s tve wave-number.
Besides the improved results, a fast convergence up to sirdedigits can be
observed, which is just three decimal digits in the full domzalculation [L5].

References

[L.1] M. C. Gutzwiller, J. Math. Phys12, 343 (1971);Chaos in Classical and
Quantum Mechanic&Springer-Verlag, New York, 1990)

refsQmnoise - 16mar2004.tex



References 794

Table L.1: Real part of the resonances (Reof the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versast giantum calculation and the error of
the semiclassicallsc divided by the error of the first correcti@a,,. The magnitude of the error in
the imaginary part of the resonances remains unchanged.

Quantum| Semiclassical First correction| dsc/dcorr
0.697995| 0.758313 0.585150 0.53
2.239601| 2.274278 2.222930 2.08
3.762686| 3.787876 3.756594 4.13
5.275666| 5.296067 5.272627 6.71
6.776066| 6.793636 6.774061 8.76
30.24130| 30.24555 30.24125 92.3
31.72739| 31.73148 31.72734 83.8
32.30110| 32.30391 32.30095 20.0
33.21053| 33.21446 33.21048 79.4
33.85222| 33.85493 33.85211 25.2
34.69157| 34.69534 34.69152 77.0

[L.2] A. Selberg, J. Indian Math. So20, 47 (1956)

[L.3] See examples in : CHAOS (1) Thematic Issue; E. Bogomolny and C.
Schmit, Nonlinearity6, 523 (1993)

[L.4] R. P. Feynman, Rev. Mod. Phy20, 367 (1948)
[L.5] We thank E. Bogomolny for bringing this reference ta attention.

[L.6] V. M. Babi¢ and V. S. Buldyrev,Short Wavelength [raction Theory
Springer Series on Wave Phenomena, Springer-Verlag (1990)

[L.7] V. P.Maslov and M. V. FjedoriukSemiclassical Approximation in Quantum
Mechanics Dordrecht-Reidel (1981)

[L.8] R. B. Balian and C. Bloch, Ann. Phys. (New Yor&), 81 (1970);ibid.63,
592 (1971); M.V. Berry, M.V., C.J. Howls, C.J. Proceedindste Royal
Society of London447, 1931 (1994)

[L.9] P. E. Rosenqvist and G. Vattay, in progress.

[L.10] P. Cvitanovit, P. E. Rosengvist, G. Vattay and H. HigR, CHAOS3 (4),
619 (1993)

[L.11] A. Voros, J. PhysA21, 685 (1988)

[L.12] A. Voros, Prog. Theor. Phys. Supd16,17 (1994); M. Saraceno and A.
\oros, to appear in Physica D.

[L.13] The FORTRAN code is available upon e-mail request t&/&tay.

[L.14] P. Gaspard and S. A. Rice, J. Chem. Pi§gs2225, 2242, 2255 (19891
E3279 (1989)

[L.15] D. Alonso and P. Gaspard, Cha®$01 (1993); P. Gaspard and D. Alonso,
Phys. RevA47, R3468 (1993)

[L.16] A.Wirzba, CHAOS?2, 77 (1992); Nucl. PhysA560, 136 (1993)

refsQmnoise - 16mar2004.tex



