Chapter 30

Quantum mechanics, briefly

E START WITH a review of standard quantum mechanical concepts prerguis
to the derivation of the semiclassical trace formula.

In coordinate representation the time evolution of a quarmechanical wave
function is governed by the Schrodinger equation

0 ~ ho

where the Hamilton operatst(q, —ihdg) is obtained from the classical Hamiltonian
by substitutionp — —iidq. Most of the Hamiltonians we shall consider here are
of form

H(@ p) =T(p) +V(@),  T(p) = p?/2m, (30.2)

describing dynamics of a particle in-dimensional potential/(q). For time
independent Hamiltonians we are interested in findingastaty solutions of the
Schrodinger equation of the form

U 1) = &5 g (q), (30.3)
whereE, are the eigenenergies of the time-independent Schradaugetion
He(a) = E¢(q). (30.4)

If the kinetic term can be separated out as3ib.p), the time-independent Schrodinger
equation

",
~ 5m0°¢(@) + V(Qe(q) = E4(Q) (30.5)
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can be rewritten in terms of a local wavenumber

(@® +K@)p =0,  n?k(@) = v2m(E - V(q)). (30.6)

For bound systems the spectrum is discrete and the eigditiisdorm an
orthonormal,

f A0 n(Q(T) = S, (30.7)
and complete,

> on(@¢i(@) = sa- ), (30.8)
n
set of functions in a Hilbert space. Here and throughoutekeg t

quzqulqu...qu. (30.9)

For simplicity we will assume that the system is bound, altio most of the
results will be applicable to open systems, where one haplexmesonances

: : _ hapter 34
instead of real energies, and the spectrum has continuongarents. [chapter 34]

A given wave function can be expanded in the energy eigesbasi

(1) = ) ce 5 gn(a), (30.10)

where the expansion cfigient ¢, is given by the projection of the initial wave
functiony(q, 0) onto thenth eigenstate

C = f dq ¢3(0)(a. 0). (30.11)

By substituting 80.11) into (30.10, we can cast the evolution of a wave function
into a multiplicative form

@) = f dorK (.o (q(. 0).
with the kernel
K(a.d.t) = )" én(@) e & g1() (30.12)
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called the quantum evolution operator, or fimepagator. Applied twice, first for
time t; and then for timds, it propagates the initial wave function froghto q”,
and then frony” toq

K(a.q,ts + 1) = f dg” K(a. 9", t2)K(q". q', t1) (30.13)

forward in time, hence the name “propagator.” In non-reistic quantum mechanics
the range ofy” is infinite, meaning that the wave can propagate at any speed,;
relativistic quantum mechanics this is rectified by retitigp the propagation to
the forward light cone.

Since the propagator is a linear combination of the eigesifons of the
Schrodinger equation, it also satisfies the Schrodingeaion

0 RS )

and is thus a wave function defined for> 0; from the completeness relation
(30.8 we obtain the boundary conditiontat O:

lim K(q.¢.1) =6(a-a). (30.15)

The propagator thus represents the time evolution of a waekgb which starts
out as a configuration space delta-function localized inpibiet g’ at the initial
timet = 0.

For time independent Hamiltonians the time dependencesafiélve functions
is known as soon as the eigenenerdigand eigenfunctiong, have been determined.
With time dependence rendered “trivial,” it makes sensetw$ on theGreen's
function, the Laplace transformation of the propagator

$n(Dén(9)

—. (30.16
n E_En+|6 ( )

Glad.Exio= %fo dter K (g, 1) =

Here e is a small positive humber, ensuring the existence of theginal. The
eigenenergies show up as poles in the Green’s function esidues corresponding
to the wave function amplitudes. If one is only interestethespectrum, one may
restrict the considerations to the (formal) trace of thee@iefunction,

1
E_En’

trG(a,q,E) = f dqG(q, 6. E) = ) (30.17)

whereE is complex, with a positive imaginary part, and we have ukecitgenfunction
orthonormality 80.7). This trace is formal, since as it stands, the sun8h17)
is often divergent. We shall return to this point in se8ts.1.1and33.1.2
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Figure 30.1: Schematic picture of) the density I{E}
of statesd(E), and b) the spectral staircase
function N(E). The dashed lines denote the
mean density of states(E) and the average —— ——
number of stateBl(E) discussed in more detail in El El- E; e
sect.33.1.1

A useful characterization of the set of eigenvalues is giveterms of the
density of states, with a delta function peak at each eigenenergy, fiiré (a),

d(E) = Z S(E - Ep). (30.18)

Using the identity

[exercise 30.1]

1 1
6(E-Ep) =-Im - Im ——— 30.19
( ) eox " E_Entic ( )

we can express the density of states in terms of the traceedbtben’s function,
that is

d(E) = Z S(E - Ep) = —lim 1|mtrc;(q, q.E +ie). (30.20)
= e—>0Tm
33.1.1

As we shall see after "some” work, a semiclassical formutaifght hand side of
this relation will yield the quantum spectrum in terms ofipdic orbits.

The density of states can be written as the derivatie) = dN(E)/dE of the
spectral staircase function

N(E) = > O(E - Ey) (30.21)

which counts the number of eigenenergies befgigure30.1(b). Here® is the
Heaviside function

O(x)=1 ifx>0;, O(X)=0 ifx<O. (30.22)

The spectral staircase is a useful quantity in many contbgtt experimental
and theoretical. This completes our lightning review ofruan mechanics.
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