Appendix T

Projects

the techniques learned in the course with some applicafidgmterest to

you for other reasons. It is OK to share computer programssaol, but
otherwise each project should be distinct, not a group ptojehe essential steps
are:

Y oU ARE URGED t0o work through the essential steps in a project that consbine

e Dynamics

1. construct a symbolic dynamics

count prime cycles

prune inadmissible itineraries, construct Markov geaiplppropriate
implement a numerical simulator for your problem

compute a set of the shortest periodic orbits

o gk w N

compute cycle stabilities
e Averaging, numerical

1. estimate by numerical simulation some observable gyalfike the
escape rate,

2. or check the flow conservation, compute something like-jfa@unov
exponent

e Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length trtioce if the
system is closed

3. implement desymmetrization, factorization of zeta fiows, if dynamics
possesses a discrete symmetry

4. compute a quantity like the escape rate as a leading zersméctral
determinant or a dynamical zeta function.
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5. or evaluate a sequence of truncated cycle expansionsvéoages,
such as the Lyapunov exponentad difusion codficients

6. compute a physically intersting quantity, such as thelootance

7. compute some number of the classical/anquantum eigenvalues, if
appropriate

projects - 24mar98.tex
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T.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chaptéd, tracking of a globally dtusing orbit

by the associated confined orbit restricted to the fundaaheetl, we consider a
class of simple 1 dynamical systems, chains of piecewise linear maps, whiere a
transport cofficients can be evaluated analytically. The translationairsgtry
(24.10 relates the unbounded dynamics on the real line to the dipsastricted

to a “fundamental cell” - in the present example the unitrivaiecurled up into a
circle. An example of such map is the sawtooth map

A AX x€[0,1/4 + 1/4A]
f(x) —AX+ (A +1)/2 xe[l/4+1/4A,3/4-1/4A] . (T.1)
Ax+ (1-A) X € [3/4-1/4A,1]

The corresponding circle mafxx) is obtained by modulo the integer part. The
elementary cell mag (X) is sketched in figur@.1. The map has the symmetry

property
f(8) = -f(-%), (T.2)

so that the dynamics has no drift, and all odd derivativeb®fjenerating function
(24.3 with respect t@ evaluated aB = 0 vanish.

The cycle weights are given by

e
tp = anm (T.3)

The difusion constant formula for d-maps is

1),

= T.4
>, (T-4)
where the “mean cycle time” is given by
1 n e+ N
n NI T5
M = 2553l =->"(-1) Ao A (T.5)
the mean cycle displacement squared by
] 02 (n -+ fp)?
2 k pt Pk
n 1 , T.6
< >{ (9,32 Z ( ) |Ap1 Apk| ( )

and the sum is over all distinct non-repeating combinat@®ime cycles. Most
of results expected in this projects require no more thagipand paper computations.

Implementing the symmetry factorizatioB4.35 is convenient, but not essential
for this project, so if you find sect9.1.1too long a read, skip the symmetrization.
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Figure T.1: (a)-(f) The sawtooth mapi(1) for the S X Ao 5
6 values of parameterfor which the folding point 4 I N VR T I
of the map aligns with the endpoint of one of the 7 W4 v _ 1 . :
intervals and yields a finite Markov partition (from 145 2 67 3 «x ' 1 4 52 6 7 3%
ref. [1]). The corresponding Markov graphs are )
given in figureT.2. {e) (£}

T.1.1 The full shift

Take the mapT.1) and extend it to the real line. As in example of fig¢. 3
denote bya the critical value of the map (the maximum height in the uslt)c

1)_A+1
4N 4

a:ﬂ%+ . (T.7)

Describe the symbolic dynamics that you obtain whes an integer, and derive

the formula for the dfusion constant:

(A2 -1)(A -3)
96A

D= forA=4a-1, acZ. (T.8)

If you are going strong, derive also the fromula for the halégera = (2k+1)/2,
A = 4a+ 1 case and email it to DasBuch@nbi.dk. You will need to partitm,
into the left and right halfM, = Mg U Mg, as in the derivation of24.27).

[exercise 24.1]
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Figure T.2: (a) The sawtooth mapr(1) partition
tree for figureT.1 (a); while intervalsMy, Mo, M3
map onto the whole unit intervalf(M;) =
f(My) = f(Mz) = M, intervals My, Ms map
onto My only, f(My) = f(Ms) = My, and
similarly for intervals Mg, M7. An initial point
starting out in the intervaM;, M, or Mz can
land anywhere on the unit interval, so the subtrees
originating from the corresponding nodes on the
partition three are similar to the whole tree and
can be identified (as, for example, in figur@.13,
yielding (b) the Markov graph for the Markov
partition of figureT.1 (a). (c) the Markov graph

in the compact notation o2¢.26. (@)

T.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, altftothe slope is
not an integer number. The key step is that of having a pantitihere intervals
are mappednto unions of intervals. Consider for example the case in which
A =4a-1, where 1< a < 2. Afirst partition is constructed from seven intervals,
which we label{ M1, M4, Ms, Mo, Mg, M7, M3}, with the alphabet ordered as
the intervals are laid out along the unit interval. In gehtdra critical valuea will

not correspond to an interval border, but now we chamsech that the critical
point is mapped onto the right border#t;, as in figurel.1(a). The critical value
of f()is f(ﬁ—j\l) =a- 1= (A -3)/4. Equating this with the right border @,

x = 1/A, we obtain a quadratic equation with the expanding solutica 4. We
have thatf (Mj) = f(Ms) = My, so the transition matrixt(Q.2) is given by

#1
P4
¢s
b2 (T.9)
b6
b7
#3

N A
PR R R R
R O OOOOo
P OOOOO

[ =

cNoNelNolNol
cNoNelNolNol

and the dynamics is unrestricted in the alphabet

{1, 41 51 2, 63 73 3.}.

One could diagonalizeT(9) on the computer, but, as we saw in s€d.4, the
Markov graph figurer.2 (b) corresponding to figuré.1 (a) ofers more insight
into the dynamics. The dynamical zeta function

1/¢
1/¢

1—(ty +to + t3) — 2(t14 + t37)

z Z
1-3—-4 —. T.10
A coshBA2 ( )

follows from the loop expansiorig.13 of sect.13.3
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Table T.1: The difusion constant as function of the slopefor thea = 1, 2 values of
(T.8) and the 6 Markov partitions of figure1

The material flow conservation seg@).3and the symmetry factorizatio4.35

yield
1 1 4
0= 0D :(1+X)(1_X)

which indeed is satisfied by the given value/f Conversely, we can use the
desired Markov partition topology to write down the cormsging dynamical
zeta function, and use th¢0, 1) = 0 condition to fixA. For more complicated
transition matrices the factorizatio4.35 is very helpful in reducing the order
of the polynomial condition that fixes.

The difusion constant follows from2¢.36 and (T.4)

(), = —(1 + %)(—%) - (), = %

Think up other non-integer values of the parameter for wttietsymbolic dynamics
is given in terms of Markov partitions: in particular corsidhe cases illustrated
in figure T.1 and determine for what value of the paramedezach of them is
realized. Work out the Markov graph, symmetrization faigetion and the dfusion
constant, and check the material flow conservation for easke.c Derive the
diffusion constants listed in tablel. It is not clear why the final answers tend to
be so simple. Numerically, the case of figdré (c) appears to yield the maximal
diffusion constant. Does it? Is there an argument that it shaukbB

The seven cases considered here (see Tabldigure T.1 and (I.8)) are the 7
simplest complete Markov partitions, the criterion beihgttthe critical points
map onto partition boundary points. This is, for exampleatvhappens for
unimodal tent map; if the critical point is preperiodic to anstable cycle, the
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grammar is complete. The simplest example is the case inhwthie tent map
critical point is preperiodic to a unimodal map 3-cycle, ihieh case the grammar
is of golden mean type, withOO_ substring prohibited (see figurE.13. In
case at hand, the “critical” point is the junction of brargleand 5 (symmetry
automatically takes care of the other critical point, atjtimection of branches 6
and 7), and for the cases considered the critical point napsthe endpoint of
each of the seven branches.

One can fill out parameteraxis arbitrarily densely with such points - each of
the 7 primary intervals can be subdivided into 7 intervalawied by 2-nd iterate
of the map, and for the critical point mapping into any of #as 2 steps the
grammar (and the corresponding cycle expansion) is finiig sa on.

T.1.3 Diffusion codficient, numerically

(optional:)
Attempt a numerical evaluation of

D= %Am%<“2> . (T.11)

Study the convergence by comparing your numerical resultiset exact answers
derived above. Is it better to use few initialahd average for long times, or to
use many initialx or shorter times? Or should one fit the distributionxéfwith

a Gaussian and get thi2 this way? Try to plot dependence Bfon A; perhaps
blow up a small region to show that the dependancP oh the parameteA is
fractal. Compare with figur4.5and figures in refs.1], 2, 8, 9].

T.1.4 D is a nonuniform function of the parameters

(optional:)

The dependence & on the map parameter is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratiba
diffusion constant does not necessarily grow. An interpretatiothis lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtomap (I.1) for
a random “generic” value of the paramefterfor exampleA = 6. The idea is to
bracket this value of\ by the nearby ones, for which higher and higher iterates
of the critical valuea = (A + 1)/4 fall onto the partition boundaries, compute the
exact difusion constant for each such approximate Markov partitéon study
their convergence toward the value Bffor A = 6. Judging how diicult such
problem is already for a tent map (see sé&.6 and appendiXD.1), this is too
ambitious for a week-long exam.

refsProjDDiT1 - 4aug2000.tex
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T.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chaptéd, tracking of a globally dtusing orbit

by the associated confined orbit restricted to the fundaahertl, we consider in
more detail the class of simpledleynamical systems, chains of piecewise linear
maps 24.9. The translational symmetr24.10 relates the unbounded dynamics
on the real line to the dynamics restricted to a “fundamecdd! - in the present
example the unit interval curled up into a circle. The cqroesling circle map
f(X) is obtained by modulo the integer part. The elementary roalp f(X) is
sketched in figur@4.3 The map has the symmetry property

f(® = -f(-R), (T.12)

so that the dynamics has no drift, and all odd derivativeh®fjenerating function
(24.3 with respect t@ evaluated gB = 0 vanish.

The cycle weights are given by

ehhp
tp = z”plA_pl (T.13)

The diffusion constant formula for d-maps is

D=Z-—"*¢ (T.14)

where the “mean cycle time” is given by

(9

M = 625(0 2

Npy + -+ Np
(-Dfm——=, (T.15)
z=1 Z |AP1"'APk|

the mean cycle displacement squared by

(npl +-t ﬁpk)z
=—» (-1)F : (T.16)
Z |Ap1"'Apk|

. 92
<n2>§ 6,32

and the sum is over all distinct non-repeating combinat@®ime cycles. Most
of results expected in this projects require no more thagipand paper computations.

T.2.1 The full shift

Reproduce the formulas of se@4.2.1for the ditfusion constanD for A both
even and odd integer.
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Table T.2: The difusion constant as function of the slofefor the A = 4,6 values of
(24.20 and the 5 Markov patrtitions like the one indicated in figRde4

T.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, altffothe slope is
not an integer number. The key step is that of having a panrtitihere intervals
are mappeonto unions of intervals.

Start by reproducing the formula4.28 of sect.24.2.3for the difusion constant
D for the Markov partition, the case where the critical positniapped onto the
right border oflq, .

Think up other non-integer values of the paramétdor which the symbolic
dynamics is given in terms of Markov patrtitions: in partenutonsider the remaining
four cases for which the critical point is mapped onto a boafea partition in
one iteration. Work out the Markov graph symmetrizationtdazation and the
diffusion constant, and check the material flow conservatioedoh case. Fill in
the difusion constants missing in table2. It is not clear why the final answers
tend to be so simple. What value Af appears to yield the maximalftlision
constant?

The 7 cases considered here (see tati?eand figure24.4) are the 7 simplest
complete Markov partitions in the4 A < 6 interval, the criterion being that the
critical points map onto partition boundary points. In caséand, the “critical”
point is the highest point of the left branch of the map (syrmnautomatically
takes care of the other critical point, the lowest point & k&t branch), and for
the cases considered the critical point maps into the entdpbeach of the seven
branches.

One can fill out parameteraxis arbitrarily densely with such points - each of
the 6 primary intervals can be subdivided into 6 intervalaited by 2-nd iterate
of the map, and for the critical point mapping into any of #as 2 steps the
grammar (and the corresponding cycle expansion) is finiig sa on.

T.2.3 Diffusion codficient, numerically

(optional:)
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Attempt a numerical evaluation of

D= %Am%(ﬁ) . (T.17)

Study the convergence by comparing your numerical resultiset exact answers
derived above. Is it better to use few initialahd average for long times, or to
use many initialx for shorter times? Or should one fit the distributionxéfwith

a Gaussian and get thi2 this way? Try to plot dependence Bfon A; perhaps
blow up a small region to show that the dependancP oh the parameteA is
fractal. Compare with figur4.5and figures in refs.1], 2, 8, 9].

T.2.4 D is a nonuniform function of the parameters

(optional:)

The dependence & on the map parameter is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratioa
diffusion constant does not necessarily grow. Figedes taken from ref. §]
illustrates the fractal dependence offdsion constant on the map parameter. An
interpretation of this lack of monotonicity would be intstiag.

You can also try applying periodic orbit theory to the savttomap 4.9 for

a random “generic” value of the parameteyrfor exampleA = 4.5. The idea is

to bracket this value ok by the nearby ones, for which higher and higher iterates
of the critical valuea = A /2 fall onto the partition boundaries, compute the exact
diffusion constant for each such approximate Markov partitéord study their
convergence toward the value Bf for A = 4.5. Judging how dificult such
problem is already for a tent map (see sé&.6 and appendixD.1), this is too
ambitious for a week-long exam.
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