Chapter 26
Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanovic)

urs cHAPTER (Which reader can safely skip on the first reading) is aboigeno
how it affects classical dynamics, and the ways it mimics quantumrdigz

Why - in a study of deterministic and quantum chaos - stadugising noise?
First, in physical settings any dynamics takes place agaimpisy background,
and whatever prediction we might have, we have to check liisstmess to noise.
Second, as we show in this chapter, to the leading order isenstrength the
semiclassical Hamilton-Jacobi formalism carries over &akly stochastic flows
in toto. As classical noisy dynamics is more intuitive thamugtum dynamics, this
exercise helps demystify some of the formal machinery oidessical quantization.
Surprisingly, symplectic structure emerges here not agp gdenciple of mechanics,
but an artifact of the leading approximation to quantuoisy dynamics, not respected
by higher order corrections. The same is true of semiclakgicantum dynamics;
higher corrections do not respect canonical invarianceirdTlthe variational
principle derived here will be refashioned into a powerfubltfor determining
periodic orbits in chapte2?.

We start by deriving the continuity equation for purely detmistic, noiseless
flow, and then incorporate noise in stagedtudiion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulatioochiastic path integrals.

26.1 Deterministic transport

(E.A. Spiegel and P. Cvitanovit)
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CHAPTER 26. NOISE 455

Fluid dynamics is about physical flows of media with continsi@ensities. On
the other hand, the flows in state spaces of dynamical sydteonsently require
more abstract tools. To sharpen our intuition about thdse,helpful to outline
the more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow calle@terial invariant
A material invariantl (X) is a property attached to each pointhat is preserved
by the flow, 1(x) = I(f!(x)); for example, at this point a green particle (more
formally: apassive scalgris embedded into the fluid. AYX) is invariant, its
total time derivative vanishe$(x) = 0. Written in terms of partial derivatives this
is theconservation equatiofor the material invariant

8l +v-al =0. (26.1)

Let thedensityof representative points hg€x,t). The manner in which the flow
redistributesl (X) is governed by a partial fierential equation whose form is
relatively simple because the representative points atteanereated nor destroyed.
This conservation property is expressed in the integrétistant

atdepl :—f do fyvipl ,
\Y ov

whereV is an arbitrary volume in the state spabd€ 9V is its surfacen’is its
outward normal, and repeated indices are summed over thootgThe divergence
theorem turns the surface integral into a volume integral,

f [8t(p|) + ai(Vip|)] dx=0,
\Y

whered; is the partial derivative operator with respectxoSince the integration
is over an arbitrary volume, we conclude that

di(ol) + di(plvi) = 0. (26.2)
The choicd = 1 yields thecontinuity equatiorfor the density:
o + di(pv;) = 0. (26.3)

We have used here the language of fluid mechanics to easestraization,
but, as we already saw in the discussion of infinitesimaloactf the Perron-
Frobenius operatorl@.29, continuity equation applies to any deterministic state
space flow.
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CHAPTER 26. NOISE 456

26.2 Brownian diffusion

Consider tracer molecules, let us say green molecules,daebtdn a denser gas
of transparent molecules. Assume that the density of tracégcules compared

to the background gas density is low, so we can neglect gyessm collisions.
Each green molecule, jostled by frequent collisions with Background gas,
executes its own Brownian motion. The molecules are neittfeated nor destroyed,
so their number within an arbitrary volumé changes with time only by the
current densityj; flow through its surfacéV (with f its outward normal):

(9tdep=—f do A ji - (26.4)
\Y% oV

The divergence theorem turns this into the conservatiorfdawacer density:
atp+aiji =0. (26.5)

The tracer density is defined as the average density of a “material particle,”
averaged over a subvolume large enough to contain many ¢aeenstill many
more background) molecules, but small compared to the reegpic observational
scales. What ig? If the density is constant, on the average as many molecules
leave the material particle volume as they enter it, so aredsde phenomenological
assumption is that thaveragecurrent densityrfot the individual particle current
densitypv; in (26.3) is driven by the density gradient

, 0
ji=-DL. (26.6)

This is theFick law, with the difusion constanD a phenomenological parameter.
For simplicity here we assume thBtis a scalar; in generdD — Djj(x,t) is

a space- and time-dependent tensor. Substituting jtigo (26.5 yields the
diffusion equation

o (x 1) = Dﬁ (% 1) (26.7)
ot T E e\ Y '

This linear equation has an exact solution in terms of aralriltirac delta density
distribution,p(x, 0) = 6(X — Xo),

(-x0)? 1 2
- bt (26.8)

1
X,t = — @ 4ot =—9g8
PO = Dy (4rDt)32

The average distance covered in titrebeys the Einstein ffusion formula

((x- x0)2>t = f dxp(X, t)(X — X)2 = 2dDt. (26.9)
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CHAPTER 26. NOISE 457

26.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory having
substance, while its path integral image exists mainly in
the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics whichrisly Brownian,
with no deterministic “drift.” Consider next a determingsiow X = v(x) perturbed
by a stochastic terré(t),

%= V(X) + £(1). (26.10)

Assume thag(t)’s fluctuate around Y- v(x)] with a Gaussian probability density

1) .
P&, 6t) = (ﬂ—) e o, (26.11)
and are uncorrelated in time (white noise)
((ME()) = 2dDo(t - t'). (26.12)

The normalization factors ir2@.8) and £6.17) differ, asp(é, 6t) is a probability

density for velocityé, and p(x,t) is a probability density for positiox. The

material particle now drifts along the trajectorft), so the velocity dtusion

follows (26.9 for infinitesimal timedt only. AsD — 0, the distribution tends
to the (noiseless, deterministic) Dirac delta function.

An example is the Langevin equation for a Brownian partigiewhich one
replaces the Newton’s equation for force by two counteatheihg forces: random
accelerationg(t) which tend to smear out a particle trajectory, and a damiging
which drives the velocity to zero.

The phenomenological Fick law curre26(.6) is now a sum of two components,
the material particle center-of-mass deterministic drik) and the weak noise
term

_ 9
ji = pvi - Da—;, (26.13)

Substituting thisj into (26.5) yields theFokker-Planck equation

A + 9i(pv;) = D 6. (26.14)
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CHAPTER 26. NOISE 458

The left hand sidedo/dt = dio + 0 - (oV), is deterministic, with the continuity
equation 6.3 recovered in the weak noise limlk — 0. The right hand side
describes the flusive transport in or out of the material particle volume. If
the density is lower than in the immediate neighborhood,ldbeal curvature is
positive, %0 > 0, and the density grows. Conversely, for negative cureatur
diffusion lowers the local density, thus smoothing the vaiiigthdf p. Where is
the density going globally?

If the system is bound, the probability density vanishéBaantly fast outside
the central regiong(x,t) — 0 as|x| — oo, and the total probability is conserved

fdx,o(x,t) =1.

Any initial density p(x, 0) is smoothed by diusion and with time tends to the
invariant density

po(x) = lim p(x 1), (26.15)
an eigenfunctiop(x, t) = €% pg(X) of the time-independent Fokker-Planck equation
(v -D&”+s,) pa =0, (26.16)

with vanishing eigenvalugy = 0. Provided the noiseless classical flow is hyperbolic,
in the vanishing noise limit the leading eigenfunction & Fokker-Planck equation
tends to natural measuré4.17 of the corresponding deterministic flow, the
leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of prdltgtfrom the
region under study, the leading eigenvalue is contractgg; 0, and the density
of the system tends to zero. In this case the leading eigesglof the time-
independent Fokker-Planck equatid6 (1§ can be interpreted by saying that a
finite density can be maintained by pumping back probabititg the system at
a constant ratg = —sp. The value ofy for which any initial probability density
converges to a finite equilibrium density is called #seape rateln the noiseless
limit this coincides with the deterministic escape rdtB. (5.

We have introduced noise phenomenologically, and usedé¢a& woise assumption
in retaining only the first derivative gf in formulating the Fick law 6.6 and
including noise additively in46.13. A full theory of stochastic ODEs is much
subtler, but this will do for our purposes.

26.4 \Weak noise approximation

In the spirit of the WKB approximation, we shall now study #elution of the
probability distribution by rewriting it as

p(x,1) = emRD (26.17)
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CHAPTER 26. NOISE 459
The time evolution oRis given by
R+ VOR + (OR)? = DAv + DO°R.

Consider now the weak noise limit and drop the terms propoati to D. The
remaining equation

R+ H(x,0R) = 0

is the Hamilton-Jacobi equation . The functi@ean be interpreted as the Hamilton’s
principal function, corresponding to the Hamiltonian

H(X p) = pUX) + p°/2,
with the Hamilton’s equations of motion

= OpH=v+p
= —9H=-ATp, (26.18)

whereA is the stability matrix 4.3)

A9 = a;i)gx) :

J

The noise Lagrangian is then
. . 1. 5
L(x,X)=x-p—H = > [X=Vv(X)]°. (26.19)

We have come the full circle - the Lagrangian is the exponérmuo assumed
Gaussian distribution2@.17) for noise&? = [Xx — v(X)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two poingsand x. Which noisy
path is the most probable path that connects them in timEhe probability of a
given path® is given by the probability of the noise sequei¢®@ which generates
the path. This probability is proportional to the producttlué noise probability
functions £6.11) along the path, and the total probability for reachifgjom xg
in timet is given by the sum over all paths, or the stochastic patlyiatéWiener
integral)

57']' d/2 _s“(Tj)2 P

P(X, X0, ) ~ ;Dp(f(ﬁ),é‘rj)=f17[d§j(%) o b0
1 1M,

N Z;exp(—ﬁ fo dré (T)), (26.20)
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CHAPTER 26. NOISE 460

wheredéti = 7i — 7j, and the normalization constant is

1. o7 \%2
z=m[1(z5) -

The most probable path is the one maximizing the integradéhe exponential.
If we express the nois€6.10 as

(1) = X(t) - v(x(V)) .

the probability is maximized by the variational principle

min f t de[X(r) = V(x(x))]? = min f t L(x(7), x(r))dr.
0 0

By the standard arguments, for a given<’ andt the the probability is maximized
by a solution of Hamilton’s equation&6.18 that connects the two pointg — X
in timet.

Résum é

When a deterministic trajectory is smeared out under theenfie of Gaussian
noise of strengttD, the deterministic dynamics is recovered in the weak noise
limit D — 0. The dfect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Commentary

Remark 26.1 Literature. The theory of stochastic processes is a vast subject, sganni
over centuries and over disciplines ranging from pure nratties to impure finance.
We enjoyed reading van Kampen classig, [especially his railings against those who
blunder carelessly into nonlinear landscapes. Having citieanthis careless chapter
to print, we shall no doubt be cast to a special place on thg lish of van Kampen’s
sinners (and not for the first time, either). A more specélimonograph like Risken’s]
will do just as well. The “Langevin equation” introduces s®iand damping only into
the acceleration of Newton’s equations; here we are consgleore general stochastic
differential equations in the weak noise limit. Onsager-Matkkminal paperl[g] was
the first to introduce a variational method - the “principfdeast dissipation” - based on
the Lagrangian of form26.19. This paper deals only with a finite set of linearly damped
thermodynamic variables. Here the setting is much morergénee study fluctuations
over a state space varying velocity fiefk). Schulman’s monographi ] contains a very
readable summary of Kac's ] exposition of Wiener’s integral over stochastic paths.
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EXERCISES 461

Exercises

26.1. Whoordered 4/n ? Derive the Gaussian integral of two Gaussians

1 f“’ R
— dx ez = +a, a>0.
Vo J-

assuming only that you know to integrate the
exponential functiore™. Hint, hint: x? is a radius- [f+g](x) = 1 fdk FGKE™, (26.22)
squared of something.r is related to the area or (2r)d '

circumference of something.

f=e 5% g =g Ex

factorizes as

where
26.2. D-dimensional Gaussian integrals. Show that the
Gaussian integral iD-dimensions is given by F(k)

(2717)5 f dx F(e™ = [dethq /26t Ak

1 1Tl 1 14T ) .
Wfddq)e 3¢ -Mg+pd |detM|2 ei?m) G(k) # fddxg(x)e—lkxz |detA2|l/Ze%k Ak

whereM is a real positive definited/x d] matrix, i.e.,
a matrix with strictly positive eigenvalues, J are D-
dimensional vectors, and is the transpose of.

Hence

[f=g](x) %wetAldetAﬂl/zfddp g P (A1
26.3. Convolution of Gaussians.  Show that the Fourier (2n)

transform of convolution detA;detA,

det (A]_ + Az)
[f gl(x) = f dy f(x— y)g)

12
e—%xT»(AlJrAz)’l»x
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