
Chapter 26

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanović)

T  (which reader can safely skip on the first reading) is about noise,
how it affects classical dynamics, and the ways it mimics quantum dynamics.

Why - in a study of deterministic and quantum chaos - start discussing noise?
First, in physical settings any dynamics takes place against a noisy background,
and whatever prediction we might have, we have to check its robustness to noise.
Second, as we show in this chapter, to the leading order in noise strength the
semiclassical Hamilton-Jacobi formalism carries over to weakly stochastic flows
in toto. As classical noisy dynamics is more intuitive than quantum dynamics, this
exercise helps demystify some of the formal machinery of semiclassical quantization.
Surprisingly, symplectic structure emerges here not as a deep principle of mechanics,
but an artifact of the leading approximation to quantum/noisy dynamics, not respected
by higher order corrections. The same is true of semiclassical quantum dynamics;
higher corrections do not respect canonical invariance. Third, the variational
principle derived here will be refashioned into a powerful tool for determining
periodic orbits in chapter27.

We start by deriving the continuity equation for purely deterministic, noiseless
flow, and then incorporate noise in stages: diffusion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulation, stochastic path integrals.

26.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)
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Fluid dynamics is about physical flows of media with continuous densities. On
the other hand, the flows in state spaces of dynamical systemsfrequently require
more abstract tools. To sharpen our intuition about those, it is helpful to outline
the more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow calledmaterial invariant.
A material invariantI (x) is a property attached to each pointx that is preserved
by the flow, I (x) = I ( f t(x)); for example, at this point a green particle (more
formally: a passive scalar) is embedded into the fluid. AsI (x) is invariant, its
total time derivative vanishes,İ (x) = 0. Written in terms of partial derivatives this
is theconservation equationfor the material invariant

∂tI + v · ∂I = 0 . (26.1)

Let thedensityof representative points beρ(x, t). The manner in which the flow
redistributesI (x) is governed by a partial differential equation whose form is
relatively simple because the representative points are neither created nor destroyed.
This conservation property is expressed in the integral statement

∂t

∫

V
dxρI = −

∫

∂V
dσ n̂iviρI ,

whereV is an arbitrary volume in the state spaceM, ∂V is its surface, ˆn is its
outward normal, and repeated indices are summed over throughout. The divergence
theorem turns the surface integral into a volume integral,

∫

V

[

∂t(ρI ) + ∂i(viρI )
]

dx= 0 ,

where∂i is the partial derivative operator with respect toxi . Since the integration
is over an arbitrary volume, we conclude that

∂t(ρI ) + ∂i(ρIvi ) = 0 . (26.2)

The choiceI ≡ 1 yields thecontinuity equationfor the density:

∂tρ + ∂i(ρvi) = 0 . (26.3)

We have used here the language of fluid mechanics to ease the visualization,
but, as we already saw in the discussion of infinitesimal action of the Perron-
Frobenius operator (14.25), continuity equation applies to any deterministic state
space flow.
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26.2 Brownian diffusion

Consider tracer molecules, let us say green molecules, embedded in a denser gas
of transparent molecules. Assume that the density of tracermoleculesρ compared
to the background gas density is low, so we can neglect green-green collisions.
Each green molecule, jostled by frequent collisions with the background gas,
executes its own Brownian motion. The molecules are neithercreated nor destroyed,
so their number within an arbitrary volumeV changes with time only by the
current densityj i flow through its surface∂V (with n̂ its outward normal):

∂t

∫

V
dxρ = −

∫

∂V
dσ n̂i j i . (26.4)

The divergence theorem turns this into the conservation lawfor tracer density:

∂tρ + ∂i j i = 0 . (26.5)

The tracer densityρ is defined as the average density of a “material particle,”
averaged over a subvolume large enough to contain many green(and still many
more background) molecules, but small compared to the macroscopic observational
scales. What isj? If the density is constant, on the average as many molecules
leave the material particle volume as they enter it, so a reasonable phenomenological
assumption is that theaveragecurrent density (not the individual particle current
densityρvi in (26.3)) is driven by the density gradient

j i = −D
∂ρ

∂xi
. (26.6)

This is theFick law, with the diffusion constantD a phenomenological parameter.
For simplicity here we assume thatD is a scalar; in generalD → Di j (x, t) is
a space- and time-dependent tensor. Substituting thisj into (26.5) yields the
diffusion equation

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (26.7)

This linear equation has an exact solution in terms of an initial Dirac delta density
distribution,ρ(x, 0) = δ(x− x0),

ρ(x, t) =
1

(4πDt)d/2
e−

(x−x0)2

4Dt =
1

(4πDt)d/2
e−

ẋ2
4Dt . (26.8)

The average distance covered in timet obeys the Einstein diffusion formula

〈

(x− x0)2
〉

t
=

∫

dxρ(x, t)(x− x0)2 = 2dDt . (26.9)
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26.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory having
substance, while its path integral image exists mainly in
the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics which is purely Brownian,
with no deterministic “drift.” Consider next a deterministic flow ẋ = v(x) perturbed
by a stochastic termξ(t),

ẋ = v(x) + ξ(t) . (26.10)

Assume thatξ(t)’s fluctuate around [ ˙x− v(x)] with a Gaussian probability density

p(ξ, δt) =
(

δt
4πD

)d/2

e−
ξ2

4D δt , (26.11)

and are uncorrelated in time (white noise)

〈

ξ(t)ξ(t′)
〉

= 2dDδ(t − t′) . (26.12)

The normalization factors in (26.8) and (26.11) differ, asp(ξ, δt) is a probability
density for velocityξ, and ρ(x, t) is a probability density for positionx. The
material particle now drifts along the trajectoryx(t), so the velocity diffusion
follows (26.8) for infinitesimal timeδt only. As D → 0, the distribution tends
to the (noiseless, deterministic) Dirac delta function.

An example is the Langevin equation for a Brownian particle,in which one
replaces the Newton’s equation for force by two counter-balancing forces: random
accelerationsξ(t) which tend to smear out a particle trajectory, and a dampingterm
which drives the velocity to zero.

The phenomenological Fick law current (26.6) is now a sum of two components,
the material particle center-of-mass deterministic driftv(x) and the weak noise
term

j i = ρvi − D
∂ρ

∂xi
, (26.13)

Substituting thisj into (26.5) yields theFokker-Planck equation

∂tρ + ∂i(ρvi) = D ∂2ρ. (26.14)
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The left hand side,dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (26.3) recovered in the weak noise limitD → 0. The right hand side
describes the diffusive transport in or out of the material particle volume. If
the density is lower than in the immediate neighborhood, thelocal curvature is
positive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature
diffusion lowers the local density, thus smoothing the variability of ρ. Where is
the density going globally?

If the system is bound, the probability density vanishes sufficiently fast outside
the central region,ρ(x, t)→ 0 as|x| → ∞, and the total probability is conserved

∫

dxρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
invariant density

ρ0(x) = lim
t→∞
ρ(x, t) , (26.15)

an eigenfunctionρ(x, t) = estρ0(x) of the time-independent Fokker-Planck equation

(

∂ivi − D ∂2 + sα
)

ρα = 0 , (26.16)

with vanishing eigenvalues0 = 0. Provided the noiseless classical flow is hyperbolic,
in the vanishing noise limit the leading eigenfunction of the Fokker-Planck equation
tends to natural measure (14.17) of the corresponding deterministic flow, the
leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting,s0 < 0, and the density
of the system tends to zero. In this case the leading eigenvalue s0 of the time-
independent Fokker-Planck equation (26.16) can be interpreted by saying that a
finite density can be maintained by pumping back probabilityinto the system at
a constant rateγ = −s0. The value ofγ for which any initial probability density
converges to a finite equilibrium density is called theescape rate. In the noiseless
limit this coincides with the deterministic escape rate (15.15).

We have introduced noise phenomenologically, and used the weak noise assumption
in retaining only the first derivative ofρ in formulating the Fick law (26.6) and
including noise additively in (26.13). A full theory of stochastic ODEs is much
subtler, but this will do for our purposes.

26.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study theevolution of the
probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (26.17)
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The time evolution ofR is given by

∂tR+ v∂R+ (∂R)2 = D∂v+ D∂2R.

Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR+ H(x, ∂R) = 0

is the Hamilton-Jacobi equation . The functionRcan be interpreted as the Hamilton’s
principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v+ p

ṗ = −∂xH = −AT p , (26.18)

whereA is the stability matrix (4.3)

Ai j (x) =
∂vi(x)
∂x j

.

The noise Lagrangian is then

L(x, ẋ) = ẋ · p− H =
1
2

[ ẋ− v(x)]2 . (26.19)

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (26.11) for noiseξ2 = [ ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two pointsx0 and x. Which noisy
path is the most probable path that connects them in timet? The probability of a
given pathP is given by the probability of the noise sequenceξ(t) which generates
the path. This probability is proportional to the product ofthe noise probability
functions (26.11) along the path, and the total probability for reachingx from x0

in time t is given by the sum over all paths, or the stochastic path integral (Wiener
integral)

P(x, x0, t) ∼
∑

P

∏

j

p(ξ(τ j), δτ j ) =
∫

∏

j

dξ j

(

δτ j

2πD

)d/2

e−
ξ(τ j )

2

2D δτi

→ 1
Z

∑

P
exp

(

− 1
2D

∫ t

0
dτ ξ2(τ)

)

, (26.20)
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whereδτi = τi − τi , and the normalization constant is

1
Z
= lim

∏

i

(

δτi

2πD

)d/2

.

The most probable path is the one maximizing the integral inside the exponential.
If we express the noise (26.10) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min
∫ t

0
dτ[ ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a givenx, x′ andt the the probability is maximized
by a solution of Hamilton’s equations (26.18) that connects the two pointsx0→ x′

in time t.

Résum é

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strengthD, the deterministic dynamics is recovered in the weak noise
limit D → 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Commentary

Remark 26.1 Literature. The theory of stochastic processes is a vast subject, spanning
over centuries and over disciplines ranging from pure mathematics to impure finance.
We enjoyed reading van Kampen classic [1], especially his railings against those who
blunder carelessly into nonlinear landscapes. Having committed this careless chapter
to print, we shall no doubt be cast to a special place on the long list of van Kampen’s
sinners (and not for the first time, either). A more specialized monograph like Risken’s [2]
will do just as well. The “Langevin equation” introduces noise and damping only into
the acceleration of Newton’s equations; here we are considering more general stochastic
differential equations in the weak noise limit. Onsager-Machlup seminal paper [18] was
the first to introduce a variational method - the “principle of least dissipation” - based on
the Lagrangian of form (26.19). This paper deals only with a finite set of linearly damped
thermodynamic variables. Here the setting is much more general: we study fluctuations
over a state space varying velocity fieldv(x). Schulman’s monograph [11] contains a very
readable summary of Kac’s [12] exposition of Wiener’s integral over stochastic paths.
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Exercises

26.1. Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2a =
√

a , a > 0 .

assuming only that you know to integrate the
exponential functione−x. Hint, hint: x2 is a radius-
squared of something. π is related to the area or
circumference of something.

26.2. D-dimensional Gaussian integrals. Show that the
Gaussian integral inD-dimensions is given by

1
(2π)d/2

∫

ddφe−
1
2φ

T ·M−1·φ+φ·J = |detM| 12 e
1
2 JT ·M·J ,(26.21)

whereM is a real positive definite [d × d] matrix, i.e.,
a matrix with strictly positive eigenvalues.x, J areD-
dimensional vectors, andxT is the transpose ofx.

26.3. Convolution of Gaussians. Show that the Fourier
transform of convolution

[ f ∗ g](x) =
∫

ddy f(x− y)g(y)

of two Gaussians

f (x) = e−
1
2 xT · 1

∆1
·x
, g(x) = e−

1
2 xT · 1

∆2
·x

factorizes as

[ f ∗ g](x) =
1

(2π)d

∫

dk F(k)G(k)eik·x , (26.22)

where

F(k) =
1

(2π)d

∫

ddx f(x)e−ik·x = |det∆1|1/2e
1
2

G(k) =
1

(2π)d

∫

ddx g(x)e−ik·x = |det∆2|1/2e
1
2 k

Hence

[ f ∗ g](x) =
1

(2π)d
|det∆1det∆1|1/2

∫

ddp e
1
2 pT

=

∣

∣

∣

∣

∣

det∆1det∆2

det (∆1 + ∆2)

∣

∣

∣

∣

∣

1/2

e−
1
2 xT ·(∆1+∆2)−1·x
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