
Chapter 7

Hamiltonian dynamics

Truth is rarely pure, and never simple.

—Oscar Wilde

Y    that the strangeness of contracting flows, flows such as the
Rössler flow of figure2.5 is of concern only to chemists; real physicists
do Hamiltonian dynamics, right? Now, that’s full of chaos, too! While

it is easier to visualize aperiodic dynamics when a flow is contracting onto a
lower-dimensional attracting set, there are plenty examples of chaotic flows that
do preserve the full symplectic invariance of Hamiltonian dynamics. The whole
story started in fact with Poincaré’s restricted 3-body problem, a realization that
chaos rules also in general (non-Hamiltonian) flows came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamiltonian
flows. We discuss billiard dynamics in some detail in chapter8.

7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian
[appendix B]

H(q, p) together with the Hamilton’s equations of motion

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (7.1)

with the 2D phase space coordinatesx split into the configuration space coordinates
and the conjugate momenta of a Hamiltonian system withD degrees of freedom
(dof):

x = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)
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Figure 7.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (7.4). −2 −1 0 1 2
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The energy, or the value of the Hamiltonian function at the state space pointx =
(q, p) is constant along the trajectoryx(t),

d
dt

H(q(t), p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi
= 0 , (7.3)

so the trajectories lie on surfaces of constant energy, orlevel sets of the Hamiltonian
{(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the whole
story.

Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form with the Hamiltonian

H(q, p) =
p2

2
− q2

2
+

q4

4
. (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q − q3 . (7.5)

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems areintegrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic – as is the case for the
harmonic oscillator (a ‘bound state’)–or open (a ‘scattering trajectory’). Add one

[example 6.1]
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org
we shall apply the periodic orbit theory to the quantization of helium. In particular, we
will study collinear helium, a doubly charged nucleus with two electrons arranged on a
line, an electron on each side of the nucleus. The Hamiltonian for this system is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (7.6)
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along ther1-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along ther2-
axis.
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1, r2), ri ≥ 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary
projection of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase space form ˙xi = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The symplectic
invariance requirements are actually more stringent than just the phase space
volume conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of
equations of motion can affect the dynamics. In the case at hand, thesymplectic
invariance will reduce the number of independent stability eigenvalues by a factor
of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independent,D-dof Hamiltonian (7.1) can be
written

ẋi = ωi jH j(x) , ω =

(

0 I
−I 0

)

, H j(x) =
∂

∂x j
H(x) , (7.7)

wherex = (q, p) ∈ M is a phase space point,Hk = ∂kH is the column vector of
partial derivatives ofH, I is the [D×D] unit matrix, andω the [2D×2D] symplectic
form

ωT = −ω , ω2 = −1 . (7.8)
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The evolution ofJt (4.6) is again determined by the stability matrixA, (4.9):

d
dt

Jt(x) = A(x)Jt(x) , Ai j(x) = ωik Hk j(x) , (7.9)

where the matrix of second derivativesHkn = ∂k∂nH is called theHessian matrix.
From the symmetry ofHkn it follows that

ATω + ωA = 0 . (7.10)

This is the defining property for infinitesimal generators ofsymplectic (or canonical)
transformations, transformations which leave the symplectic formω invariant.

Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic formxiωi jy j invariant. This immediately implies that
any symplectic matrix satisfies

QTωQ = ω , (7.11)

and – whenQ is close to the identityQ = 1 + δtA – it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of formyi = hi(x), and
define a new functionK(x) = H(h(x)). Under which conditions doesK generate
a Hamiltonian flow? In what follows we will use the notation∂̃ j = ∂/∂y j: by
employing the chain rule we have that

ωi j∂ jK = ωi j∂̃lH
∂hl

∂x j
(7.12)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (7.1) ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
ẋn (7.13)

The right hand side simplifies to ˙xi (yielding Hamiltonian structure) only if

− ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
= δin (7.14)

or, in compact notation, by defining (∂h)i j =
∂hi
∂x j

− ω(∂h)Tω(∂h) = 1 (7.15)
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Figure 7.3: Stability exponents of a Hamiltonian
equilibrium point, 2-dof.
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which is equivalent to the requirement that∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformationh is very

[example 6.1]
cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are aprime example of
canonical transformations.

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that d

dt

(

JTωJ
)

= 0, and since at the initial time J0(x0) = 1, fundamental
matrixis a symplectic transformation (7.11). This equality is valid for all times, so a
Hamiltonian flow f t(x) is a canonical transformation, with the linearization ∂x f t(x) a
symplectic transformation (7.11): For notational brevity here we have suppressed the
dependence on time and the initial point, J = Jt(x0). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space volume
preserving:

|detJ| = 1 . (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has detJ =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointxq the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium point.A is the matrix (7.10) with
real matrix elements, so its eigenvalues (the Floquet exponents of (4.30)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(7.10) that the characteristic polynomial ofA for an equilibriumxq satisfies

det (A − λ1) = det (ω−1(A − λ1)ω) = det (−ωAω − λ1)

= det (AT + λ1) = det (A + λ1) . (7.17)

That is, the symplectic invariance implies in addition thatif λ is an eigenvalue,
then−λ, λ∗ and−λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet
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Figure 7.4: Stability of a symplectic map inR4.
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exponents of an equilibrium point in a 2-dof system are displayed in figure7.3. It
is worth noting that while the linear stability of equilibria in a Hamiltonian system
always respects this symmetry, the nonlinear stability canbe completely different.

[section 4.3.1]

[exercise 7.4]

[exercise 7.5]

7.3 Symplectic maps

A stability eigenvalueΛ = Λ(x0, t) associated to a trajectory is an eigenvalue of
the fundamental matrixJ. As J is symplectic, (7.11) implies that

J−1 = −ωJTω , (7.18)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (JT − Λ1) = det (−ωJTω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1− ΛJ)

= Λ2D det (J − Λ−11) . (7.19)

Hence ifΛ is an eigenvalue ofJ, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues
always come paired asΛ, 1/Λ. The Liouville conservation of phase space volumes
(7.16) is an immediate consequence of this pairing up of eigenvalues. The complex
eigenvalues come in pairsΛ, Λ∗, |Λ| = 1, or in loxodromic quartetsΛ, 1/Λ, Λ∗

and 1/Λ∗. These possibilities are illustrated in figure7.4.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.53) the Hénon map
(3.18) for b = −1 value is the simplest 2-d orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of
2 dof Hamiltonian flows. We find it convenient to multiply (3.19) by a and absorb the a
factor into x in order to bring the Hénon map for the b = −1 parameter value into the
form

xi+1 + xi−1 = a − x2
i , i = 1, ..., np , (7.20)
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b)k = 0.3,
k = 0.85 andk = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.(a) (b)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a − x2
n − yn

yn+1 = xn . (7.21)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f n(x) − x (periodic points) are real.

[exercise 8.6]

Example 7.5 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.5) depend only on tr Mt

Λ1,2 =
1
2

(

tr Mt ±
√

(tr Mt − 2)(tr Mt + 2)
)

. (7.22)

The trajectory is elliptic if the stability residue |tr Mt | − 2 ≤ 0, with complex eigenvalues
Λ1 = eiθt, Λ2 = Λ

∗
1 = e−iθt. If |tr Mt | − 2 > 0, λ is real, and the trajectory is either

hyperbolic Λ1 = eλt , Λ2 = e−λt , or (7.23)

inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (7.24)

Example 7.6 Standard map. Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (7.25)

is an area-preserving map. The corresponding nth iterate fundamental matrix (4.48) is

Mn(x0, y0) =
1

∏

k=n

(

1+ g′(xk) 1
g′(xk) 1

)

. (7.26)

The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S 1 × R (S 1 stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.25) mod 1 the map can be reduced on the 2-torus S 2.

The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,
yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with
uniform velocity

xn+1 = xn + y0 = x0 + (n + 1)y0 mod 1 . (7.27)
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The choice of y0 determines the nature of the motion (in the sense of sect. 2.1.1): for
y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q the motion
is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when k is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.

Note that the map (7.25) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

H(x, y; t) =
1
2

y2 +G(x)δ1(t) (7.28)

where δ1 denotes the periodic delta function

δ1(t) =
∞
∑

m=−∞
δ(t − m) (7.29)

and

G′(x) = −g(x) . (7.30)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the k = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

RP/Q =
1
4

(

2− tr MP/Q
)

. (7.31)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for
RP/Q < 0 inverse hyperbolic.

For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding
number P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

7.4 Poincaŕe invariants

Let C be a region in phase space andV(0) its volume. Denoting the flow of the
Hamiltonian system byf t(x), the volume ofC after a timet is V(t) = f t(C), and
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using (7.16) we derive theLiouville theorem:

V(t) =
∫

f t(C)
dx =

∫

C

∣

∣

∣

∣

∣

∣

det
∂ f t(x′)
∂x

∣

∣

∣

∣

∣

∣

dx′

∫

C
det (J)dx′ =

∫

C
dx′ = V(0) , (7.32)

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys us much more than
the ‘incompressibility,’ or the phase space volume conservation. Consider the
symplectic product of two infinitesimal vectors

(δx, δx̂) = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=

D
∑

i=1

{

oriented area in the (qi, pi) plane
}

. (7.33)

Time t later we have

(δx′, δx̂′) = δxT JTωJδx̂ = δxTωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so that
the vectorsδx andδx̂ describe their displacements relative to the reference point.
Under the dynamics, the three points are mapped to three new points which are
still infinitesimally close to one another. The meaning of the above expression is
that the area of the parallelopiped spanned by the three finalpoints is the same as
that spanned by the initial points. The integral (Stokes theorem) version of this
infinitesimal area invariance states that for Hamiltonian flows theD oriented areas
Vi bounded byD loopsΩVi, one per each (qi, pi) plane, are separately conserved:

∫

V
dp ∧ dq =

∮

ΩV
p · dq = invariant. (7.34)

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphasizesD, the number
of the degrees of freedom.

in depth:

appendix B.3, p. 667

Commentary

Remark 7.1 Hamiltonian dynamics literature. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
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Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest? Out there there are about 2 centuries of accumulated literature
on Hamilton, Lagrange, Jacobi etc. formulation of mechanics, some of it excellent.
In context of what we will need here, we make a very subjectiverecommendation–we
enjoyed reading Percival and Richards [10] and Ozorio de Almeida [11].

Remark 7.2 Symplectic. The term symplectic –Greek for twining or plaiting together–
was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-
doctrinal: Greek ‘kanon,’ referring to a reed used for measurement, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of ω. The overall sign ofω, the symplectic invariant
in (7.7), is set by the convention that the Hamilton’s principal function (for energy conserving

flows) is given byR(q, q′, t) =
∫ q′

q
pidqi − Et. With this sign convention the action along

a classical path is minimal, and the kinetic energy of a free particle is positive.

Remark 7.4 Symmetries of the symbol square. For a more detailed discussion of
symmetry lines see refs. [5, 8, 46, 13]. It is an open question (see remark19.3) as to
how time reversal symmetry can be exploited for reductions of cycle expansions. For
example, the fundamental domain symbolic dynamics for reflection symmetric systems
is discussed in some detail in sect.19.5, but how does one recode from time-reversal
symmetric symbol sequences to desymmetrized 1/2 state space symbols?

Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemented,for instance, by pulsed optical
lattices in cold atoms physics. On the theoretical side, standard maps exhibit a number
of important features: smallk values provide an example ofKAM perturbative regime
(see ref. [8]), while for largerk chaotic deterministic transport is observed [9, 10]; the
transition to global chaos also presents remarkable universality features [11, 12, 13].
Also the quantum counterpart of this model has been widely investigated, being the first
example where phenomena like quantum dynamical localization have been observed [14].
For some hands-on experience of the standard map, download Meiss simulation code [4].

Exercises

7.1. Complex nonlinear Schr̈odinger equation.
Consider the complex nonlinear Schrödinger equation
in one spatial dimension [1]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β , 0.

(a) Show that the functionψ : R → C defining the

traveling wave solutionφ(x, t) = ψ(x − ct) for
c > 0 satisfies a second-order complex differential
equation equivalent to a Hamiltonian system in
R

4 relative to the noncanonical symplectic form
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whose matrix is given by

wc =

























0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

























.

(b) Analyze the equilibria of the resulting Ha-
miltonian system inR4 and determine their linear
stability properties.

(c) Let ψ(s) = eics/2a(s) for a real functiona(s) and
determine a second order equation fora(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits forβ < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic group/algebra

Show that if a matrixC satisfies (7.10), then exp(sC) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that
the mapφ : R2n → R

2n given by (q, p) 7→
(Aq, (A−1)T p) is a canonical transformation.

(b) If R is a rotation inR3, show that the map (q, p) 7→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinant of symplectic matrices. Show that
the determinant of a symplectic matrix is+1, by going
through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that thejoint multiplicity of λ = ±1 is even,

(c) show that the multiplicities ofλ = 1 andλ = −1
cannot be both odd. (Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show thatQ(1) = 0).

7.5. Cherry’s example. What follows refs. [2, 3] is mostly
a reading exercise, about a Hamiltonian system that is
linearly stable but nonlinearly unstable. Consider the
Hamiltonian system onR4 given by

H =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2) +
1
2

p2(p2
1 − q2

1) − q1q2p1.

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constantτ:

q1 = −
√

2
cos(t − τ)

t − τ , q2 =
cos 2(t − τ)

t − τ ,

p1 =
√

2
sin(t − τ)

t − τ , p2 =
sin 2(t − τ)

t − τ .

These solutions clearly blow up in finite time;
however they start att = 0 at a distance

√
3/τ from

the origin, so by choosingτ large, we can find
solutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

(Luz V. Vela-Arevalo)
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