Chapter 7

Hamiltonian dynamics

Truth is rarely pure, and never simple.
—Oscar Wilde

ou MiGHT THINK that the strangeness of contracting flows, flows such as the

Y Rossler flow of figure2.5is of concern only to chemists; real physicists
do Hamiltonian dynamics, right? Now, that's full of chaosplt While
it is easier to visualize aperiodic dynamics when a flow isti@ming onto a
lower-dimensional attracting set, there are plenty exampf chaotic flows that
do preserve the full symplectic invariance of Hamiltonigmamics. The whole
story started in fact with Poincaré’s restricted 3-bodghbem, a realization that
chaos rules also in general (non-Hamiltonian) flows camehtater.

Here we briefly review parts of classical dynamics that wd ngled later
on; symplectic invariance, canonical transformations, stability of Hamiltonian
flows. We discuss billiard dynamics in some detail in chapter

7.1 Hamiltonian flows

(P. Cvitanovit and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antitonian _
. . , . . [appendix B]
H(q, p) together with the Hamilton’s equations of motion

. OH . oH
o , = —— 7.1
i ap, Pi g (7.1)

with the 2D phase space coordinatesplit into the configuration space coordinates

and the conjugate momenta of a Hamiltonian system ittegrees of freedom
(dof):

x=(9,p), g=(0%:...,0p), p = (P, P2,...,Pp)- (7.2)
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Duffing oscillator. The trajectories lie on level sets o
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q
Figure 7.1: Phase plane of the unforced, undampe_,| b\j

the Hamiltonian 7.4). 2 o
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The energy, or the value of the Hamiltonian function at tlaesspace point =
(g, p) is constant along the trajectoryt),

d OoH . oH .
EH(Q(t), pt)) = 8_qiql ) + 8_pip' )
OHOH OH oH
_ OHOH OHOH _ . 7.3
0qgi opi  dpi 94 73)

so the trajectories lie on surfaces of constant enerdgversets of the Hamiltonian

{(g, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the whole

story.

Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian

form with the Hamiltonian
PP ¢
qu—z > T4

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane
The Hamilton’s equations (7.1) are

(7.4)

(9, p)-

(7.5)

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are

the trajectories, as shown in figure 7.1.

Thus all 1-dof systems aiategrable, in the sense that the entire phase plane

is foliated by curves of constant energy, either periodics-tsathe case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scatigtrajectory’). Add one

[example 6.1]

more

degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org
we shall apply the periodic orbit theory to the quantization of helium. In particular, we
will study collinear helium, a doubly charged nucleus with two electrons arranged on a
line, an electron on each side of the nucleus. The Hamiltonian for this system is

1, 2 2 1

-Pp5-——-—+ .
22 Iy 5) r{ +r1o

H:%ﬁ+ (7.6)
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along theaxis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case alongrthe
axis.

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1,r>), ri > 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary
projection of the flow.

Note an important property of Hamiltonian flows: if the Hatmil equations
(7.1) are rewritten in the R phase space form = vi(X), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The symplectic
invariance requirements are actually more stringent thash the phase space
volume conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows &er an illustration of the ways in which an invariance of
equations of motion canflect the dynamics. In the case at hand, fyreplectic
invariance will reduce the number of independent stability eigenvaliogg a factor
of 2 or4.

7.2.1 Canonical transformations

The equations of motion for a time-independdddof Hamiltonian {.1) can be
written

o w=( 5 5] M= g0, 70

wherex = (g, p) € M is a phase space poirty = dxH is the column vector of
partial derivatives oH, | is the [DxD] unit matrix, andw the [2Dx2D] symplectic
form

0 =-w, w?=-1. (7.8)
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The evolution ofJ (4.6) is again determined by the stability matéx (4.9):

S0 = AN A = wicHg(9). (7.9)

where the matrix of second derivativelg, = dxdnH is called theHessian matrix.
From the symmetry ofly, it follows that

ATw +wA=0. (7.10)
This is the defining property for infinitesimal generatorsyoiplectic (or canonical)

transformations, transformations which leave the syntigléorm w invariant.

Symplectic matrices are by definition linear transformadidhat leave the
(antisymmetric) quadratic formgwijy; invariant. This immediately implies that
any symplectic matrix satisfies

Q'wQ = w, (7.112)
and — whenQ is close to the identityQ = 1 + 6tA — it follows that thatA must

satisfy (7.10.

Consider now a smooth nonlinear change of variables of feranh;(x), and
define a new functioK(x) = H(h(x)). Under which conditions dods generate
a Hamiltonian flow? In what follows we will use the notatién = d/dy;: by
employing the chain rule we have that

= oh
wijdiK = wija.Ha—X'_ (7.12)

J

(Here, as elsewhere in this book, a repeated index impliesnation.) By virtue
of (7.2) 9| H = —wimym, SO that, again by employing the chain rule, we obtain

(7.13)

L, (7.14)

or, in compact notation, by definingtf);; = %

—w(@h)Tw(@dh) = 1 (7.15)
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Figure 7.3: Stability exponents of a Hamiltonian
equilibrium pOint, 2'd0f. generic center degenerate center

which is equivalent to the requirement th#t is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfamationh is very
cleverly chosen, the flow in new coordinates might be comalulg simpler than
the original flow. Second, Hamiltonian flows themselves apeime example of
canonical transformations.

[example 6.1]

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that %(JTwJ) = 0, and since at the initial time J°(Xo) = 1, fundamental
matrixis a symplectic transformation (7.11). This equality is valid for all times, so a
Hamiltonian flow f'(X) is a canonical transformation, with the linearization dxf'(x) a
symplectic transformation (7.11): For notational brevity here we have suppressed the
dependence on time and the initial point, J = J'(Xp). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space volume
preserving:

Idetd] = 1. (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has detJ =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poirk.is the matrix .10 with
real matrix elements, so its eigenvalues (the Floquet exqisrof ¢.30)) are either
real or come in complex pairs. In the case of Hamiltonian fldnv®llows from
(7.10 that the characteristic polynomial &ffor an equilibriumxg satisfies

det w (A - A1)w) = det CwAw — 11)
det A" + A1) = det(A + A1). (7.17)

det (A — A1)

That is, the symplectic invariance implies in addition thal is an eigenvalue,
then—A1, 2* and—A* are also eigenvalues. Distinct symmetry classes of theuglog

newton - 14may2008.tex



CHAPTER 7. HAMILTONIAN DYNAMICS 113

s

complex saddle saddle-center
@/ @
degenerate saddle real saddle

ARNa
T

Figure 7.4: Stablllty ofa Symplectic map iR, generic center degenerate center

exponents of an equilibrium point in a 2-dof system are digpd in figure7.3. It
is worth noting that while the linear stability of equiliarin a Hamiltonian system
always respects this symmetry, the nonlinear stabilitylmaoompletely dferent.

[section 4.3.1]
[exercise 7.4]
[exercise 7.5]

7.3 Symplectic maps

A stability eigenvalueA = A(Xg,t) associated to a trajectory is an eigenvalue of
the fundamental matrid. As Jis symplectic, 7.11) implies that

Jt=—wiw, (7.18)

so the characteristic polynomial is reflexive, namely iis$its

det(d — A1) det@" — A1) = det(~wI"w - Al)
det@ - A1) = det@ 1) det( — AJ)

= APdet@-A11). (7.19)

Hence ifA is an eigenvalue od, so are 1A, A* and JYA*. Real eigenvalues
always come paired as, 1/A. The Liouville conservation of phase space volumes
(7.16) is animmediate consequence of this pairing up of eigergallihe complex
eigenvalues come in pairs, A*, |A| = 1, or in loxodromic quarteta, 1/A, A*
and YA*. These possibilities are illustrated in figufel

Example 7.4 Hamiltonian H énon map, reversibility: By (4.53) the Hénon map
(3.18) for b = —1 value is the simplest 2-d orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of
2 dof Hamiltonian flows. We find it convenient to multiply (3.19) by a and absorb the a
factor into X in order to bring the Hénon map for the b = —1 parameter value into the
form

X1+ Xa=a—-x, i=1,..,np, (7.20)
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. ()= 0.3,

k = 0.85 andk = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times(a)

The 2-dimensional Hénon map for b = —1 parameter value

Xoi1 = a-X2—VYn
Ynir = Xn. (7.21)

is Hamiltonian (symplectic) in the sense that it preserves area in the [X, Y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f"(X) — x (periodic points) are real.

[exercise 8.6]
Example 7.5 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.5) depend only on tr M!
1
Az= 3 (tr M= tr MT=2)(trMT + 2)) . (7.22)

The trajectory is elliptic if the stability residue |tr M| — 2 < 0, with complex eigenvalues
Ay =€% Ay = A; =€ Ifitr M'| - 2> 0, A is real, and the trajectory is either

hyperbolic Ar=e", Ar=e, or (7.23)
inverse hyperbolic AL =—-et, Ap=-et, (7.24)

Example 7.6 Standard map.  Given a smooth function g(X), the map

X+l = Xnt Yn+a
Yn + 9(Xn) (7.25)

Yn+1

is an area-preserving map. The corresponding nth iterate fundamental matrix (4.48) is

1 /
M"(X0, Yo) = ];[( Lras9 ) (7.26)

The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S; x R (S; stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.25) mod 1 the map can be reduced on the 2-torus S,.

The standard map corresponds to the choice g(X) = k/2r sin(2rx). Whenk = 0,

Yn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle X rotates with
uniform velocity

X1 = Xn+Yo =X +(M+1)yo mod1l. (7.27)
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CHAPTER 7. HAMILTONIAN DYNAMICS 115

The choice of yy determines the nature of the motion (in the sense of sect. 2.1.1): for
Yo = O we have that every point on the yo = 0 line is stationary, for yo = p/q the motion
is periodic, and for irrational yo any choice of Xy leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter K is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when Kk is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.

Note that the map (7.25) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

HOGYID) = 2+ G(9ai(t) (7.28)

where 61 denotes the periodic delta function

o

s1(t) = Z 5(t—m) (7.29)
and
G'(X) = —-g(x). (7.30)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the kK = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

1
RP/Q = Z (2 —tr MP/Q) . (731)

If Rpjq € (0,1) the orbit is elliptic, for Re;q > 1 the orbit is hyperbolic orbits, and for
Re/q < 0 inverse hyperbolic.

For k = 0 all points on the yo = P/Q line are periodic with period Q, winding
number P/Q and marginal stability Rejq = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary Kk in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

7.4 Poincalé invariants

Let C be a region in phase space awi(D) its volume. Denoting the flow of the
Hamiltonian system by!(x), the volume ofC after a timet is V(t) = f'(C), and
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using (7.16) we derive theLiouville theorem:

_ _ It )| .,
V() = ff t(C)dx_ fc det—-~*| dx
f det@)dx = f dx’ = V(0), (7.32)
C C

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys usimuonore than
the ‘incompressibility, or the phase space volume coretéu. Consider the
symplectic product of two infinitesimal vectors

(6%, 6%) = 6X wék = 6pidt — 6qiopi
D
= Z {oriented area in they(, p;) plang . (7.33)

i=1
Timet later we have
(6X,6%) = X' ITwIsk = 6X' wok.

This has the following geometrical meaning. We imagine g¢hisra reference
phase space point. We then define two other points infinitdkinslose so that
the vectorssx andéX describe their displacements relative to the referencetpoi
Under the dynamics, the three points are mapped to three aguspvhich are
still infinitesimally close to one another. The meaning & #bove expression is
that the area of the parallelopiped spanned by the threepgomals is the same as
that spanned by the initial points. The integral (Stokeoitkim) version of this
infinitesimal area invariance states that for Hamiltoniaw#8 theD oriented areas
Vi bounded byD loopsQV;, one per eachy, p;) plane, are separately conserved:

f dpAdg= 56 p - dg = invariant. (7.34)
4% Qv

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphaszethe number
of the degrees of freedom.

F in depth:
3 appendix B.3, p. 667
Commentary

Remark 7.1 Hamiltonian dynamics literature. If you are reading this book, in theory
you already know everything that is in this chapter. In pcacyyou do not. Try this:
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Put your right hand on your heart and say: “l understand whyregrefers symplectic
geometry.” Honest? Out there there are about 2 centuriesafmaulated literature
on Hamilton, Lagrange, Jacobi etc. formulation of mechgngome of it excellent.
In context of what we will need here, we make a very subjeatadmmendation—-we
enjoyed reading Percival and Richards§][and Ozorio de Almeidall1].

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlgs®age is church-
doctrinal: Greek ‘kanon,” referring to a reed used for measient, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invariant
in (7.7), is set by the convention that the Hamilton’s principaldtion (for energy conserving

flows) is given byR(q, d',t) = qu/ pidg; — Et. With this sign convention the action along
a classical path is minimal, and the kinetic energy of a fratigle is positive.

Remark 7.4 Symmetries of the symbol square.  For a more detailed discussion of
symmetry lines see refss[8, 46, 13]. It is an open question (see rematR.3 as to
how time reversal symmetry can be exploited for reductionsyole expansions. For
example, the fundamental domain symbolic dynamics for ¢tfle symmetric systems
is discussed in some detail in set®.5 but how does one recode from time-reversal
symmetric symbol sequences to desymmetriz@dsfiate space symbols?

Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemeritednstance, by pulsed optical
lattices in cold atoms physics. On the theoretical sideydsied maps exhibit a number
of important features: smak values provide an example &AM perturbative regime
(see ref. §]), while for largerk chaotic deterministic transport is observed 10]; the
transition to global chaos also presents remarkable waligr features 11, 12, 13).

Also the quantum counterpart of this model has been widelgstigated, being the first
example where phenomena like quantum dynamical locadiz&taive been observei].

For some hands-on experience of the standard map, downle&ss Bimulation code/].

Exercises
7.1. Complex nonlinear  Schiddinger  equation. traveling wave solutionp(x,t) = y(x — ct) for
Consider the complex nonlinear Schrodinger equation ¢ > 0 satisfies a second-order complefteliential
in one spatial dimensiorn]: equation equivalent to a Hamiltonian system in
R* relative to the noncanonical symplectic form
9¢

, ¢ 2 _
|E+W+ﬂ¢|¢| —0, ﬁiO
(&) Show that the functiop : R — C defining the
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whose matrix is given by

0O 0 1 O

We = 0O 0 0 1
¢l -1 0 0 -c
0O -1 ¢ O

(b) Analyze the equilibria of the resulting Ha-
miltonian system irR* and determine their linear
stability properties.

(c) Lety(s) = €°/2a(s) for a real functiona(s) and
determine a second order equationdfs). Show

that the resulting equation is Hamiltonian and has

heteroclinic orbits foB < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schradinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic group/algebra
Show that if a matridC satisfies .10, then expgC) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(@) LetA be afp x i invertible matrix. Show that
the mapg : R™ — R given by @,p) —
(Ag, (A1) Tp) is a canonical transformation.

(b) If Ris arotation inR3, show that the magmm(p) —
(Rg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinant of symplectic matrices. Show that
the determinant of a symplectic matrix44, by going
through the following steps:

(a) use {.19 to prove that for eigenvalue pairs each

118

(b) prove that thgoint multiplicity of A = +1 is even,

(c) show that the multiplicities of = 1 andA = -1
cannot be both odd. (Hint: write

P(1) = (- 1™+ 1)""'Q(1)
and show tha@Q(1) = 0).

7.5. Cherry’sexample. What follows refs. P, 3] is mostly

a reading exercise, about a Hamiltonian system that is
linearly stable but nonlinearly unstable. Consider the
Hamiltonian system oR* given by

1 1
H = 5(a; + p}) - (65 + P3) + 5 Pa(Pf - 0) — QuPr.
(&) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with

frequencies in ratios 2:1).

(b)

Convince yourself that the following is a family of
solutions parameterize by a constant

_cos2(-1)
- t—-1
sin2t —

p, = SN2t-7)

t—7

cost— 1)
_ \/5?
sin(t — 7)
rep—

a1 =
p1=\/§

bl bl

T

These solutions clearly blow up in finite time;
however they start at= 0 at a distancey/3/z from
the origin, so by choosing large, we can find
solutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

member has the same multiplicity (the same holds

for quartet members),
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