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Figure 7.1: Phase plane of the unforced, undampe_, \/\/

Duffing oscillator. The trajectories lie on level sets o
the Hamiltonian 7.4). B B

Chapter 7

The energy, or the value of the Hamiltonian function at tlaesspace point =

H am | |t0 n | an dyn a.m |CS (g, p) is constant along the trajectort),

d OH . OH .

—H@®).p) = —ag)+—pit
GHEO-PO) = Foa®+ Top0

Truth is rarely pure, and never simple. = @ﬁ - ﬁﬁ = (7.3)
—Oscar Wilde oq dpi - dpi 0
) so the trajectories lie on surfaces of constant enerdgversets of the Hamiltonian
ou MiGHT THINK that the strangeness of contracting flows, flows such as the {(9. p) : H(g, p) = E}. For 1-dof Hamiltonian systems this is basically the whole
Rossler flow of figure2.5is of concern only to chemists; real physicists story.

do Hamiltonian dynamics, right? Now, that’s full of chaosot While
it is easier to visualize aperiodic dynamics when a flow ist@mting onto a ] _ )
lower-dimensional attracting set, there are plenty exaspf chaotic flows that Example 7.1 Unforced undamped Duffing oscillator: When the damping term
do preserve the full symplectic invariance of Hamiltoniamamics. The whole is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
story started in fact with Poincaré’s restricted 3-bodghpem, a realization that form with the Hamiltonian

chaos rules also in general (non-Hamiltonian) flows camehnhater. P ¢ q
Hap=5-T+T. (7.4)
Here we briefly review parts of classical dynamics that wd néled later
on; symplectic invariance, canonical transformations, stability of Hamiltonian This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).
flows. We discuss billiard dynamics in some detail in chapter The Hamilton’s equations (7.1) are
a=p, p=9-q. (7.5)
7.1 Hamiltonian flows For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the

phase plane (g, p), and the dynamics is very simple: the curves of constant energy are
. . the trajectories, as shown in figure 7.1.
(P. Cvitanovi¢ and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antitonian [appendix B] Thus all 1-dof systems aietegrable, in the sense that the entire phase plane
H(q, p) together with the Hamilton’s equations of motion ope is foliated by curves of constant energy, either periodis-sathe case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scatigtrajectory’). Add one

ample 6.1
oH . oH 1) more degree of freedom, and chaos breaks loose. [example 8.1]
o P e '
. . . X X . Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org
with the D phase space Coordlnabespllt_ into the conﬂgura_uon space coordinates we shall apply the periodic orbit theory to the quantization of helium. In particular, we
and the conjugate momenta of a Hamiltonian system Dithegrees of freedom will study collinear helium, a doubly charged nucleus with two electrons arranged on a
(dof): line, an electron on each side of the nucleus. The Hamiltonian for this system is
1, 1, 2 2 1
x=(,p), d=(d.G-.--), P=(PLP2.--»PD)- (7.2) =g+ sk oo s (7-6)
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Figure 7.2: A typical collinear helium trajectory in )
the [r1, 5] plane; the trajectory enters along theaxis

and then, like almost every other trajectory, afterafew o
bounces escapes to infinity, in this case alongrthe

axis. n

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1,r2), r; > 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary

projection of the flow.

Note an important property of Hamiltonian flows: if the Hatimil equations
(7.1) are rewritten in the R phase space form = vi(X), the divergence of the

velocity field v vanishes, namely the flow is incompressible. The symplectic

invariance requirements are actually more stringent thst the phase space
volume conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows @er an illustration of the ways in which an invariance of

equations of motion canffect the dynamics. In the case at hand, $jreplectic
invariance will reduce the number of independent stability eigenvaliog a factor
of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independdidof Hamiltonian 7.1) can be
written

% = wgHi (), w:(_ol Io) H,-(x):ainH(x), @.7)

wherex = (g, p) € M is a phase space poirtilx = dxH is the column vector of
partial derivatives oH, | is the [DxD] unit matrix, andw the [2Dx2D] symplectic
form

W =-w, w?=-1. (7.8)
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The evolution ofJ! (4.6) is again determined by the stability matéx (4.9):

ST =A0IX. AR = oicHg R, 9

where the matrix of second derivativelg, = dxdnH is called theHessian matrix.
From the symmetry ofiy, it follows that

Alw+wA=0. (7.10)

This is the defining property for infinitesimal generatorsyofplectic (or canonical)
transformations, transformations which leave the syntjgléerm w invariant.

Symplectic matrices are by definition linear transformadidhat leave the

(antisymmetric) quadratic formwijy;j invariant. This immediately implies that
any symplectic matrix satisfies

Q'wQ = w, (7.11)

and — whenQ is close to the identityQ = 1 + 6tA — it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of fgrmh;(x), and
define a new functioK(x) = H(h(x)). Under which conditions dods generate
a Hamiltonian flow? In what follows we will use the notatién = /dy;: by
employing the chain rule we have that

~ o
wijdiK = wijalHa—X: (7.12)

(Here, as elsewhere in this book, a repeated index impli@srgtion.) By virtue
of (7.1) | H = —wimym, SO that, again by employing the chain rule, we obtain

wijdiK = —a)ija—)(jw|m—5(n (7.13)

a0 . Wimoo— = Gin (7.14)
]

oh;

X

or, in compact notation, by definingif)i; = 5*

—w@h)TwEh) = 1 (7.15)
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complex saddle saddle-center

L3 2]
degenerate saddle real saddle
Figure 7.3: Stability exponents of a Hamiltonian “
equilibrium point, 2-dof. generic center degenerate center

which is equivalent to the requirement thit is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfamationh is very
cleverly chosen, the flow in new coordinates might be comalulg simpler than
the original flow. Second, Hamiltonian flows themselves apeirme example of
canonical transformations.

[example 6.1]

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that & (JTmJ = 0, and since at the initial time J°(xo) = 1, fundamental
matrixis a symplectic transformation (7.11). This equality is valid for all times, so a
Hamiltonian flow f'(X) is a canonical transformation, with the linearization dxf'(x) a
symplectic transformation (7.11): For notational brevity here we have suppressed the
dependence on time and the initial point, J = J'(xo). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space volume
preserving:

|detd| = 1. (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has detJ =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poirk.is the matrix .10 with
real matrix elements, so its eigenvalues (the Floquet exmsrof ¢.30)) are either
real or come in complex pairs. In the case of Hamiltonian flaw®Illows from
(7.10 that the characteristic polynomial &ffor an equilibriumxy satisfies

detA—11) = det@ (A-11)w) = det(wAw — A1)
det AT + A1) = det(A+ 11). (7.17)

That is, the symplectic invariance implies in addition that is an eigenvalue,
then—4, 1* and—2* are also eigenvalues. Distinct symmetry classes of thau€log
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Figure 7.4: Stability of a symplectic map iR*. generic center degenerate center

exponents of an equilibrium point in a 2-dof system are digptl in figurer.3. It
is worth noting that while the linear stability of equiliarin a Hamiltonian system
always respects this symmetry, the nonlinear stabilitylmoompletely dterent.

[section 4.3.1]
[exercise 7.4]
[exercise 7.5]

7.3 Symplectic maps

A stability eigenvalueA = A(Xo,t) associated to a trajectory is an eigenvalue of
the fundamental matrid. As Jis symplectic, {.11) implies that

Jt=—wlw, (7.18)
so the characteristic polynomial is reflexive, namely its$its
det@-Al) = det@" —Al) = det(wd w-Al)

det@! - Al) = det@ ) det(l — AJ)
AP det(@- A1), (7.19)

Hence ifA is an eigenvalue o, so are 1A, A* and JA*. Real eigenvalues
always come paired &g, 1/A. The Liouville conservation of phase space volumes
(7.16) is an immediate consequence of this pairing up of eigeegallihe complex
eigenvalues come in pairs, A*, |A| = 1, or in loxodromic quartetd,, 1/A, A*
and J/A*. These possibilities are illustrated in figufel.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.53) the Hénon map
(3.18) for b = -1 value is the simplest 2-d orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of
2 dof Hamiltonian flows. We find it convenient to multiply (3.19) by a and absorb the a
factor into x in order to bring the Hénon map for the b = —1 parameter value into the
form

Xs1+ X1 =a-x, i=1..,np, (7.20)
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using (7.16) we derive theLiouville theorem:

_ _ ARCIIIN
V(i) = j;(c)dxf\f:det X dx
fdet(J)dx’:fdx’:V(O), (7.32)
c c

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys ustmonore than
the ‘incompressibility, or the phase space volume coret@m. Consider the
symplectic product of two infinitesimal vectors

(6%.6%) = ox wok = 6pio6 — 66 P

D
Z {oriented area in theg(, p;) plang . (7.33)
i-1

Timet later we have
(6%, 6%) = X" ITwIsk = X" woK.

This has the following geometrical meaning. We imagine éhisra reference
phase space point. We then define two other points infinidhinslose so that
the vectorssx andsX describe their displacements relative to the referencetpoi
Under the dynamics, the three points are mapped to three omtspvhich are
still infinitesimally close to one another. The meaning @& &bove expression is
that the area of the parallelopiped spanned by the threegioiats is the same as
that spanned by the initial points. The integral (Stokestém) version of this
infinitesimal area invariance states that for Hamiltoniaw8 theD oriented areas
V; bounded byD loopsQV;, one per eachy, p;) plane, are separately conserved:

f dpAadg= 95 p-dq = invariant. (7.34)
v Qv

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphas2zethe number
of the degrees of freedom.

in depth:
” appendix B.3, p. 667

Commentary

Remark 7.1 Hamiltonian dynamics literature. If you are reading this book, in theory
you already know everything that is in this chapter. In gracyou do not. Try this:
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Put your right hand on your heart and say: “I understand whyregrefers symplectic
geometry.” Honest? Out there there are about 2 centuriesafnaulated literature
on Hamilton, Lagrange, Jacobi etc. formulation of mechgngome of it excellent.
In context of what we will need here, we make a very subjea@@mmmendation—we
enjoyed reading Percival and Richards][and Ozorio de Almeidal[1].

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlzeeage is church-
doctrinal: Greek ‘kanon,” referring to a reed used for measient, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invariant

in (7.7), is set by the convention that the Hamilton’s principaldtion (for energy conserving
flows) is given byR(q, ¢, t) = jlf pidg; — Et. With this sign convention the action along
a classical path is minimal, and the kinetic energy of a fiigle is positive.

Remark 7.4 Symmetries of the symbol square.  For a more detailed discussion of
symmetry lines see refs5[8, 46, 13]. Itis an open question (see rematR.3 as to
how time reversal symmetry can be exploited for reductioneyole expansions. For
example, the fundamental domain symbolic dynamics forcgfle symmetric systems
is discussed in some detail in set®.5 but how does one recode from time-reversal
symmetric symbol sequences to desymmetriz&dsfate space symbols?

Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemerfeednstance, by pulsed optical
lattices in cold atoms physics. On the theoretical sideydsted maps exhibit a number
of important features: smak values provide an example 6fAM perturbative regime
(see ref. §]), while for largerk chaotic deterministic transport is observed [(]; the
transition to global chaos also presents remarkable waligy features 11, 12, 13].

Also the quantum counterpart of this model has been widelgstigated, being the first
example where phenomena like quantum dynamical locadiz&iave been observet].

For some hands-on experience of the standard map, downleis Bimulation code].

Exercises

7.1. Complex nonlinear  Schibdinger  equation.
Consider the complex nonlinear Schrodinger equation
in one spatial dimensionl:

dp 0% 2
5 *0e +Belpl“=0, B#0.

(a) Show that the functiop : R — C defining the

exerNewton - 13jun2008.tex

traveling wave solutionp(x,t) = w(x — ct) fol
¢ > 0 satisfies a second-order compleffetientic
equation equivalent to a Hamiltonian systel
R* relative to the noncanonical symplectic f
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whose matrix is given by

0O 0 1 O

w-| 0 001
¢~ -1 0 0 -c
0 -1 c O

(b) Analyze the equilibria of the resulting Ha-
miltonian system irk* and determine their linear
stability properties.

(c) Lety(s) = €°/2a(s) for a real functiona(s) and
determine a second order equationd@s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits fog < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrodinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic groupalgebra
Show that if a matribC satisfies 7.10, then expC) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(a) LetA be af x 1 invertible matrix. Show that
the map¢ : R™ — R? given by @.p) ~
(Ad, (A"Y)Tp) is a canonical transformation.

(b) If Ris arotation ink3, show that the mam( p) —
(Rg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinant of symplectic matrices. Show that
the determinant of a symplectic matrix-4., by going
through the following steps:

(a) use 7.19 to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),
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(b) prove that thgoint multiplicity of 2 = +1 is even,

(c) show that the multiplicities of = 1 and1 = -1
cannot be both odd. (Hint: write

P() = (A= 1™+ 17'Q(1)
and show tha@Q(1) = 0).

7.5. Cherry’'sexample. What follows refs. P, 3] is mostly

a reading exercise, about a Hamiltonian system that is
linearly stable but nonlinearly unstable. Consider the
Hamiltonian system oft“ given by

1 1
H= E(Cﬁ +pl) - (G5 + p3) + EPZ(P% - ) — ChGep1.

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with

frequencies in ratios 2:1).
(b) Convince yourself that the following is a family of
solutions parameterize by a constant

-

qlz_ﬁcost—r)’ :cosz(—r)’
) t—7 _t—T

p1=‘/§S|rt](t_T), p2=3m2¢_T).
-7 t—-7

These solutions clearly blow up in finite time;
however they start at= 0 at a distance/3/r from
the origin, so by choosing large, we can find
solutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

(Luz V. Vela-Arevalo)
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