Chapter 35

Chaotic multiscattering

(A. Wirzba and P. Cvitanovit)

number of non-overlapping finite scattering regions. Whijisinteresting
atall? The semiclassics of scattering systems has five talyesmcompared
to the bound-state problems such as the helium quantizéisonssed in chapt&e.

WE pIscuss HERE the semiclassics of scattering in open systems with a finite

e For bound-state problem the semiclassical approximatams hot respect
quantum-mechanical unitarity, and the semi-classicaredgergies are not
real. Here we construetmanifestly unitargemiclassical scattering matrix.

e The Weyl-term contributions decouple from the multi-seattg system.
e The close relation to the classical escape processes sistiuschaptet.

e For scattering systems the derivation of cycle expans®nsoire direct and
controlled than in the bound-state case: the semiclassicl expansion is
the saddle point approximation to the cumulant expansidneofleterminant
of the exact quantum-mechanical multi-scattering matrix.

e The region of convergence of the semiclassical spectraitifom is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a pparticle from finite
collection of non-overlapping scattering regions in teohthe standard textbook
scattering theory, and then develop the semiclassicaksiceg trace formulas and
spectral determinants for scatteringj N disks in a plane.

35.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point parfrom finite collection
of N non-overlapping reflecting disks in a 2-dimensional pla#es the point
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CHAPTER 35. CHAOTIC MULTISCATTERING 573

particle moves freely between the static scatterers, rineitidependent Schrodinger
eguation outside the scattering regions is the Helmholiaton:

(VZ+K)y(r)=0,  routside the scattering regions. (35.1)

Herey(F) is the wave function of the point particle at spatial pasit’ andE =
n2k2/2m s its energy written in terms of its massand the wave vectdt of the
incident wave. For reflecting wall billiards the scatterimgblem is a boundary
value problem with Dirichlet boundary conditions:

y(P) =0, " on the billiard perimeter (35.2)

As usual for scattering problems, we expand the wave fumati@) in the
(2-dimensional) angular momentum eigenfunctions basis

p(r) = > ukr)e™™, (35.3)

wherek and®y are the length and angle of the wave vector, respectivelylag
wave in two dimensions expaned in the angular momentum Isasis

eiﬁ-? _ kr cos@—®) _ Z Jm(kr)eim(GJr—(I)k) , (35.4)

mM=—oco

wherer and®; denote the distance and angle of the spatial vetas measured
in the global 2-dimensional coordinate system.

Themth angular componerd,(kr)é™® of a plane wave is split into a superposition
of incoming and outgoing 2-dimensional spherical waves bgodhposing the
ordinary Bessel functiod(2) into the sum

In(@) = %(Hr(%)(z) +HP ) (35.5)

of the Hankel functioniﬁ,(%)(z) andH,(ﬁ)(z) of the first and second kind. Ffar > 1
the Hankel functions behave asymptotically as:

2 H T s . .
HY2) ~ \/ﬂ—ze"(z‘im‘z) incoming,

2 1 s n .
HY@) ~ ,/ﬂ—ze“(z‘?m‘z) outgoing. (35.6)

Thus forr — o andk fixed, themth angular componenim(kr)é™® of the plane
wave can be written as superposition of incoming and outg@dimensional
spherical waves:

Im(kr)em®r ~ eir3ma) 4 lrama)| gmer (35.7)

1 [
V2rkr
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CHAPTER 35. CHAOTIC MULTISCATTERING 574

In terms of the asymptotic (angular momentum) compongfitsf the wave
functiony(), the scattering matrix3éd.3 is defined as

(o8]

1 I e
K ~ — mZ e =2 =5) 4 S k2D MO (35.8)

The matrix elemen®y,y describes the scattering of an incoming wave with angular
momentumm into an outgoing wave with angular momentunh If there are no
scatterers, the8 = 1 and the asymptotic expression of the plane welin two
dimensions is recovered frop(r).

35.1.1 1-disk scattering matrix

In general Sis nondiagonal and nonseparable. An exception is the 1sdestterer.
If the origin of the coordinate system is placed at the ceoiténe disk, by 85.5
themth angular component of the time-independent scatteringgvitanction is a

superposition of incoming and outgoing 2-dimensional sphEwaves fexercise 34.2]

1 .
Ui = 5 (HIR(Kn) + SmaHR (k) €7

(3mtkr) = 5 T kr) &
The vanishing §5.2) of the wave function on the disk perimeter
_ i M)
0= Jnka) — ETmmHm (ka)

yields the 1-disk scattering matrix in analytic form:

Smnt » (35.9)

zam(kas)) _ HP(kas)
m - _T m
Hm’(Kas)

SS (K) = [1 -
" HE (ka)
wherea = aq is radius of the disk and the fix S indicates that we are dealing

with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect35.3

35.1.2 Multi-scattering matrix

Consider next a scattering region consistingNohon-overlapping disks labeled
se {1, 2 ---,N}, following the notational conventions of settD.5 The strategy
is to construct the fullT-matrix (34.3 from the exact 1-disk scattering matrix
(35.9 by a succession of coordinate rotations and translatiook that at each
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CHAPTER 35. CHAOTIC MULTISCATTERING 575

step the coordinate system is centered at the origin of a diskn theT-matrix
iN Smm = dmm — | Ty €an be split into a product over three kinds of matrices,

N o)

Tom( = > > Cr (MRS DY L (K).

S,8=1lg,lg=—c0

The outgoing spherical wave scattered by the disk obtained by shifting the
global coordinates origin distand® to the center of the disk, and measuring
the angle®s with respect to directiork of the outgoing spherical wave. As in
(35.9, the matrixCs takes form

s 2 Jm—|5(kRS) eimq)s .

= 35.10
mls nmas Hf:)(kas) ( )

If we now describe the ingoing spherical wave in the diskoordinate frame by
the matrixD®

Df oy = —7as Jnr-i1, (KR, (kag )& ™ (35.11)

and apply the Bessel function addition theorem

Inly+2) = ) IncIAQ,

{=—c0

we recover thd -matrix (35.9 for the single disks = s, M = 1 scattering. The
Bessel function sum is a statement of the completness optierisal wave basis;
as we shift the origin from the dis& to the disks' by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsmandm refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systatdls, |¢ refer to the
(angular momentum) basis fixed at thth ands'th scatterer, respectively. Thus,
Cs andD*® depend on the origin and orientation of the global coordirsststem
of the 2-dimensional plane as well as on the internal coatdsof the scatterers.
As they can be made separable in the scatterer Inhibley describe the single
scatterer aspects of what, in general, is a multi-scafjgpinblem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatteray] is simply the unit matrilesjg = 6555|S|§.
For scattering from more than one scatterer we separate ‘Ginge traversal”
matrix A which transports the scattered wave from a scattering mejg to the
scattering regionMy,

ss
lsly

My, = 8561, — AL (35.12)
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CHAPTER 35. CHAOTIC MULTISCATTERING 576
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Figure 35.1: Global and local coordinates for a

general 3-disk problem.

The matrixAS® reads:

s<y Os Jls(kas) H(l)

S sy ) (KRs )ei(lsas’s_ls’(a/ss’_”)). (35.13)
as HO(kay) %

g
Alss@ =-(1-¢

Here,as is the radius of thesth disk. Ry and®g are the distance and angle,
respectively, of the ray from the origin in the 2-dimensioplane to the center of
disk s as measured in the global coordinate system. Furtherrfte= Rys is
the separation between the centers ofdreands’'th disk andug s of the ray from
the center of disks to the center of disls' as measured in the local (body-fixed)
coordinate system of disk(see figure3s.1).

Expanded as a geometrical series about the unit mattie inverse matrix
M1 generates a multi-scattering series in powers of the singl@rsal matri.
All genuine multi-scattering dynamics is contained in thegtmx A; by construction
A vanishes for a single-scatterer system.

35.2 N-scatterer spectral deter minant

In the following we limit ourselves to a study of the specipebperties of thes-
matrix: resonances, time delays and phase shifts. Thearses are given by the
poles of thes-matrix in the lower complex wave numbdd) plane; more precisely,

by the poles of thé& on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its totalaglk shiftr(k)
defined by de§ = exp?"™. The time-delay is proportional to the derivative of
the phase shift with respect to the wave nuniber

As we are only interested in spectral properties of the agatf problem, it
sufices to study des. This determinant is basis and coordinate-system indegrgnd
whereas thé&-matrix itself depends on the global coordinate system anthe
choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, itnet clear
whether the corresponding determinant exists at all-ifiatrix is trace-class, the
determinant does exist. What does this mean?
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CHAPTER 35. CHAOTIC MULTISCATTERING 577

35.2.1 Trace-classoperators

An operator (an infinite-dimensional matrix) is callegdce-classif and only if,
for any choice of orthonormal basis, the sum of the diagonatrisn elements
converges absolutely; it is called “Hilbert-Schmidt,” et sum of the absolute
squared diagonal matrix elements converges. Once an opé&aliagnosed as
trace-class, we are allowed to manipulate it as we mangfilaite-dimensional
matrices. We review the theory of trace-class operatorppeadixJ;, here we
will assume that th@ -matrix (34.3 is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{zA), as defined by the cumulant
expansion, exists and is an entire functioreofurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation é4of expansion in
the book-keeping variabl® of the determinant

det(l — zA) = exp[tr In(1 - zA)] = exp[— i gtr (AM] .
n=1
That means
det(-zA) := > Z"Qu(A) , (35.14)
m=0

where the cumulant®,(A) satisfy the Plemelj-Smithies recursion formulal®,
a generalization of Newton’s formula to determinants ofiitéi-dimensional matrices,

Qo(A) 1

Qm(A) = —%ZQm_j(A)tr(Aj) form>1, (35.15)
=1

in terms of cumulants of order < mand traces of ordar < m. Because of the
trace-class property &, all cumulants and traces exist separately.

For the general case bf < oo non-overlapping scatterers, tfiematrix can be
shown to be trace-class, so the determinant ofSneatrix is well defined. What
does trace-class property mean for the corresponding cea@®, DS and ASS?
Manipulating the operators as though they were finite medrigve can perform
the following transformations:

detS

det(1-iCM~'D)
= Det(1-iM™DC) = Det(M~}(M -iDC))
Det(M —iDC)
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CHAPTER 35. CHAOTIC MULTISCATTERING 578

In the first line of 85.19 the determinant is taken over smdll(the angular
momentum with respect to the global system). In the remainfi¢35.16 the
determinant is evaluated over the multiple inditgs= (s, ls). In order to signal
this difference we use the following notation: det and tr... refer to the|()
space, Det.. and Tr... refer to the multiple index space. The matrices in the
multiple index space are expanded in the complete BAsig = {|s, {s)} which
refers for fixed indexs to the origin of thesth scatterer and not any longer to the
origin of the 2-dimensional plane.

Let us explicitly extract the product of the determinantstted subsystems
from the determinant of the total syste@5(19:

Det(M —iDC)
ety
Det(M - iDC) T3, detS®

DetM  [1Y, detss
[lﬁ[ detSsJ DetM — iDDC)/ [T, dets® |
ol etM

detS

(35.17)

The final step in the reformulation of the determinant of Smatrix of the N-
scatterer problem follows from the unitarity of tt®matrix. The unitarity of
S(k*) implies for the determinant

det S(k*)") = 1/detS(K), (35.18)

where this manipulation is allowed becauseThmatrix is trace-class. The unitarity
condition should apply for th&matrix of the total systent;, as for the each of
the single subsystem§&?®, s = 1,---,N. In terms of the result 0f35.17), this
implies

Det (M (K) — iD(K)C(K))
[T, detss

= DetM (k"))

since all determinants ir86.17) exist separately and since the determinant$Selet
respect unitarity by themselves. Thus, we finally have

N ”
} DetM (k') (35.19)

detS(k):{]_[(detsS(k)) Dot

s=1

where all determinants exist separately.

In summary: We assumed a scattering system @hige number ofnon-
overlappingscatterers which can be offfirent shape and size, but are all of
finite extent. We assumed the trace-class character of timatrix belonging to
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CHAPTER 35. CHAOTIC MULTISCATTERING 579

the total system and of the single-traversal ma#iand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromitefnumber of
scatterers of arbitrary shape and size? As long as eadh<ofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite, die total system
has a finite spatial extent as well. Therefore, it too can har@ided a circular
domain of finite radiu®, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thikds larger than the disk
size (actually larger thare(2) x b), then theT matrix elements of th&l-scatterer
problem become very small. If the wave numhkeés kept fixed, the modulus of
the diagonalmatrix elements|T | with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

35.2.2 Quantum cycle expansions

In formula 35.19 the genuine multi-scattering terms are separated frorsitigte-
scattering ones. We focus on the multi-scattering terras, on the ratio of the
determinants of the multi-scattering matkik= 1-A in (35.19, since they are the
origin of the periodic orbit sums in the semiclassical re¢auc The resonances
of the multi-scattering system are given by the zeros ofND@d in the lower
complex wave number plane.

In order to set up the problem for the semiclassical redoctiee express the
determinant of the multi-scattering matrix in terms of theces of the powers
of the matrixA, by means of the cumulant expansid@b(l4. Because of the
finite numberN > 2 of scatterers tA") receives contributions corresponding to
all periodic itinerariess; $S3 - - - $1-1S, of total symbol lengtm with an alphabet
s €1{L12,...,N}. of N symbols,

tr ASIZ AR . AS1S AT (35.20)
+00 +00 +00
- Z Z Z $1%2 5253...A'S1*15” SnS1
sls’ Tslsy siotls Tanlsy
|Sl:—oo|32:—oo lgy=—00

Remember our notation that the trace- tr) refers only to thel) space. By
constructionA describes only scatterer-to-scatterer transitions, scsymbolic
dynamics has to respect the no-self-reflection pruning fateadmissible itineraries
the successive symbols have to bi@atent. This rule is implemented by the factor
1-6%% in (35.13.

The trace tA" is the sum of all itineraries of lengih,

trA" = Z tr ASIRARS . AS-1SIASISL (35.21)
{S152Sn}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.
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CHAPTER 35. CHAOTIC MULTISCATTERING 580

For periodic orbits with creeping sections the symbolichalget has to be
extended, see se@5.3.1 Furthermore, depending on the geometry, there might
be nontrivial pruning rules based on the so called ghostgréée secB85.4.1

35.2.3 Symmetry reductions

The determinants over the multi-scattering matrices riar tve multiple indext
of the multiple index space. This is the proper form for thmsyetry reduction
(in the multiple index space), e.g., if the scatterer coméian is characterized
by a discrete symmetry group, we have

DetM = [ | (detMp, (k)™

where the indexr runs over all conjugate classes of the symmetry giGugnd
D, is the ath representation of dimensiaf,. The symmetry reduction on the
exact quantum mechanical level is the same as for the cdhgssiolution oper-
ators spectral determinant factorizatidr® (17 of sect.19.4.2

35.3 Semiclassical 1-disk scattering
We start by focusing on the single-scatterer problem. leiotd be concrete, we
will consider the semiclassical reduction of the scattgdha single disk in plane.

Instead of calculating the semiclassical approximatiotheodeterminant of
the one-disk system scattering matr®6(9, we do so for

o 1d . 1d .
d(k) = o IndetS'(ka) = —— dktr(InS(ka)) (35.22)

the so calledime delay

(1) )
d(k) i.iktr (IndetSi(ka) ) = — 3 (Hm (ka) d Hn (ka)]

- 2 S HDka) I HT (ka)

m

-2y H (ka) H,(%)’(ka)] (35.23)
i S\ HDP ke HR(ka)

Here the prime denotes the derivative with respect to thenaegt of the Hankel
functions. Let us introduce the abbreviation

_HPka HY (ka)

= - . 35.2
HAka)  HP(ka) o
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CHAPTER 35. CHAOTIC MULTISCATTERING 581

We apply the Watson contour method 85(23

A ™ L et
) = 55 m:z_w m= 2027 LY S (35.25)

Here the contou€ encircles in a counter-clockwise manner a small semiifinit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginamgirection. The contou€ is then
split up in the path above and below the realxis such that

a +oo+ie e—iwr +oo—ie e—iWT
dl) = %{LW & Sin(wr)XV_Ioo—ig v sin(wr)XV}'

Then, we perform the substitution— —v in the second integral so as to get

a +oo+ie —ivr e+iV7T
d(k) an {‘f_‘oo+i5 dr Sin(wr)Xv v Sin(WT)X_V}

a +ootie e2iwr +00
- 2l dy— dvy, b 35.26
Zm{ f_w T +Lo ”‘} (35.20)

where we used the fact thgt, = y,. The contour in the last integral can be
deformed to pass over the readxis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line d.269 differ by
the presence or absence of the Watson denominator, theljavil to be handled
semiclassically in dferent ways: the first will be closed in the upper complex
plane and evaluated at the polegofthe second integral will be evaluated on the
realv-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles @f, in the upper complex
plane are given by the zeros BfY(ka) which will be denoted by, (ka) and by
the zeros OHSZ)(ka) which we will denote by-v,(ka), £ = 1,2,3,---. In the Airy
approximation to the Hankel functions they are given by

ve(ka)
—ve(ka)

ka+ia(ka) , (35.27)
—ka+i(arKa)" = - (ve(k'a)" | (35.28)

with

- 1/3 - 13 g2 3
i (ka) = éﬁ(ka) Q€—e_'§(6) X _ 1 (1 %)

6 kal] 180 70kal|l” 30
5
2(6\ 1 (29, 281
di[— - 35.29
¥ 3(ka) 3150{ & 180.6°) ' (35.29)
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CHAPTER 35. CHAOTIC MULTISCATTERING 582
Hereq, labels the zeros of the Airy integral
A(Q) = f dr cos@rr — 7°) = 37V3xAI(-3713q) ,
0

with Ai(2) being the standard Airy function; approximatety, ~ 6%3[3x(¢ —
1/4)1?/3/2. In order to keep the notation simple, we will abbrevigte= v,(ka)
andv, = vg(ka). Thus the first term of35.26 becomes finally

a +ootie eziyn o0 eziVNT e_2i‘7f”
—2 d — vy, =24 — + — .
2ri { j:oo+i5 Y 1- eZIVﬂX } ; (1 — e2IV[7'r 1- e—ZIV/n)

In the second term 0f36.26 we will insert the Debye approximations for the
Hankel functions:

2 . . .
HYD(x) ~ 1f?exp(il\/x2—v2:L|varccosz:Lli—rl) for |x| > v
TVNXe —y X

(35.30)
2 y

HYD(x) ~ Fi |———— exp(— Vv2 — X2 + vArcCosh—) for |x < v.
T2 -2 X

Note that fory > kathe contributions iry, cancel. Thus the second integral of
(35.26 becomes

a [+ a (e (-2)d v

— - A 222 _ 2 _

o Im dvy, o f_ka dv 3 dk(\/k as—vy varccosﬁl)+
ka 2

L (Tavie@ e = -Ekh . (3531
kt J_xa 2

where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thimtegration.

In summary, the semiclassical approximatiord(k) reads

) eZiVM e—2i17ﬂr a2
d(k) = ZaZ(l_eziw,, + 1_e—2i17[7r)_ ?k+
(=1

Using the definition of the time delag$.22), we get the following expression for
detSt(ka):

In detS'(ka) — k|gmO In detS!(koa) (35.32)

k ~ 0 i2nve(ka) ~i27v;(ka)
:Zniafdk —a—k+2z e &7,
0 2 = 1- e|2m/[(ka) 1-— e—|2m/[(ka)

~ —27riN(k)+2i fo " ik d% {~In (1-627 k) 1 |n (1-g 2@ 4 ..
=1
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CHAPTER 35. CHAOTIC MULTISCATTERING 583

where in the last expression it has been used that semdﬂﬂysﬁ(v[(ka) ~
%ﬂ(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(K) = na’k?/(4rn) + --- (the next terms come from the boundary terms in the
v-integration in 85.31). Note that for the lower limitky — 0, we have two
simplifications: First,

~Hi (ko)
lim St a) = lim —2>"5 = 1x$§ vm, m
Ko—0 mm(kO) ko0 Hr(T:]L)(koa) mm mmnt

: 1
~ lim detsS'(koa)

|
[EY

Secondly, fokg — 0, the two terms in the curly bracket &%.32 cancel.

35.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detentS!(ka) is given
by

ne, (1 _ e—2im7[(ka))2

detS'(ka) ~ e2™NK : = (35.33)
n?’:l (1 _ eZInw(ka))
with
ve(ka) = ka+iaq(ka) = ka+e""3(ka/6)3q, + - -
veka) = ka-—i(aeka)* = ka+e™3(ka/6)Y3q, +---
= (ve(k*a))”

andN(ka) = (7a’k?)/4r + --- the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues imifleinterior. From
the point of view of the scattering particle, the interiomukins of the disks are
excluded relatively to the free evolution without scatigrobstacles. Therefore
the negative sign in front of the Weyl term. For the same neate subleading
boundary term has here a Neumann structure, although tke ki&ve Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. &%.33 for a disks as

2 Zy(K'as) Z8(k'as)’

detSS(kag) ~ (e7Nka))™ L s ,
( ) Z,(kas)  Z7(kas)

(35.34)

whereZ;(kas) and Z(kas) are thediffractional zeta functions (here and in the
following we will label semiclassical zeta functiongth diffractive corrections
by a tilde) for creeping orbits around tlsth disk in the left-handed sense and
the right-handed sense, respectively (see fi@i&). The two orientations of
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Figure 35.2: Right- and left-handed fractive
creeping paths of increasing mode numlbseor
a single disk.
Kdi

O
\\‘\
AaA

Y

the creeping orbits are the reason for the exponents Z5il38. Equation 85.33
describes the semiclassical approximation to the incol@aat & the curly bracket
on the r.h.s.) of the exact expressi@b (19 for the case that the scatterers are
disks.

In the following we will discuss the semiclassical resorema the 1-disk
scattering problem with Dirichlet boundary condition®. ithe so-called shape
resonances. The quantum mechanical resonances are teeptileS-matrix in
the complexk-plane. As the 1-disk scattering problem is separableSthsatrix
is already diagonalized in the angular momentum eigenlaasigakes the simple
form (35.9. The exact quantummechanical poles of the scatteringimate
therefore given by the the zerdg3;, of the Hankel functionHr(%)(ka) in the lower
complexk plane which can be labeled by two indicesandn, wherem denotes
the angular quantum number of the Hankel function and a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot
use the usual Debye approximation as semiclassical appatioin for the Hankel
function, since this approximation only works in case thenk&h function is
dominated by only one saddle. However, for the vanishing@Hankel function,
one has to have the interplay of two saddles, thus an Airycequpiation is needed
as in the case of the creeping poles discussed above. Theppnpximation of
the Hankel functiorHSl)(ka) of complex-valued index reads

1/3
HOKa) ~ 2675 (L) A@®)
v s ka ’
with
(1) _ iz 6\"° -1
R (v—ka) +O((ka)™").

Hence the zeros, of the Hankel function in the complex plane follow from
the zerogy, of the Airy integral A(q) (see 85.3. Thus if we set, = m (with m
integer), we have the following semiclassical conditiorkf

m ~ K®a+ia/(K®%9)
SN i) R EY B . A S P
6 ¢ kesa) 180  70kesa 30
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CHAPTER 35. CHAOTIC MULTISCATTERING 585

Figure 35.3: The shape resonances of the 1-disk
system in the complex plane in units of the
disk radiusa. The boxes label the exact quantum
mechanical resonances (given by the zeros of
H®(ka) for m = 0,1,2), the crosses label the
diffractional semiclassical resonances (given by
the zeros of the creeping formula in the Airy
approximation 85.39 up to the ordeO([ka]*’)).

T
M (exact) ©
Semiclass.(creeping): +

Imk [1a]
=

4
Re k[/a]

5
. 3 281q%
T 6 1 (2%, ~ 1, N
kresa) 3150( 62 180- 63
with1 =1,2,3,---. (35.35)

For a given index this is equivalent to

0~ 1 gike-an2m

the de-Broglie condition on the wave function that encsdiee disk. Thus the
semiclassical resonances of the 1-disk problem are givethéyzeros of the
following product

[ee)

l—[ (1 B e(ik—ozg)Zna) ’

=1

which is of course nothing else thﬁ]-disk(k), the semiclassical firaction zeta
function of the 1-disk scattering problem, s&&.34. Note that this expression
includes just the pure creeping contribution and no gengieemetrical parts.
Because of

HO\(ka) = (~1)"H{ (ka),

the zeros are doubly degeneratenif« 0, corresponding to right- and left handed
creeping turns. The case = 0 is unphysical, since all zeros of the Hankel
function Hél)(ka) have negative real value.

From figure35.3one notes that the creeping terms in the Airy odgka]/3),
which are used in the Keller construction, systematicafigarestimate the magnitude
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Figure 35.4: Same as in figur&5.3 However,
the subleading terms in the Airy approximation
(35.39 are taken into account up to the order
O([ka] ~3) (upper panel) and up to ordé([kal )
(lower panel).

Im k [1/a]
Im k [1/a]

o (exact): ©
Semiclass. creeping (w. 15T Ay corr.): + Semiclass. creeping (w. 2nd Airy corr.y: +

4
Rek[1/a]

of the imaginary parts of the exact data. However, the crgedata become
better for increasing Reand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figur85.4 one sees the change, when the next order
in the Airy approximation 5.39 is taken into account. The approximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using35.35 up to orderO([ka] 1) is perfect up to the drawing
scale of figure35.4 (lower panel).

35.4 From quantum cycleto semiclassical cycle

The procedure for the semiclassical approximation of aigéperiodic itinerary
(35.20 of lengthn is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depetbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

S1S2 ... ASmSL _— S1%2 ,, ASmSL
trA AT = Z Z ALy, A,

|51:—oo |Sm=—oo

still has the structure of a “multi-trace” with respect t@atar momentum.

Each of the sumil‘::_m — as in the 1-disk case — is replaced byVatson

contourresummation in terms of complex angular momenwymThen the paths
below the real s -axes are transformed to paths above these axes, and tpealste
split into expressionsvith andwithoutan explicit Watson sing ) denominator.

1. In the sings7) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theesspon in
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Figure 35.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can :
be constructed. =

ltinerary: . .
111 )s
\*/

the saddle point approximation: either left or rigdgiecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the sings ) -dependent integrals, we close the contour in the upgper
plane and evaluate the integral at the resi&[ﬁ?(kas):o. Then we use
the Airy approximation fon]vS (kag) and Hg)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometricad ppftear. If
they do show up, the analysis has to be extended to the casmintiding saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contdcthe point particle
with the disks:

1. either geometrical which in turn splits into three altgives

(a) specular reflectiorto the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turns

see figure35.5 The specular reflection to the right is linked to left-hashdeeeping
paths with at least one knot. The specular reflection to tfigriatches a right-
handed creeping paths with at least one knot, whereas thshieft- and right-
handed creeping paths in the ghost tunneling case are tppally trivial. In
fact, the topology of the creeping paths encodes the chatwden the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positivaigein length: the
creeping amplitude has to decrease during the creepinggspas tangential rays
are constantly emitted. In mathematical terms, it meanisth@acreeping angle
has to be positive. Thus, the positivity of ttveo creeping angles for the shortest
left andright turn uniquely specifies the topology of the creepinctisas which
in turn specifies which of the three alternatives, eithercsfze reflection to the
right or to the left or straight “ghost” tunneling throughsHlij, is realized for the
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Figure 35.6: (a) The ghostitinerary (2, 3,4). (b)
The parent itinerary (B, 4). ° a

semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in thdofwing to the
scattering fromN < oo non-overlappingdisksfixed in the 2-dimensional plane.
The semiclassical approximation of the periodic itinerary

trASI2 A SRS ... AS-15 A SSL

becomes a standard periodic orbit labeled by the symbolesegs; s, - - - 5.
Depending on the geometry, the individual lejss — s — S.1 result either
from a standard specular reflection at déskr from a ghost path passing straight
through disks. If furthermore creeping contributions are taken into acttp
the symbolic dynamics has to be generalized from singterletymbols{s} to
triple-letter symbolgs, o x 4} with ¢ > 1 integer valued anet; = 0,+1 ' By
definition, the valuer; = O represents the non-creeping case, such{#d x

tGi} = {s,0} = {s} reduces to the old single-letter symbol. The magnitude of
a nonzerof; corresponds to creeping sections of mode nunferwhereas the
sigho; = +1 signals whether the creeping path turns around the gligk the
positive or negative sense. Additional full creeping tuansund a disks can be
summed up as a geometrical series; therefore they do notdehd introduction
of a further symbol.

35.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk discan be shown to
have the same weight as the corresponding itinerary withws th symbol.
Thus, semiclassically, they cancel each other in the fr 4f) expansion, where
they are multiplied by the permutation factofr with the integer counting the
repeats. For example, let,@ 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order tra@é.tiBy convention, an
underlined disk index signals a ghost passage (as in fifufa), with corresponding
semiclassical ghost traversal matrices also underlidéd:tA*L1*2 Then its
semiclassical, geometrical contribution to trdr{ A) cancels exactly against the
one of its “parent” itinerary (13, 4) (see figure35.@) resulting from the 3rd-order
trace:

_% (461’262’3A3’4A4’1) _ % (3A1’3A3’4A4’1)

1Actually, these are double-letter symbolsoasandl; are only counted as a product.

multscat - 25jul2006.tex



CHAPTER 35. CHAOTIC MULTISCATTERING 589
= (+1-1)ARPAAM =0,

The prefactors-1/3 and-1/4 are due to the expansion of the logarithm, the
factors 3 and 4 inside the brackets result from the cyclioypgation of the periodic
itineraries, and the cancellation stems from the rule

o APELALLIHZ ...(_Ai,i+2) e (35.36)

The reader might study more complicated examples and comviarself that the
rule (35.36.is suficient to cancel any primary or repeated periodic orbit with
one or more ghost sections completely out of the expansidnlofl — A) and
therefore also out of the cumulant expansion in the sensicialslimit: Any
periodic orbit of lengthm with n(< m) ghost sections is cancelled by the sum
of all ‘parent’ periodic orbits of lengthm — i (with 1 < i < n andi ghost
sections removed) weighted by their cyclic permutationdiaand by the prefactor
resulting from thetrace-log expansion. This is the way in which the nontrivial
pruning for theN-disk billiards can be derived from the exact quantum meicia&n
expressions in the semiclassical limit. Note that theretrenst at least one
indexi in any givenperiodicitinerary which corresponds to a non-ghost section,
since otherwise the itinerary in the semiclassical limitldoonly be straight and
therefore nonperiodic. Furthermore, the series in thetglargelation has to stop
at the 2nd-order trace, A%, as trA itself vanishes identically in the full domain
which is considered here.

35.5 Heisenberg uncertainty

Where is the boundara ~ 2™1L/a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicdaiapy of the 3-disk
repeller. When the wave numbkis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicalesn. The quantum wave
packet which explores the repelling set has to disentanyldiferent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ordayr
between any two successive disk collisions. SuccessiNisiook are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxiraakible truncation in
the cycle expansion order by the highest quantum resolattamable for a given
wavenumbek.

Commentary

Remark 35.1 Sources. This chapter is based in its entirety on ref];[the reader
is referred to the full exposition for the proofs and distoissof details omitted here.
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