Chapter 14

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeard&he Winter’s Tale

(P. Cvitanovi€, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chdpiee studied

a small neighborhood of a trajectory and learned that suaphberhood
can grow exponentially with time, making the concept of kiag an individual
trajectory for long times a purely mathematical idealizati

I N CHAPTERS 2, 3, 7 and8 we learned how to track an individual trajectory, and

While the trajectory of an individual representative paonay be highly convoluted,
as we shall see, the density of these points might evolve iraaner that is
relatively smooth. The evolution of the density of repréagwve points is for
this reason (and other that will emerge in due course) oftgnéerest. So are
the behaviors of other properties carried by the evolvingrawof representative
points.

We shall now show that the global evolution of the densityegfresentative
points is conveniently formulated in terms of linear actairevolution operators.
We shall also show that the important, long-time “naturaiVariant densities
are unspeakably unfriendly and essentially uncomputabdeyehere singular
functions with support on fractal sets. Hence, in chafifewe rethink what is
it that the theory needs to predict (“expectation values®atilservables”), relate
these to the eigenvalues of evolution operators, and intetsd®s to 18 show how
to compute these without ever having to compute a naturediriant densitiepg.
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Figure 14.1: (a) First level of partitioning: A

coarse partition of M into regions Mo, My,

and M,. (b) n = 2 level of partitioning: A

refinement of the above partition, with each region

M; subdivided intoMio, Mi1, and M;,. (a) (b)

14.1 Measures

Do | then measure, O my God, and know not what |
measure?

—St. AugustineThe confessions of Saint Augustine

A fundamental concept in the description of dynamics of abtihasystem is that
of measure, which we denote byu(x) = p(X)dx. An intuitive way to define and
construct a physically meaningful measure is by a procesoarke-graining.
Consider a sequence 1, 2,n,.,.. of increasingly refined partitions of state space,
figure14.1, into regionsM; defined by the characteristic function

(1 ifxeM,
X'(X)_{ 0 otherwise (14.1)

A coarse-grained measure is obtained by assigning the Thwadhe fraction of
trajectories contained in théh regionM; c M at thenth level of partitioning of
the state space:

Aui = fM ()i () = fM du(x = fM axp(9). (14.2)

The functionp(X) = p(x,t) denotes thalensity of representative points in state
space attimé This density can be (and in chaotic dynamics, often is) bitrarily
ugly function, and it may display remarkable singulariti®s instance, there may
exist directions along which the measure is singular witipeet to the Lebesgue
measure. We shall assume that the measure is normalized

(n)
> Aui=1, (14.3)
i

where the sum is over subregiadret thenth level of partitioning. The infinitesimal
measurep(x) dx can be thought of as an infinitely refined partition limitAQf; =
IMilp(X%), X € M, with normalization

f dxp(¥) = 1. (14.4)
M
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CHAPTER 14. TRANSPORTING DENSITIES 237

Figure 14.2: The evolution ruleftcan be used to map
a regionM; of the state space into the regi6t{M;).

Here|M;| is the volume of regionM;, and all|M;| — 0 asn — oo.

So far, any arbitrary sequence of partitions will do. Whatiatelligent ways
of partitioning state space? We already know the answer @loapterl0, but let
us anyway develope some intuition about how the dynamicsp@rts densities.

[chapter 10]

14.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evoito with time.
Consider a swarm of representative points making up the uneasntained in a
region M; at timet = 0. As the flow evolves, this region is carried intg(M;),
as in figurel4.2 No trajectory is created or destroyed, so the conservation
representative points requires that

f dxp(x. 1) = f dxo p(%0. 0) .
fLM;) M

Transform the integration variable in the expression onléftehand side to the
initial points xg = f7Y(X),

f o p('(%0). 1) [det I (x0)| = f d¥o p(%0. 0).
M; M;

The density changes with time as the inverse of the Jacobidf) (

p(Xo0,0)

m s X= ft(Xo), (145)

p(x.t) =

which makes sense: the density varies inversely with thaiiefimal volume
occupied by the trajectories of the flow.

The relation (4.9 is linear inp, so the manner in which a flow transports

densities may be recast into the language of operators, iipgvr fexercise 14.1]

=(L'o = d — ft . .
) = (£00)09 = [ oo 1'00))p0.0) (14.6)
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Figure 14.3: A piecewise-linear skew “Ulam tent”
map (4.1 (Ao = 4/3, A1 = —4). 02 04 06 08 1

Let us check this formula. As long as the zero is not smack erbtrder oo M,
integrating Dirac delta functions is easﬁA;[ dxd(x) = 1if 0 € M, zero otherwise.
The integral over a 1-dimensional Dirac delta function piak the Jacobian of its
argument evaluated at all of its zeros:

f dxs(h()) = m (14.7)

{x:h(x)=0}

and ind dimensions the denominator is replaced by

(x=x)h'(x)

vaj\ h(x)
f dx5(h(x) % \}x (14.8)

1
ZjlfM,- dxsh(x) = > @.

{x:h(x)=0}

Now you can check thatl@.6) is just a rewrite of {4.5): fexercise 14.2]

t o p(XO) 1_d' N I
(Lop)(® 2 TG0 (1-dimensional)
p(Xo) : .
= —_— (d-dimensional) (14.9)
v Ty 1083 00))

For a deterministic, invertible flowx has only one preimaggg; allowing for
multiple preimages also takes account of noninvertiblepirays such as the “stretch
& fold” maps of the interval, to be discussed briefly in the hexample, and in
more detail in sectl0.2.1

We shall refer to the kernel olL¢.6) as thePerron-Frobenius operator: .
[exercise 14.3]

[example 21.7]
L'(xy) = o(x- f'(y)) . (14.10)
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CHAPTER 14. TRANSPORTING DENSITIES 239

If you do not like the word “kernel” you might prefer to think &C'(x,y) as a
matrix with indicesx, y, and index summation in matrix multiplication replaced by
an integral ovey, (Lo p)(X) = f dy £'(x,y)o(y). The Perron-Frobenius oper- . .- 4
ator assembles the densjigx, t) at timet by going back in time to the densit '
0(X,0) at timet = 0.

Example 14.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1-d map f(X) of figure 14.3, a piecewise-linear 2—branch map with slopes
Ao>1arldA1=—Ao/(Ao—1)<—1.' .

[exercise 14.7]

fo(X) = Aox. Mo = [0,1/Aq)
09 = { 00— Al—%.  xe M= (Ao 1l. (14.11)

Both f(Mo) and f(M31) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point Xo as
the “Ulam” map. Assume a piecewise constant density

| po ifxe Mo
o(X) _{ o1 ifxe My - (14.12)

As can be easily checked using (14.9), the Perron-Frobenius operator acts on this

piecewise constant function as a [2x2] Markov matrix L with matrix elements )
[exercise 14.1]

[exercise 14.5]

ERNES
(po) S =( A T )(PO), (14.13)
P1 Aol A1l P1

stretching both po and p1 over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue €% = 1/|A¢| + 1/|A1] = 1,
with constant density eigenvector pg = p1. The quantities 1/|Ao|, 1/|A1| are, respectively,
the fractions of state space taken up by the |My|, |My| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (Continued
in example 15.2.)

14.3 Why not just leave it to a computer?

(R. Artuso and P. Cvitanovit)

To a student with a practical bent the above Examgld suggests a strategy fo (ﬁb
constructing evolution operators for smooth maps, asdiwmitpartitions of state
space into regionaf;, with a piecewise-linear approximatiorfsto the dynamics
in each region, but that would be too naive; much of the plajlsidnteresting
spectrum would be missed. As we shall see, the choice ofibmspace fop is
crucial, and the physically motivated choice is a space aiadmfunctions, rather
than the space of piecewise constant functions.

[chapter 21]
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CHAPTER 14. TRANSPORTING DENSITIES 240

All of the insight gained in this chapter and in what is to d@llis nothing but
an elegant way of thinking of the evolution operatgr,as a matrix (this point of
view will be further elaborated in chaptéd). There are many textbook methods
of approximating an operataf by sequences of finite matrix approximatiofis
but in what follows the great achievement will be that we lstnabid constructing
any matrix approximation td altogether. Why a new method? Why not just
run it on a computer, as many do with such relish in diagomaizjuantum
Hamiltonians?

The simplest possible way of introducing a state spaceetigation, figurel4.4,
is to partition the state spagel with a non-overlapping collection of seM;, i =
1,...,N, and to consider piecewise constant densitiesd], constant on each
MiZ

N
i(X)
p(¥) = Y pes
0 IMil

wherey;i(X) is the characteristic functiori{.l) of the setM;. The density; at a
given instant is related to the densities at the previoysistéme by the action of
the Perron-Frobenius operator, asid.©:

o = [ oo = [ axammmoty = 10900
~ ZN: IMi N EHM))
T g
In this way
IM; N M) ,
Ly = T(J) o = pl (14.14)

is a matrix approximation to the Perron-Frobenius operatod its leading left
eigenvector is a piecewise constant approximation to terient measure. It is
an old idea of Ulam that such an approximation for the PeFmenius operator

is a meaningful one.
[remark 14.3]

The problem with such state space discretization appreachiat they are
blind, the grid knows not what parts of the state space are moless important.
This observation motivated the development of the invanantitions of chaotic
systems undertaken in chapiél, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space andasure of the partition
volumes, in the spirit of figuré.11

Furthermore, a piecewise constartielongs to an unphysical function space,
and with such approximations one is plagued by numericidhets such as spurious
eigenvalues. In chaptérl we shall employ a more refined approach to extracting
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BRUTO INSERSITIVO METHoD :

cigendlate LLJ %= A

elgmvalue det (1—ZL)= o

Figure 14.4: State space discretization approach t
computing averages. exact spechium Roy Ry Aoy By, o0

w (77

spectra, by expanding the initial and final densijie®’ in some basigg, ¢1,

@2, - - - (orthogonal polynomials, let us say), and replacif(y, x) by its ¢, basis
representatioh .z = (¢.|Llpg). The art is then the subtle art of finding a “good”
basis for which finite truncations af,z give accurate estimates of the eigenvalues

of L. [chapter 21]

Regardless of how sophisticated the choice of basis mighlhbdasic problem
cannot be avoided - as illustrated by the natural measutbdéddiénon map3.18
sketched in figurd 4.5 eigenfunctions off are complicated, singular functions
concentrated on fractal sets, and in general cannot besesgieal by a nice basis
set of smooth functions. We shall resort to matrix represtents of£ and thep,
basis approach only insofar this helps us prove that thersmechat we compute
is indeed the correct one, and that finite periodic orbit¢ations do converge.

- in depth:
3 chapter 1, p. 1
14.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

p(X.1) = p(x,0) = p(x). (14.15)

Conversely, if such a density exists, the transformafigr) is said to beneasure-
preserving. As we are given deterministic dynamics and our goal is tinegrdation
of asymptotic averages of observables, our task is to iiyanteresting invariant
measures for a givefi(x). Invariant measures remain dfected by dynamics, so
they are fixed points (in the infinite-dimensional functiggase ofp densities) of

the Perron-Frobenius operatd®(10, with the unit eigenvalue: .
[exercise 14.3]

L'p(X) = f dy 5(x — f'0))e(y) = p(x). (14.16)
M
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CHAPTER 14. TRANSPORTING DENSITIES 242

In general, depending on the choiceféx) and the function space fp(x), there
may be no, one, or many solutions of the eigenfunction candifl4.16. For
instance, a singular measufg(x) = 5(X — Xg)dx concentrated on an equilibrium
point Xq = f'(Xq), or any linear combination of such measures, each coratedtr
on a diferent equilibrium point, is stationary. There are thus itdlg many
stationary measures that can be constructed. Almost aleshtare unnatural
in the sense that the slightest perturbation will destreyrth

From a physical point of view, there is no way to prepare ahitdensities
which are singular, so we shall focus on measures whichraits lof transformations
experienced by an initial smooth distributip(x) under the action of,

po9 = fim [ ayotx-1ioNe0e0). [ aypn0)=1. (aan)

Intuitively, the “natural” measure should be the measuat ihthe least sensitive
to the (in practice unavoidable) external noise, no matr Wweak.

14.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechaflic
Yang: | don't think so.

—Kerson HuangC.N. Yang interview

In computer experiments, as the Hénon example of figur& the long time
evolution of many “typical” initial conditions leads to tisame asymptotic distribution.
Hence thenatural (also called equilibrium measure, SRB measure, Sinai-Bewe
Ruelle measure, physical measure, invariant densityralatansity, or even “natural

invariant”) is defined as the limit .
[exercise 14.8]

[exercise 14.9]
iMoo %fot dré(y — £7(x0)) flows
Px(Y) = (14.18)
iMoo 2 2075 6(y = F5(x0)) maps,

where Xp is a generic initial point. Generated by the actionfefthe natural

measure satisfies the stationarity conditid. (6 and is thus invariant by construction.

Staring at an average over infinitely many Dirac deltas isanptospect we
cherish. From a computational point of view, the natural suea is the visitation
frequency defined by coarse-graining, integratiig.{8 over theM; region

N
AL = lim 2 (14.19)

tooo t

wheret; is the accumulated time that a trajectory of total duratispends in the
M; region, with the initial pointxg picked from some smooth densjtyx).
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Figure 14.5: Natural measurel@.19 for the Henon 15
map (.18 strange attractor at parameter values
(ab) = (14,03). See figure3.9 for a sketch

of the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann) -15%.4

Let a = a(x) be anyobservable. In the mathematical literatura(x) is a
function belonging to some function space, for instancesitece of integrable
functions L1, that associates to each point in state space a number orcd set
numbers. In physical applications the observadile) is necessarily a smooth
function. The observable reports on some property of theamhycal system.
Several examples will be given in setb.l

Thespace average of the observabla with respect to a measupds given by
thed-dimensional integral over the state spade

1
@, = = fM dx p(9a(x)

loml = f dx p(X) = mass inM. (14.20)
M

For now we assume that the state spadehas a finite dimension and a finite
volume. By definition{a), is a function(al) ofo. Forp = pg natural measure we
shall drop the subscript in the definition of the space avisr@)y, = (a).

Inserting the right-hand-side 014.19 into (14.20, we see that the natural
measure corresponds tdiee average of the observabla along a trajectory of
the initial pointXxp,

t
3 = im % fo dra(f*(xo)). (14.21)

Analysis of the above asymptotic time limit is the centrallgem of ergodic
theory. TheBirkhoff ergodic theorem asserts that if a natural measurexists,
the limit a(xo) for the time averagel@.2) exists for all initial xo. As we shall
not rely on this result in what follows we forgo a proof hereirthermore, if the
dynamical system isrgodic, the time average tends to the space average

[remark 14.1]
[appendix A]

t
Jim % f dra(f7(xo)) = (@ (14.22)
—00 0

for “almost all” initial xp. By “almost all” we mean that the time average is
independent of the initial point apart from a sepefeasure zero.

For future reference, we note a further property that iswgeo than ergodicity:
if the space average of a product of any two variables ddetesewith time,

lim (a(x)b(F1(3))) = (@) (b) . (14.23)
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[section 20.4]
the dynamical system is said to b#xing.

Example 14.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (14.19) for the Hénon attractor (3.18) is given by the histogram
in figure 14.5. The state space is partitioned into many equal-size areas M;, and the
coarse grained measure (14.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area M;. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance a®i concentrated
on a fixed point or a cycle), its existence is most likely of rtygical import;
no smooth initial density will converge to this measure # iteighborhood is
repelling. In practice the averag®4(19 is problematic and often hard to control,
as generic dynamical systems are neither uniformly hyperipor structurally
stable: it is not known whether even the simplest model ofange attractor, the
Hénon attractor of figuré4.5 is “strange,” or merely a transient to a very long

stable cycle. .
[exercise 15.1]

14.4.2 Determinism vs. stochasticity

While dynamics can lead to very singulals, in any physical setting we cannot
do better than to measupeaveraged over some regidv;; the coarse-graining is
not an approximation but a physical necessity. One is fraRitdk of a measure
as a probability density, as long as one keeps in mind thénditn between
deterministic and stochastic flows. In deterministic etiolu the evolution
kernels are not probabilistic; the density of trajectoisdsansportedieterministically.
What this distinction means will became apparent later:diterministic flows
our trace and determinant formulas will &&ct, while for quantum and stochasti
flows they will only be the leading saddle point (stationamage, steepest descent)
approximations.

échapter 17]

Clearly, while deceptively easy to define, measures spmibte. The good
news is that if you hang on, you willever need to compute them, at least not
in this book. How so? The evolution operators to which we riext, and the
trace and determinant formulas to which they will lead ugl, agsign the correct
weights to desired averages without recourse to any ekglichputation of the
coarse-grained measutg;.

14.5 Density evolution for infinitesimal times

Consider the evolution of a smooth dengifx) = p(x, 0) under an infinitesimal
stepdr, by expanding the action of°" to linear order inr:

0T _ _ foT
£70) = [ dxaly= 1709)o0
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f dx 6(y — X — 67v(X)) p(X)
M
ply—otvy))  _ p(y) — o7vi(y)dip(y)

|det (1 + 576‘3—()(”)| 1+ot 32, divi(y)
o(X61t) = p(x0)-o7. (14.24)

Here we have used the infinitesimal form of the flow&], the Dirac delta _
Jacobian 14.9, and the In det= tr In relation. By the Einstein summatiorgexemIse 4]
convention, repeated indices imply summatiwify)o; = Z?:lvi(y)ai. Moving
o(y, 0) to the left hand side and dividing @, we discover that the rate of the
deformation ofp under the infinitesimal action of the Perron-Frobenius atoer
is nothing but thesontinuity equation for the density:

A +0-(pv) = 0. (14.25)

The family of Perron-Frobenius operators opera(df%}te& forms a semigroup
parameterize by time

(@ £° =1
(b) £L1£' =L tt>0 (semigroup property) .

From (14.24, time evolution by an infinitesimal ste&f forward in time is generated
by

Ap(x) = + lim_ % (L7 =1)p() = ~6i(%(9p(x)- (14.26)
We shall refer to
d
A=-0-v+ Z vi(X)) (14.27)

as the time evolutiogenerator. If the flow is finite-dimensional and invertibleqd
is a generator of a full-fledged group. The left hand side.4fZ§ is the definition
of time derivative, so the evolution equation fgix) is

0
(a - ﬂ) p(3) = 0. (14.28)

The finite time Perron-Frobenius operatar (10 can be formally expressed
by exponentiating the time evolution generafias

L=, (14.29)
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The generatorA is reminiscent of the generator of translations. Indeedafo
constant velocity field dynamical evolution is nothing btrzanslation by (timex velocity):

[exercise 14.10]

e Via(x) = a(x — tv) . (14.30)

14.5.1 Resolvent off

Here we limit ourselves to a brief remark about the notiorhef‘spectrum” of a
linear operator.

The Perron-Frobenius operatfracts multiplicatively in time, so it is reasonable
to suppose that there exist constaMs> 0, 8 > 0 such that| Ll < Mée¥
for all t > 0. What does that mean? The operator norm is defined in the same
spirit in which one defines matrix norms:We are assumingribatalue of£'p(x)
grows faster than exponentially for any choice of funciidr), so that the fastest
possible growth can be bounded &%, a reasonable expectation in the light of
the simplest example studied so far, the exact escapel@ate) If that is so,
multiplying £t by e we construct a new operater” £ = é(""-#) which decays
exponentially for largd, [|€")|| < M. We say thae ¥ £! is an element of a
bounded semigroup with generatal — Bl. Given this bound, it follows by the
Laplace transform

o0 1
fo dte‘“ﬁ=m, Res> g, (14.31)

that theresolvent operator § — A)~* is bounded (“resolventZ= able to cause
separation into constituents)

H = Hgf dte‘“Me‘B:l.
s—-A 0 s-p6

If one is interested in the spectrum &f as we will be, the resolvent operator is
a natural object to study; it has no time dependence, anddusded. The main
lesson of this brief aside is that for continuous time flows, ltaplace transform is
the tool that brings down the generator i@ (29 into the resolvent formi4.37)
and enables us to study its spectrum.

14.6 Liouville operator

,
J A case of special interest is the Hamiltonian or symplectizfilefined by
Hamilton's equations of motiorv(1). A reader versed in quantum mechanics will
have observed by now that with replacemeéht> —+H , whereH is the quantum
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Hamiltonian operator,14.28 looks rather like the time dependent Schrodinger
equation, so this is probably the right moment to figure ouatvetll this means in
the case of Hamiltonian flows.

The Hamilton’s evolution equationg .(l) for any time-independent quantity
Q = Q(a, p) are given by

dQ 0Qdg dQdp IdHOQ IQOIH
_ AT Z=Z 14.32
dt oqg; dt * op; dt opi 0gi  ap; 0q; ( )

As equations with this structure arise frequently for syegpt flows, itis convenient
to introduce a notation for them, tiReisson bracket
[remark 14.4]

A OB A OB
{ABl= —— - —— (14.33)

opi dg  9q Ipi

In terms of Poisson brackets the time evolution equatldn3? takes the compact
form

dQ
o = {H, Q}. (14.34)

The full state space flow velocity is = v = (g, p), where the dot signifies
time derivative.

The discussion of sect4.5applies to any deterministic flow. If the density
itself is a material invariant, combining

ol +v-0l =0.

and (14.29 we conclude thab;v; = 0 and detl'(xy) = 1. An example of such
incompressible flow is the Hamiltonian flow of se¢t2. For incompressible flows
the continuity equationl.25 becomes a statement of conservation of the state
space volume (see sett2), or theLiouville theorem

A +Vidip = 0. (14.35)

Hamilton’s equations7.1) imply that the flow is incompressiblé;v; = 0, so
for Hamiltonian flows the equation f@rreduces to theontinuity equation for the
phase space density:

S +8i(ov) =0, i=12....D. (14.36)

Consider the evolution of the phase space depsifian ensemble of noninteracting
particles; the particles are conserved, so

d a . 0 .0
ap(q5p5t)_ a-’-qla_ql-'-pla_pl)p(qa pat)_o
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Inserting Hamilton’s equations/ (1) we obtain thelLiouville equation, a special
case of 14.28:

0
ap(q’ p’ t) = _ﬂp(q’ p? t) = {Hap(q’ p, t)} ) (1437)

where{, }is the Poisson bracket4.33. The generator of the floni¢.27 is in
this case a generator of infinitesimal symplectic transéiions,

.0 .0 oHJI oH
A==+ Pz~ =

- - 14.38
ag  opi - apdg  Aq ap ( )

For example, for separable Hamiltonians of fafm= p?/2m+V/(q), the equations
of motion are

V@

14.39
a2 (14.39)

G=2.  p=

and the action of the generator .
[exercise 14.11]

A=-22 sy

. 14.40
m og; ap; ( )

can be interpreted as a translatiait 30 in configuration space, followed by
acceleration by forc@V(q) in the momentum space.

The time evolution generatoi4.27) for the case of symplectic flows is called
the Liouville operator. You might have encountered it in statistical mechanics,
while discussing what ergodicity means ford@ard balls. Here its action will
be very tangible; we shall apply the Liouville operator tsteyns as small as 1 or
2 hard balls and to our surprise learn that thi§ises to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanic

Résum é

In physically realistic settings the initial state of a &matcan be specified only
to a finite precision. If the dynamics is chaotic, it is not gibe to calculate
accurately the long time trajectory of a given initial poinDepending on the
desired precision, and given a deterministic law of evohytithe state of the
system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading ingbelution of a
single state space point for the evolution ofi@asure, or thedensity of representative
points in state space, acted upon byeaolution operator. Essentially this means
trading innonlinear dynamical equations on a finite dimensional spaee(x1, X2 - - - Xg)
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for alinear equation on an infinite dimensional vector space of densitgtions
p(X). For finite times and for maps such densities are evolvechbyPérron-
Frobenius operator,

p(x.t) = (Lo p) (%),
and in a dfferential formulation they satisfy the tleentinuity equation:
op+9-(pv) = 0.

The most physical of stationary measures is the naturalunegzs measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a dibfiquantum-
mechanical flavor. If the Lyapunov timé.({), the time after which the notion
of an individual deterministic trajectory loses meanirgymuch shorter than the
observation time, the “sharp” observables are those duahi the eigenvalues
of evolution operators. This is very much the same situaienin quantum
mechanics; as atomic time scales are so short, what is neebisuihe energy, the
quantum-mechanical observable dual to the time. For lamgdithe dynamics
is described in terms of stationary measures, i.e., fixedtpaf the appropriate
evolution operators. Both in classical and quantum mecisamie has a choice of
implementing dynamical evolution on densities (“Schnigir picture,” sectl4.5
or on observables (“Heisenberg picture,” séé&.2and chaptef.6).

In what follows we shall find the second formulation more @ment, but the
alternative is worth keeping in mind when posing and sohimgriant density
problems. However, as classical evolution operators aramitary, their eigenstates
can be quite singular andfiicult to work with. In what follows we shall learn how
to avoid dealing with these eigenstates altogether. As tenwdtfact, what follows
will be a labor of radical deconstruction; after having a&adwso strenuously here
that only smooth measures are “natural,” we shall merrilycped to erect the
whole edifice of our theory on periodic orbits, i.e., objetttat ares-functions
in state space. The trick is that each comes with an inteitgaheighborhood —
cycle points only serve to pin these intervals, just as thémater marks on a
measuring rod partition continuum into intervals.

Commentary

Remark 14.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to consilt[1]. The existence of
time averagel4.2] is the basic result of ergodic theory, known as the Bifkkimeorem,
see for example refsl1] 27], or the statement of theorem 7.3.1 in red].[ The natural
measure 14.19 of sect.14.4.1is often referred to as the SRB or Sinai-Ruelle-Bowen
measuref6, 24, 29).
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Remark 14.2 Time evolution as a Lie group: Time evolution of sectl4.5is an example
of a 1-parameter Lie group. Consult, for example, chaptewoRref. [9] for a clear
and pedagogical introduction to Lie groups of transfororai For a discussion of the
bounded semigroups of pagé6see, for example, Marsden and Hughds [

Remark 14.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [L7] that such an approximation for the Perron-Frobenius dpetia a
meaningful one. The piecewise-linear approximation of Pleeron-Frobenius operator
(14.19 has been shown to reproduce the spectrum for expanding, maps finer and
finer Markov partitions are used 3, 17, 14]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in réf;,[22].

Remark 14.4 The sign convention of the Poisson bracket:  The Poisson bracket is
antisymmetric in its arguments and there is a freedom to eéfwith either sign convention.
When such freedom exists, it is certain that both convestame in use and this is no
exception. In some text§] 3] you will see the right hand side 014.33 defined a$B, A}

so that (4.39 is ‘L—t = {Q, H}. Other equally reputable texts{] employ the convention
used here. Landau and LifshitZ] [denote a Poisson bracket b, [B], notation that we
reserve here for the quantum-mechanical commutator. Agdsrone is consistent, there
should be no problem.

Remark 14.5 “Anonitlives™? “Anonitlives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused &f infidelity. Twenty

years later, the servant Paulina shows Leontes this sthtdermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lared Paulina has kept her
hidden all these years. The text of the play seems delidg@atebiguous. It is probably

a parable for the resurrection of Christ. (John F. Gibson)
Exercises
14.1. Integrating over Dirac delta functions. Let us verify sequence of Gaussians
a few of the properties of the delta function and check
(14.9, as well as the formulasl{.?) and (4.9 to be ) e‘%
used later. fdxo‘(x)f(x) = J)Lnofdx 2mff(x).
(@) If f : RY > RY, show that Use thls_ approximation to see whether the formal
expression
1
dxs(f(9) = > = fdxo‘ X
fRd XEZJ(O) detdy f| A (x)

ki .
(b) The delta function can be approximated by a maxes sense
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14.2. Derivativgks of Dirac delta functions. Consider (d) For this map there is an infinite number of
M%) = Z26(x). invariant measures, but only one of them will
be found when one carries out a numerical

Using integration by parts, determine the value of ; X : i
simulation. Determine that measure, and explain

why your choice is the natural measure for this
fdxci v . wherey = f(x) — x (14.41) map.
R
) (y’ )2 7 (e) In the second map the maximum occursrat
de5( "y) = Vi { W7 —( % 3}) (3- V5)/2 and the slopes aeg( V5 + 1)/2. Find
{xy(x)=0) the natural measure for this map. Show that it is
b” by’ piecewise linear and that the ratio of its two values
dxb(x)s@(y) = Ll BAD _
f xb(x)6*(y) {XlZ_ vIlo2Z ~ )3 is (V5 + 1)/2.
y(X)=0} .
2 1 (medium dificulty)
+ 3ﬂ _Y 14.43
N AE i4 6. Escape rate for a flow conserving map. AdjustAg,
A7 in (15.17 so that the gap between the interval,
These formulas are useful for computirfigets of weak My vanishes. Show that the escape rate equals zero ir
noise on deterministic dynamics|| this situation.
14.3. 1t generates a semigroup.  Check that the Perron- 14.7. Eigenvalues of the Perron-Frobenius operator for the
tent map
f dzL%(y,2) L9z X) = L25(y,x),  t,1p > 0.(14.44) 1
M
As the flows in which we tend to be interested are 0.8
invertible, the £'s that we will use often do form a
. No
group, withts, t; € R. 0.6
14.4. Escape rate of the tent map. A
0.4
(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in 0.2
the interval [0 1] for the tent map
f(x) =a(l-2/x-0.5])

02 04 06 038 1

for several values dd. f fo(X) = AoX, xe Mo =[0,1/Ag
(b) Determine analytically tha dependence of the (x) = f1(x) = A?El(l— X), xe Mi=(1/Ao, 1
escape rate(a).

the eigenvalues are available analytically, compute the
(c) Compare your results for (a) and (b). first few.

14.8. “Kissing disks”*  (continuation of exercise8.1 and
8.2). Close df the escape by settirfig = 2, and look in
real time at the density of the Poincaré section iterates
for a trajectory with a randomly chosen initial condition.
Does it look uniform? Should it be uniform? (Hint
- phase space volumes are preserved for Hamiltonian
flows by the Liouville theorem). Do you notice the
trajectories that loiter near special regions of phasesspac
for long times? These exemplify “intermittency,” a bit of
unpleasantness to which we shall return in chapger

14.5. Invariant measure.  We will compute the invariant
measure for two dierent piecewise linear maps.

0 1 0 o 1
14.9. Invariant measure for the Gauss map. Consider
(@) Verify the matrix£ representationi(.19. the Gauss map:
(b) The maximum value of the first map is 1. F(x) = ;1( [;1(] x#0 (14.46)
Compute an invariant measure for this map. x=0
(c) Compute the leading eigenvalueffor this map. where [ ] denotes the integer part.
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(a) Verify that the density (14.30Q is the generator of translations,
_ 11 eVira(x) = a(x + tv) .
PO = log21 + x

14.11. Incompressible flows. Show that (4.9 implies that

is an invariant measure for the map. . . . .
po(X) = 1 is an eigenfunction of a volume-preserving

(b) Isitthe natural measure? flow with eigenvalues, = 0. In particular, this implies
that the natural measure of hyperbolic and mixing
14.10. A as a generator of translations.  Verify that for Hamiltonian flows is uniform. Compare this results with
a constant velocity field the evolution generatérin the numerical experiment of exercité.8
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