Chapter 14

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He'll think anon it lives.

—W. Shakespear&he Winter’s Tale

(P. Cvitanovi¢, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chdptee studied

a small neighborhood of a trajectory and learned that suaghberhood
can grow exponentially with time, making the concept of kiag an individual
trajectory for long times a purely mathematical ideali@ati

I N CHAPTERS 2, 3, 7 and8 we learned how to track an individual trajectory, and

While the trajectory of an individual representative poigy be highly convoluted,

as we shall see, the density of these points might evolve iraaner that is
relatively smooth. The evolution of the density of repreéative points is for
this reason (and other that will emerge in due course) oftgréerest. So are
the behaviors of other properties carried by the evolvingrawof representative
points.

We shall now show that the global evolution of the densityegfresentative
points is conveniently formulated in terms of linear actafrevolution operators.
We shall also show that the important, long-time “naturaiariant densities
are unspeakably unfriendly and essentially uncomputaiéey@here singular
functions with support on fractal sets. Hence, in chafpitewe rethink what is
it that the theory needs to predict (“expectation values“oliiservables”), relate
these to the eigenvalues of evolution operators, and intetes to 18 show how
to compute these without ever having to compute a naturediriant densitiego.
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Figure 14.1: (a) First level of partitioning: A
coarse partition ofM into regions Mo, My,

and M.

(b) n = 2 level of partitioning: A

refinement of the above partition, with each region
M, subdivided intoMio, Mi, and M. (@ (b)

14.1 Measures

Do | then measure, O my God, and know not what |
measure?
—St. AugustineThe confessions of Saint Augustine

A fundamental concept in the description of dynamics of atihasystem is that
of measure, which we denote bylu(x) = p(X)dx. An intuitive way to define and
construct a physically meaningful measure is by a procesmarfse-graining.
Consider a sequence 1, 2, n,.,.. of increasingly refined partitions of state space,
figure 14.1, into regionsM; defined by the characteristic function

1 ifxeM,
xi() = { 0 otherwise (14.1)
A coarse-grained measure is obtained by assigning the ‘hwashe fraction of
trajectories contained in thigh regionM; c M at thenth level of partitioning of
the state space:

A = fM (i () = fM () = fM axp(0). (14.2)

The functionp(X) = p(x,t) denotes thealensity of representative points in state
space attimé This density can be (and in chaotic dynamics, often is) hitrarily
ugly function, and it may display remarkable singularities instance, there may
exist directions along which the measure is singular wigipeet to the Lebesgue
measure. We shall assume that the measure is normalized

®
Z Aui=1, (14.3)
i

where the sum is over subregidret thenth level of partitioning. The infinitesimal
measure(x) dx can be thought of as an infinitely refined partition limitAf; =
IMilp(%), % € M;, with normalization

f dxp(x) = 1. (14.4)
M
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Figure 14.2: The evolution rulef‘can be used to map
a regionM; of the state space into the regidi{M;).

Here|M;| is the volume of regionM;, and all|Mi| — 0 asn — oo.

So far, any arbitrary sequence of partitions will do. Whatiatelligent ways
of partitioning state space? We already know the answer &loapterl0, but let
us anyway develope some intuition about how the dynamicsparts densities.

[chapter 10]

14.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evoito with time.
Consider a swarm of representative points making up the umeasntained in a
region M; at timet = 0. As the flow evolves, this region is carried inti{M;),
as in figurel4.2 No trajectory is created or destroyed, so the conservaifon
representative points requires that

f dxp(x.1) = f ¥ p(%. 0).
(M) M

Transform the integration variable in the expression onléftehand side to the
initial points xo = f~Y(x),

f o p( F1(x0), )| det'(xg)| = f ¥ (%, 0).
M M

The density changes with time as the inverse of the JacoBidf) (

£(X,0)

et (o)) x = fi(xo), (14.5)

p(x1) =

which makes sense: the density varies inversely with thaiteimal volume
occupied by the trajectories of the flow.

The relation (4.9 is linear inp, so the manner in which a flow transports

densities may be recast into the language of operators, itipgvr [exercise 14.1]

— (s, - _ft . .
o) = (£20)09 = [ diod{x 1100)o0x0.0) (14.6)
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Figure 14.3: A piecewise-linear skew “Ulam tent”
map (14.19) (Ao = 4/3, A1 = —4). 02 04 06 08 1

Let us check this formula. As long as the zero is not smack erbtnder oo M,
integrating Dirac delta functions is easﬁ}\;1 dxd(x) = 1if 0 € M, zero otherwise.
The integral over a 1-dimensional Dirac delta function piak the Jacobian of its
argument evaluated at all of its zeros:

f dxs(h(x) = Z ﬁ (14.7)
{x

h(x)=0}

and ind dimensions the denominator is replaced by

(x=x)h'(x)
h(x)

X (14.8)

1
Zj:fMJ dxa(h(x) = Z —_

{x:h(x)=0} |det %|

f dxs(h(x)

Now you can check thafl@.6) is just a rewrite of {4.5): [exercise 14.2]

£(Xo)

fo = 1-dimensional
(12 P) (%) B TGO (1-dimensional)
= % (d-dimensional) (14.9)

Xo=f71(x)

For a deterministic, invertible flowx has only one preimaggo; allowing for
multiple preimages also takes account of noninvertiblepimags such as the “stretch
& fold” maps of the interval, to be discussed briefly in the nexample, and in
more detail in sectl0.2.1

We shall refer to the kernel ofL¢.6) as thePerron-Frobenius operator:

[exercise 14.3]
[example 21.7]

Ly) = 5(x= ') - (14.10)
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If you do not like the word “kernel” you might prefer to think oC'(x,y) as a
matrix with indicesx, y, and index summation in matrix multiplication replaced by
an integral ovey, (L' op)(X) = fdyL‘(x, y)o(y). The Perron-Frobenius oper-
ator assembles the densjigx, t) at timet by going back in time to the densit)}'ema'k e
p(Xo0,0) at timet = 0.

Example 14.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1-d map f(X) of figure 14.3, a piecewise-linear 2—branch map with slopes
Ao >land A1 =-Ag/(Ao—-1)<-1: [exercise 14.7]
_J fo(X) = Aox, X € Mo =[0,1/A0)
fo9 = { 10 = A1-%).  xe My =(1/Ao.1]. (14.11)
Both f(Mo) and f(M,) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point Xy as
the “Ulam” map. Assume a piecewise constant density

_J po ifxe Mo
p(x) = { o1 ifxe My (14.12)

As can be easily checked using (14.9), the Perron-Frobenius operator acts on this

piecewise constant function as a [2x2] Markov matrix L with matrix elements )
[exercise 14.1]

[exercise 14.5]

11
(”0) 5 Lp:( A A )(“’), (14.13)
p1 Ao TAY P1

stretching both po and p1 over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue €® = 1/|Ag| + 1/|A1] = 1,
with constant density eigenvector pg = p1. The quantities 1/|Ao|, 1/|A1| are, respectively,
the fractions of state space taken up by the | Mo|, | M| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (Continued
in example 15.2.)

14.3 Why not just leave it to a computer?

(R. Artuso and P. Cvitanovit)

To a student with a practical bent the above Exanigld suggests a strategy fo,
constructing evolution operators for smooth maps, asdiwiitpartitions of state
space into regiond;, with a piecewise-linear approximatiotfisto the dynamics
in each region, but that would be too naive; much of the plajlsidnteresting
spectrum would be missed. As we shall see, the choice ofitmspace fop is
crucial, and the physically motivated choice is a space afatmfunctions, rather
than the space of piecewise constant functions.

[chapter 21]
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All of the insight gained in this chapter and in what is to dellis nothing but
an elegant way of thinking of the evolution operat6r,as a matrix (this point of
view will be further elaborated in chaptét). There are many textbook methods
of approximating an operatof by sequences of finite matrix approximatiafis
but in what follows the great achievement will be that we sinabid constructing
any matrix approximation ta altogether. Why a new method? Why not just
run it on a computer, as many do with such relish in diagomgizjuantum
Hamiltonians?

The simplest possible way of introducing a state spaceetigation, figurel4.4
is to partition the state spadel with a non-overlapping collection of setd;, i =
1,...,N, and to consider piecewise constant densitlesd, constant on each
Mii

N
i(%)
) = Rl
g ;pMI

whereyi(X) is the characteristic functiori4.1) of the setM;. The density; at a
given instant is related to the densities at the previoysistéme by the action of
the Perron-Frobenius operator, asid.©):

f dy i ()P’ O) = f dxdy () 5y -~ 1(9)p(%)
M M

P =
_ipMnﬂwm
= — 17
— IMil
In this way
IMi 0 £ (M)
ij = ————————, ' =pL 14.14
ij M p=p ( )

is a matrix approximation to the Perron-Frobenius operatod its leading left
eigenvector is a piecewise constant approximation to therignt measure. It is
an old idea of Ulam that such an approximation for the PeFmbenius operator

is a meaningful one. [remark 14.3]

The problem with such state space discretization appreaichthat they are
blind, the grid knows not what parts of the state space are moless important.
This observation motivated the development of the invanntitions of chaotic
systems undertaken in chapfil, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space andasute of the partition
volumes, in the spirit of figuré.11

Furthermore, a piecewise constarttelongs to an unphysical function space,

and with such approximations one is plagued by numericifets such as spurious
eigenvalues. In chaptérl we shall employ a more refined approach to extracting
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BRUTO INSERSITIVO METHeD :

cigenlite ]_,.Lj = AP

eignvelue  det (4-zL)=0
pe

b3 Y
= zt=aa., Ay

i
N oo
Figure 14.4: State space discretization approach t o~
computing averages. exact spechum Doy Ryl By om =

spectra, by expanding the initial and final densijieg’ in some basisyo, ¢1,

¢, - - - (orthogonal polynomials, let us say), and replacif(y, x) by its ¢, basis
representatiot. .5 = (.| Llgp). The art is then the subtle art of finding a “good”
basis for which finite truncations f,; give accurate estimates of the eigenvalues
of L.

[chapter 21]

Regardless of how sophisticated the choice of basis mighlbéasic problem
cannot be avoided - as illustrated by the natural measuteddiénon map3.18
sketched in figurd 4.5 eigenfunctions ofL are complicated, singular functions
concentrated on fractal sets, and in general cannot besespiezl by a nice basis
set of smooth functions. We shall resort to matrix represt@nts of£ and thep,
basis approach only insofar this helps us prove that therspecthat we compute
is indeed the correct one, and that finite periodic orbit¢ations do converge.

in depth:
8 chapter 1, p. 1
14.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

P =p(x0) =p(¥). (14.15)

Conversely, if such a density exists, the transformafig) is said to beneasure-
preserving. As we are given deterministic dynamics and our goal is tiepdgation
of asymptotic averages of observables, our task is to iiyeinteresting invariant
measures for a giveff(x). Invariant measures remain dfected by dynamics, so
they are fixed points (in the infinite-dimensional functigrase ofp densities) of

the Perron-Frobenius operatd®(10, with the unit eigenvalue: [exercise 14.3]

Lp(x) = f dy s(x— f'y))ey) = p(¥). (14.16)
M
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In general, depending on the choiceféfx) and the function space fp(x), there
may be no, one, or many solutions of the eigenfunction camditl4.16. For
instance, a singular measuig(x) = 6(x — Xg)dx concentrated on an equilibrium
point x4 = f!(xg), or any linear combination of such measures, each coratedtr
on a diferent equilibrium point, is stationary. There are thus itélg many
stationary measures that can be constructed. Almost alievhtare unnatural
in the sense that the slightest perturbation will destreyrth

From a physical point of view, there is no way to prepare ahitlensities
which are singular, so we shall focus on measures whichraitslof transformations
experienced by an initial smooth distributip(x) under the action of,

po9 = Jim [ ayatx- oMo, [ dype0)=1.  (a17)

Intuitively, the “natural” measure should be the measuat iththe least sensitive
to the (in practice unavoidable) external noise, no matber Wweak.

14.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechafic
Yang: | don't think so.

—Kerson HuangC.N. Yang interview

In computer experiments, as the Henon example of figur& the long time
evolution of many “typical” initial conditions leads to tsame asymptotic distribution.
Hence thenatural (also called equilibrium measure, SRB measure, Sinai-Bewe
Ruelle measure, physical measure, invariant densityraiatansity, or even “natural

invariant”) is defined as the limit v
[exercise 14.8]

[exercise 14.9]
iMoo 2 droly - £7(x0)) flows
Py = (14.18)
liMne £ 2075 8(y = (%)) maps

where xg is a generic initial point.  Generated by the actionfofthe natural
measure satisfies the stationarity conditib4. (6 and is thus invariant by construction.
Staring at an average over infinitely many Dirac deltas isanptospect we

cherish. From a computational point of view, the natural snea s the visitation
frequency defined by coarse-graining, integratii. {8 over theM; region

Api = Jim tt—' (14.19)

wheret; is the accumulated time that a trajectory of total duratispends in the
M; region, with the initial pointxg picked from some smooth densjyx).
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Figure 14.5: Natural measurel@.19 for the Hénon 1
map @.18 strange attractor at parameter values
(a,b) = (1.4,03). See figure3.9 for a sketch

of the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann) 15%.a4

Let a = a(x) be anyobservable. In the mathematical literatura(x) is a
function belonging to some function space, for instancesthece of integrable
functions L1, that associates to each point in state space a number orcd set
numbers. In physical applications the observedile) is necessarily a smooth
function. The observable reports on some property of theahjcal system.
Several examples will be given in setb.1

Thespace average of the observable with respect to a measugds given by
thed-dimensional integral over the state spade

@, = o | dxo9atg

loml = fMpr(x) = mass inM. (14.20)

For now we assume that the state spaAdehas a finite dimension and a finite
volume. By definition{a), is a function(al) ofp. Forp = po natural measure we
shall drop the subscript in the definition of the space awer@)y, = (a).

Inserting the right-hand-side o014.18 into (14.20, we see that the natural
measure corresponds tdiene average of the observabla along a trajectory of
the initial pointxo,

t
o= im 1 [ dralr"Ga). (14.21)

Analysis of the above asymptotic time limit is the centrallgem of ergodic
theory.  TheBirkhoff ergodic theorem asserts that if a natural measyrexists,
the limit a(xo) for the time averagel¢.27) exists for all initialxy. As we shall
not rely on this result in what follows we forgo a proof hereiwrthermore, if the
dynamical system isrgodic, the time average tends to the space average

[remark 14.1]
[appendix A]

t
lim % fo dra(f(x)) = (@ (14.22)

t—oo

for “almost all” initial xo. By “almost all” we mean that the time average is
independent of the initial point apart from a sejefneasure zero.

For future reference, we note a further property that iswgteo than ergodicity:
if the space average of a product of any two variables ddetesewith time,

Jim (a(qb(f'(x)) = (@b , (14.23)
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[section 20.4]
the dynamical system is said to bxing.

Example 14.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (14.19) for the Hénon attractor (3.18) is given by the histogram
in figure 14.5. The state space is partitioned into many equal-size areas M;, and the
coarse grained measure (14.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area M;. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance aBdr concentrated
on a fixed point or a cycle), its existence is most likely of rygical import;
no smooth initial density will converge to this measure # iteighborhood is
repelling. In practice the average4(19 is problematic and often hard to control,
as generic dynamical systems are neither uniformly hypierlmor structurally
stable: it is not known whether even the simplest model ofange attractor, the
Hénon attractor of figurd4.5 is “strange,” or merely a transient to a very long

tabl le.
stable cycle [exercise 15.1]

14.4.2 Determinism vs. stochasticity

While dynamics can lead to very singulais, in any physical setting we cannot
do better than to measupeaveraged over some regidvi;; the coarse-graining is
not an approximation but a physical necessity. One is frabitd of a measure
as a probability density, as long as one keeps in mind thendistn between
deterministic and stochastic flows. In deterministic etiolu the evolution
kernels are not probabilistic; the density of trajectorsdsansportedieterministically.
What this distinction means will became apparent later:digerministic flows
our trace and determinant formulas will ®&ct, while for quantum and stochasti
flows they will only be the leading saddle point (stationanage, steepest descent)
approximations.

échapter 17]

Clearly, while deceptively easy to define, measures spmibte. The good
news is that if you hang on, you witlever need to compute them, at least not
in this book. How so? The evolution operators to which we riext, and the
trace and determinant formulas to which they will lead udl, agsign the correct
weights to desired averages without recourse to any ekplicnputation of the
coarse-grained measut@;.

14.5 Density evolution for infinitesimal times

Consider the evolution of a smooth densix) = p(x,0) under an infinitesimal
stepdr, by expanding the action of’” to linear order inyr:

0T — d _fdr
£%() fM x oy — £7(9) o)
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f dx 6(y — X = 67v(X)) p(X)
M
py—otvy)  _ p) = srvi()dip(y)
|det(1+ 5720 1+6r L M)
p(x,67) = p(x,0)-0dr. (14.24)

Here we have used the infinitesimal form of the floi6], the Dirac delta )
Jacobian 14.9, and the In det= tr In relation. By the Einstein summatioﬁeXerCIse 1]
convention, repeated indices imply summatiuity)o; = Zidzlvi(y)ai. Moving
p(y,0) to the left hand side and dividing Wi, we discover that the rate of the
deformation ofo under the infinitesimal action of the Perron-Frobenius afwer
is nothing but thesontinuity equation for the density:

Op+0-(pv) = 0. (14.25)

The family of Perron-Frobenius operators opera{dﬁ‘s}te& forms a semigroup
parameterize by time

(@ £° =1
(b) £L8 =" >0 (semigroup property) .

From (14.24), time evolution by an infinitesimal step forward in time is generated
by

Ap(¥) = + lim 6% (£7=1)p(9 = ~3iu(p(x). (14.26)

We shall refer to
d
A=-0-v+ Z Vi(X)0; (24.27)
i

as the time evolutiogenerator. If the flow is finite-dimensional and invertibleq
is a generator of a full-fledged group. The left hand side.4fZf is the definition
of time derivative, so the evolution equation fe) is

(% - y{) () = 0. (14.28)

The finite time Perron-Frobenius operat@d (10 can be formally expressed
by exponentiating the time evolution generafias

L= (14.29)
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The generatotA is reminiscent of the generator of translations. Indeed afo
constant velocity field dynamical evolution is nothing birizaslation by (timex velocity):

[exercise 14.10]

eVira(x) = a(x - tv). (14.30)

14.5.1 Resolvent off

Here we limit ourselves to a brief remark about the notiorhef‘tspectrum” of a
linear operator.

The Perron-Frobenius operatfiacts multiplicatively in time, so it is reasonable
to suppose that there exist constaMs> 0, 8 > 0 such that|£Y|| < Mée¥
for allt > 0. What does that mean? The operator norm is defined in the same
spirit in which one defines matrix norms:We are assumingribaialue of£{o(x)
grows faster than exponentially for any choice of funciigr), so that the fastest
possible growth can be bounded &Y, a reasonable expectation in the light of
the simplest example studied so far, the exact escapelf@ate). |If that is so,
multiplying £t by e we construct a new operater? £! = &("-#) which decays
exponentially for large, ||€*A)|| < M. We say thae ¥ £! is an element of a
bounded semigroup with generatafl — Bl. Given this bound, it follows by the
Laplace transform

o0 1
fo dte’s‘.ﬁ‘:ﬁ, Res> g, (14.31)

that theresolvent operator § — A)~* is bounded (‘resolvent= able to cause
separation into constituents)

i [Caemer=
s-A o s—f

If one is interested in the spectrum 6f as we will be, the resolvent operator is
a natural object to study; it has no time dependence, anddusded. The main
lesson of this brief aside is that for continuous time flols, ltaplace transform is
the tool that brings down the generator it (29 into the resolvent form14.37)
and enables us to study its spectrum.

14.6 Liouville operator

§
J A case of special interest is the Hamiltonian or symplectifiiefined by
Hamilton's equations of motiorv(1). A reader versed in quantum mechanics will
have observed by now that with replacemeht> —;H , whereH is the quantum
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Hamiltonian operator,1(4.28 looks rather like the time dependent Schrodinger
equation, so this is probably the right moment to figure ouavell this means in
the case of Hamiltonian flows.

The Hamilton’s evolution equationg.(l) for any time-independent quantity
Q = Q(g, p) are given by

dQ _dQdg  dQdp _ 9HIQ 9QIH
dt ~ ag dt * opr dt ~ apidg Api dg (14.32)

As equations with this structure arise frequently for syeopt flows, it is convenient
to introduce a notation for them, ttReisson bracket

[remark 14.4]

0A 0B 0A 0B

Bl=——+ - ——. 14.33
A api dgi  aq; ap; ( )

In terms of Poisson brackets the time evolution equatlgnd?) takes the compact
form

dQ
5= {H,Q}. (14.34)

The full state space flow velocity is = v = (g, p), where the dot signifies
time derivative.

The discussion of sect4.5applies to any deterministic flow. If the density
itself is a material invariant, combining

ol +v-9l =0.

and (14.25 we conclude thad;v; = 0 and detl'(x) = 1. An example of such
incompressible flow is the Hamiltonian flow of se€t2. For incompressible flows
the continuity equationl@4.25 becomes a statement of conservation of the state
space volume (see sett2), or theLiouville theorem

O + Vidip = 0. (14.35)
Hamilton’s equations?.1) imply that the flow is incompressiblé;v; = 0, so
for Hamiltonian flows the equation ferreduces to theontinuity equation for the

phase space density:

o +i(pw) =0, i=12....D. (14.36)

Consider the evolution of the phase space depsifyan ensemble of noninteracting

particles; the particles are conserved, so

0 0

d a0 . .
ap(q, p.t) = (E +qi¢')_qi + pia_pi p(g. p,t) = 0.
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Inserting Hamilton's equations/ (1) we obtain theLiouville equation, a special
case of (4.29:

3
ap(q, p,t) = =Ap(a, p,t) = {H, p(a, p, 1)}, (14.37)

where{, }is the Poisson bracket4.33. The generator of the flonl¢.27) is in
this case a generator of infinitesimal symplectic transéiioms,

.0 .0 oHa O0H
A=0Gio—+D

) — = — - — 14.38
aq  T'opi Apdg dq Ap; ( )

For example, for separable Hamiltonians of fadm= p?/2m+V(q), the equations
of motion are

= P A C)
= m’ pi = o (14.39)
and the action of the generator
pi 0 0
A=-—=—+V(Q)=—. 14.40
mag T V@5 (14.40)

can be interpreted as a translatidt 30 in configuration space, followed by
acceleration by forcéV(q) in the momentum space.

The time evolution generatot4.27) for the case of symplectic flows is called
the Liouville operator.  You might have encountered it in statistical mechanics,
while discussing what ergodicity means ford@ard balls. Here its action will
be very tangible; we shall apply the Liouville operator tgteyns as small as 1 or
2 hard balls and to our surprise learn that thiises to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanic

Résumé

In physically realistic settings the initial state of a gyatcan be specified only
to a finite precision. If the dynamics is chaotic, it is not gibfe to calculate
accurately the long time trajectory of a given initial poinDepending on the
desired precision, and given a deterministic law of evohytithe state of the
system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading indhelution of a
single state space point for the evolution efieasure, or thedensity of representative
points in state space, acted upon byeawoiution operator. Essentially this means
trading innonlinear dynamical equations on a finite dimensional spaee(xi, X2 - - - Xg)
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for alinear equation on an infinite dimensional vector space of denaitgtions
p(x). For finite times and for maps such densities are evolvedhbyPérron-
Frobenius operator,

p(x 1) = (Lo p) (9,
and in a diferential formulation they satisfy the tleentinuity equation:
op+9-(pv) = 0.

The most physical of stationary measures is the naturalumeas measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a diyfirguantum-
mechanical flavor. If the Lyapunov timé..(Q), the time after which the notion
of an individual deterministic trajectory loses meanirgmuch shorter than the
observation time, the “sharp” observables are those duaht® the eigenvalues
of evolution operators. This is very much the same situadenin quantum
mechanics; as atomic time scales are so short, what is neebisuthe energy, the
guantum-mechanical observable dual to the time. For langdithe dynamics
is described in terms of stationary measures, i.e., fixedtpaif the appropriate
evolution operators. Both in classical and quantum mecisamie has a choice of
implementing dynamical evolution on densities (“Schnagir picture,” sectl4.5
or on observables (“Heisenberg picture,” séét.2and chaptef 6).

In what follows we shall find the second formulation more @ment, but the
alternative is worth keeping in mind when posing and sohimgriant density
problems. However, as classical evolution operators arenitary, their eigenstates
can be quite singular andficult to work with. In what follows we shall learn how
to avoid dealing with these eigenstates altogether. As tenwftfact, what follows
will be a labor of radical deconstruction; after having adso strenuously here
that only smooth measures are “natural,” we shall merrilycped to erect the
whole edifice of our theory on periodic orbits, i.e., objetttat ares-functions
in state space. The trick is that each comes with an inteitgaheighborhood —
cycle points only serve to pin these intervals, just as thémdter marks on a
measuring rod partition continuum into intervals.

Commentary

Remark 14.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to consilt[1]. The existence of
time averagel4.21) is the basic result of ergodic theory, known as the Bifkklreorem,
see for example refsl1[ 27], or the statement of theorem 7.3.1 in réef].[ The natural
measure 14.19 of sect.14.4.1is often referred to as the SRB or Sinai-Ruelle-Bowen
measuref6, 24, 28].
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Remark 14.2 Time evolution as a Lie group: Time evolution of sectl4.5is an example
of a 1-parameter Lie group. Consult, for example, chapteo®ref. [9] for a clear
and pedagogical introduction to Lie groups of transforovei For a discussion of the
bounded semigroups of pagé6see, for example, Marsden and Hughds [

Remark 14.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [.7] that such an approximation for the Perron-Frobenius dpeta a
meaningful one. The piecewise-linear approximation of Pleeron-Frobenius operator
(14.19 has been shown to reproduce the spectrum for expanding, maps finer and
finer Markov partitions are used§, 17, 14]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in réf;,[27].

Remark 14.4 The sign convention of the Poisson bracket:  The Poisson bracket is
antisymmetric in its arguments and there is a freedom to eéfinith either sign convention.
When such freedom exists, it is certain that both convestame in use and this is no
exception. In some text§[3] you will see the right hand side 014.33 defined agB, A}

so that (4.39) is (:Tt = {Q, H}. Other equally reputable textsq] employ the convention
used here. Landau and LifshitZ] [denote a Poisson bracket b, [B], notation that we
reserve here for the quantum-mechanical commutator. Asdsrone is consistent, there
should be no problem.

Remark 14.5 “Anon itlives™? “Anonitlives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused of infidelity. Twenty

years later, the servant Paulina shows Leontes this statdermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lased Paulina has kept her
hidden all these years. The text of the play seems delibgi@tgbiguous. It is probably

a parable for the resurrection of Christ. (John F. Gibson)
Exercises
14.1. Integrating over Dirac delta functions. Let us verify sequence of Gaussians
a few of the properties of the delta function and check
(14.9, as well as the formulasl¢.?) and (4.9 to be . e’§
used later. fdxé(x)f(x) = (Irlmofdx \/Zn_a-f(X)A
(@) If f - RY = RY, show that Use thl§ approximation to see whether the fo
expression
1
= R 2
[Laxatton= Y o [ axao

xef-1(0)

ki .
(b) The delta function can be approximated by a makes sense
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14.2. Derivativeks of Dirac delta functions.
M) = Zzo(x).
Using integration by parts, determine the value of

fR dxd')

Consider

wherey = f(x) — x (14.41)

1O
Jooro = 3 st -dgp

{xy(x)=0}
1 (b by
dxb()s?(y) = _,{ D
f wigaeo VTLOY )
2 "
b(s(V) y

These formulas are useful for computirfteets of weak
noise on deterministic dynamics][
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(d) For this map there is an infinite number of
invariant measures, but only one of them will
be found when one carries out a numerical
simulation. Determine that measure, and explain
why your choice is the natural measure for this
map.

(e) In the second map the maximum occursrat
(8- V5)/2 and the slopes arg( V5 + 1)/2. Find
the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (V5 +1)/2.

(medium dificulty)

V)Y (y/)3)}(14'43i4.6. Escape rate for a flow conserving map. Adjust Ao,

A1 in (15.17 so that the gap between the interval,
M vanishes. Show that the escape rate equals zero ir
this situation.

14.3. L' generates a semigroup. Check that the Perron- 14.7. Eigenvalues of the Perron-Frobenius operator for the
Frobenius operator has the semigroup property, skew Ulam tent map.  Show that for the skew Ulam
tent map
f d2Lo.2) L20) = L7y, > 0.(1444) 1
M
As the flows in which we tend to be interested are 0.8
invertible, the L's that we will use often do form a
. Ao
group, witht, t; € R. 0.6
14.4. Escape rate of the tent map. A
0.4
(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in 0.2
the interval [01] for the tent map
() = a(1-2x-05) 02 04 06 08 1
for several values dd. . fo(X) = AoX, x € Mo = [0, 1/Aq)
(b) Determine analytically th@ dependence of the 0= f1(x) = A’gfl(l— X), xe My =(1/Ao, 1
escape ratg(a). ) i )
the eigenvalues are available analytically, compute the
(c) Compare your results for (a) and (b). first few.
14.5. Invariant measure.  We will compute the invariant 14.8. *Kissing disks’" (contlnuatlonlof exermse&lanq
measure for two dierent piecewise linear maps 8.2). Close df the escape by settirig = 2, and look in
’ real time at the density of the Poincaré section iterates
for a trajectory with a randomly chosen initial condition.
Does it look uniform? Should it be uniform? (Hint
- phase space volumes are preserved for Hamiltonian
flows by the Liouville theorem). Do you notice the
trajectories that loiter near special regions of phaseespac
forlong times? These exemplify “intermittency,” a bit of
o 1 0 : 1 unpleasantness to which we shall return in chapger
a
14.9. Invariant measure for the Gauss map. Consider
(a) Verify the matrixL representation5.19. the Gauss map:
(b) The maximum value of the first map is 1. f(x) = 1- [é] x#0 (14.46)
Compute an invariant measure for this map. 0 x=0

(c) Compute the leading eigenvalueffor this map.
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(a) Verify that the density

1 1

PO = log21+ x

is an invariant measure for the map.

(b) Isitthe natural measure?
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(14.30 is the generator of translations,
eVia(x) = a(x + tv) .

14.11. Incompressible flows. Show that {4.9 implies the
po(X) = 1 is an eigenfunction of a volume-preser
flow with eigenvalues, = 0. In particular, this implie
that the natural measure of hyperbolic and mi

14.10. A as a generator of translations.  Verify that for
a constant velocity field the evolution generatérin
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