Chapter 3

Discrete time dynamics

Do it again!
—lsabelle, age 3

(R. Mainieri and P. Cvitanovi€)

THE TIME PARAMETER in the sect2.1 definition of a dynamical system can be
either continuous or discrete. Discrete time dynamicaksys arise naturally
from flows; one can observe the flow at fixed time intervals ¢(bytsng it),

or one can record the coordinates of the flow when a speciak éa&opens (the
Poincaré section method). This triggering event can bdamagle as vanishing
of one of the coordinates, or as complicated as the flow guttirough a curved
hypersurface.

3.1 Poinca sections °

X

Successive trajectory intersections witR@ncaré sectiona (d — 1)-dimensional
hypersurface or a set of hypersurfadgeembedded in thel-dimensional state
spaceM, define thePoincaré return map ), a (d - 1)-dimensional map of form

X = P(x) = f®(x), X,XeP. (3.1)

Here thdfirst return functionr(x)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtaix. The choice of the
section hypersurfac® is altogether arbitrary. Itis rarely possible to define gkn
section that cuts across all trajectories of interest. brfice one often needs
only a local section-a finite hypersurface of codimensionllime intersected by
a ray of trajectories near to the trajectory of interest. Thlpersurface can be
specified implicitly through a functiobl (x) that is zero whenever a poirtis on
the Poincaré section,

xe®P iff U(x)=0. (3.2)
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CHAPTER 3. DISCRETE TIME DYNAMICS a7

Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at timesty,t,,t3,t4, and closes a cycle
(X1, X2, X3, Xa), X« = X(t) € P of topological length 4
with respect to this section. Note that the intersection
are not normal to the section, and that the crosging
does not count, as it in the wrong direction.

The gradient ofJ(x) evaluated ak € # serves a two-fold function. First, the
flow should pierce the hypersurfag® rather than being tangent to it. A nearby
point x + 6x is in the hypersurfac® if U(x + 6x) = 0. A nearby point on the
trajectory is given bydx = vét, so a traversal is ensured by ttransversality
condition

d
d
(v-@U):j;v,-(x)a,-U(x);eo, 8,-U(x)=d—XjU(x), XeP. (3.3)

Second, the gradied;U defines the orientation of the hypersurfs#eThe flow

is oriented as well, and a periodic orbit can pieftéwice, traversing it in either
direction, as in figur&.1 Hence the definition of Poincaré return nf(x) needs
to be supplemented with the orientation condition

Xne1 = P(Xﬂ) 5 U(XrH-l) = U(Xn) = 0, ne Z+
d
Zvj(xn)ajU(xn) > 0. (3.4)
=1

In this way the continuous timeflow f!(x) is reduced to a discrete tinmsequence

of successiverientedtrajectory traversals @P.
%n J y Cﬂ) [chapter 15]

With a suficiently clever choice of a Poincaré section or a set of sasfi
any orbit of interest intersects a section. Depending omfipdication, one might
need to convert the discrete tinmeback to the continuous flow time. This is
accomplished by adding up the first return function timeg), with the accumulated
flight time given by

tn+1 = tn + T(Xn) 5 to = 0, Xn € 7) (35)

Other quantities integrated along the trajectory can baéefin a similar manner,
and will need to be evaluated in the process of evaluatinguahycal averages.

A few examples may help visualize this.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector ro) and a direction vector a
perpendicular to the plane. A point X is in this plane if it satisfies the condition

UX) = (x—ro)-a=0. (3.6)
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a) 1 1
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Figure 3.2: Some examples of 3-disk cycles: (a
12123 and13132 are mapped into each other by th
flip across 1 axis. Similarly (H23 andl32 are related 2
by flips, and (c)1213, 1232 and1323 by rotations.

(d) The cycles121212313 and 21212323 are related 9

by rotationand time reversal. These symmetries ar 3 3
discussed in chapté&: (From ref. [1]) 121212313 121212323

N

Consider a circular periodic orbit centered at ro, but not lying in . It pierces the
hyperplane twice; the (v - a) > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle.

The above flat hyperplane is ad hocconstruct; one Poincaré section rarely
sufices to capture all of the dynamics of interest. A more insigifpicture of the
dynamics is obtained by partitioning the state space Migualitatively distinct
regions{ M, Mo, ..., My} and constructing a Poincaré sectifg per region.

Thed-dimensional flow is thus reduced reduced to composition _
[section 10.1]

P5n<—5n—1 0--+0 PSQ‘_Sl o P51<—So
of a set of —1)-dimensional maps

Psiies, @ Xn > Xnal, se{l,2 ...,N} (3.7)

that map the coordinates of Poincaré secfignto those ofPs, ., , the next section
traversed by a given trajectory.

A return map R, from sectionPg, to itself now has a contribution from any
admissible (i.e., there exist trajectories that traveeg@nsMg, — Mg, — -+ —
Ms, = Mg, in the same temporal sequence) periodic sequence of cdlinpesi

Pssi-sia = P 07 0 Pgeg 0Py g (3.8)

The next example féers an unambiguous set of such Poincaré sections which
[chapter 10]
do double duty, providing us both with an exact represemtatif dynamics in
terms of maps, and with a covering symbolic dynamics, a stltfat will will
return to in chaptetO.
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Figure 3.3: Poincaré section coordinates for the \\
disk game of pinball.
p sin @@, \ (Sl'pl).
s \
p sin @, .
(S2,P5)
[ =
y
[ ]
p sin @ (S3P3)
Figure 3.4: Collision sequences{, p1) - (S, p2) —
(s3, p3) from the boundary of a disk to the boundary of
the next disk is coded by the Poincaré sections maps
sequencés. ,P,. ;. S3
Example 3.2 Pinball game, Poincar é dissected. A phase space orbit is fully

specified by its position and momentum at a given instant, so no two distinct phase
space trajectories can intersect. The configuration space trajectories, however, can
and do intersect, in rather unilluminating ways, as e.g. in figure 3.2 (d), and it can be
rather hard to perceive the systematics of orbits from their configuration space shapes.
The problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional configuration subspace. A much clearer picture of the
dynamics is obtained by constructing a set of state space Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional map P, that maps the
coordinates (Poincaré section 1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = psing, the momentum component parallel
to the billiard wall at the point of impact, figure 3.3. These coordinates (due to Birkhoff)
are smart, as they conserve the phase space volume. Trajectories originating from one
disk can hit either of the other two disks, or escape without further ado. We label the
survivor state space regions P12, P13. In terms of the three Poincaré sections, one for
each disk, the dynamics is reduced to the set of six maps

Poracon © (Sn Pn) - (Se1s Prat) s o€{l,23} (3.9)

from the boundary of the disk j to the boundary of the next disk k, figure 3.4. The
explicit form of this map is easily written down, see sect. 8, but much more economical
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Figure 3.5: (Right:) a sequence of Poincaré
sections of the Rossler strange attractor, defined
by planes through the axis, oriented at angles
(a) -6 (b) °, (c) 6, (d) 120, in the x-
yplane. (Left:) side and-y plane view of a typical 10
trajectory with Poincaré sections superimposed.
(R. PaSkauskas)

-5

is the symmetry quotiented version of chapter 9 which replaces the above 6 ma[pcwﬁa%){er 9
areturn map pair Po, P1.

[chapter 8]
Embedded within P12, P13 are four strips P121, P123, P131, P13z Of initial conditions

that survive two bounces, and so forth. Provided that the disks are sufficiently separated,
after n bounces the survivors are labeled by 2" distinct itineraries c102073. . . on.

Billiard dynamics is exceptionally simple - free flight segmts, followed by
specular reflections at boundaries, thus billiard bouedaaire the obvious choice
as Poincaré sections. What about smooth, continuous taws,flvith no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum:  The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,

in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.3. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section'y = O at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it ydtime a piece
of paper. The next exampldfers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Rdssler flow: Consider figure 2.5, a typical trajectory of the 3-
dimensional Rossler flow (2.17). It wraps around the z axis, so a good choice for a
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Figure 3.6: Return maps for thdR, — Rn1 2 \ 4
radial distance Poincaré sections of figaré (R.
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Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.5,
illustrates the “stretch & fold” action of the Réssler flow. To orient yourself, compare
this with figure 2.5, and note the different z-axis scales. Figure 3.5 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the x-y plane, and after the stretching (a) —
(b) followed by the folding (c) — (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2-d return map (Rn,z0) — (Ra+1, Zn41) onto a 1-dimensional subspace Ry, — Rqi1.
(Continued in example 4.1)

W fast track:
sect. 3.3, p. 54

The above examples illustrate why a Poincaré section givesre informative

snapshot of the flow than the full flow portrait. For exampldjlesthe full flow
portrait of the Rossler flow figurg.5 gives us no sense of the thickness of the
attractor, we see clearly in the figudes Poincaré sections that even though the
return map is 4 — 2-d, the flow contraction is so strong that for all practical
purposes it renders the return map 1-dimensional.

3.1.1 What's the best Poincag section?

In practice, picking sections is a dark and painful art, ey for high-dimensional
flows where the human visual cortex falls short. It helps tdewstand why we
need them in the first place.

Whenever a system has a continuous symm@trgny two solutions related
by the symmetry are equivalent, so it would be stupid to keepmputing them
over and over. We would rather replace the whole continuamsly of solutions
by one.

A smart way to do would be to replace dynamigd,(f) by dynamics on the
quotient state spacéM/G, ). We will discuss~this in chaptéd, but in general
constructing explicit quotient state space fldwappears either flicult, or not
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Figure 3.7: (a) Lorenz flow figure2.4 cut by
y = x Poincaré section plan® through thez

axis and

pierces into section are marked by dots. To aid
visualization of the flow near theQ, equilibrium,

the flow

#’, throughy = —x and thez axis. (b) Poincaré
sectionsP and#’ laid side-by-side. The singular
nature of these sections close EQ, will be

CHAPTER 3. DISCRETE TIME D 2

bottEQ, , equilibria. Points where flow

is cut by the second Poincaré section,

y
elucidated in examplé.6 and figure10.7(b). (E. P

Siminos)

(a (b)

appreciated enough to generate much readable literatupsrioaps impossible.
So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie groupegdéla highly nontrivial
one (otherwise this book would not be much of a doorstop). ifiveriants of the
flow are its infinite-time orbits; particularly useful invants are compact orbits
My c M, such as equilibrium points, periodic orbits and tori. Foy arbit it
sufices to pick a single state space poird M,, the rest of the orbit is generated
by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamicsstis called a
“Poincaré section,” and in theoretical physics this goethk exceptionally uninformative
name of “gauge fixing.” The price is that one generates “gfjbst, in dynamics,
increases the dimensionality of the state space by additammstraints (see se@f.4).

It is a commonly deployed but inelegant procedure where sgtmynis broken for
computational convenience, and restored only at the erfaectdlculation, when
all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You patk as many

sections as convenient. (b) For ease of computation, pielatisections3(6) if
you can. (c) If equilibria play important role in organiziagflow, pick sections
that go through them (see exam@e). (c) If you have a global discrete oEchapter g
continuous symmetry, pick sections left invariant by thesyetry (see exampke2).
(d) If you are solving a local problem, like finding a perioditit, you do not
need a global section. Pick a section or a set of (multi-shgpbsections on the
fly, requiring only that they are locally orthogonal to thewflo(e) If you have
another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (Continued from example 2.2.) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.4, as it contains all three equilibria,
xeqo = (0,0,0) and the (2.13) pair EQ,,. A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked
by dots.

EQ,, are centers of out-spirals, and close to them the section is transverse
to the flow. However, close to EQ, trajectories pass the z-axis either by crossing the
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section P or staying on the viewer’s side. We are free to deploy as many sections as
we wish: in order to capture the whole flow in this neighborhood we add the second
Poincaré section, #’, through the y = —x diagonal and the z-axis. Together the two
sections, figure 3.7 (b), capture the whole flow near EQ,. In contrast to Réssler sections
of figure 3.5, these appear very singular. We explain this singularity in example 4.6, and
postpone construction of a Poincaré return map to example 9.2.

(E. Siminos and J. Halcrow)

3.2 Constructing a Poincagé section

O3

For almost any flow of physical interest a Poincaré sectfondt available in
analytic form. We describe now a numerical method for deitéing a Poincaré

section.
[remark 3.1]

Consider the systen2 (6) of ordinary diferential equations in the vector variable
X = (X1, X2, ..., Xd)

d a
T =D, (3.10)

where the flow velocity is a vector function of the position in state spacand

the timet. In generaly cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectorieshef $ystem. Our task is
to determine the points at which the numerically integrdtegectory traverses

a given hypersurface. The hypersurface will be specifiediaitly through a
function U(x) that is zero whenever a poirtis on the Poincaré section, such as
the hyperplane3.6).

If we use a tiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory e@®#se hypersurface.
The problem with this method is that we have to use a very dntafjration time
step. In order to land exactly on the Poincaré section otenafterpolates the
intersection point from the two trajectory points on eitbigle of the hypersurface.
However, there is a better way.

Let t; be the time just befor&) changes sign, ant the time just after it
changes sign. The method for landing exactly on the Pagnsection will be to
convert one of the space coordinates into an integratiaablarfor the part of the
trajectory betweelty andt,. Using

dxcdxg  dx 3
T dxlvl(x,t)—vk(x,t) (3.11)

we can rewrite the equations of motioh 10) as

dt _ 1 da_v

- - ... =2 3.12
Xm V1 ’ ’ dX]_ Vi ( )

maps - 13jun2008.tex



CHAPTER 3. DISCRETE TIME DYNAMICS 54

Now we usex; as the ‘time’ in the integration routine and integrate itifr, (t5) to
the value ofx; on the hypersurface, determined by the hypersurface attos
condition 3.6). This is the end point of the integration, with no need foy an
interpolation or backtracking to the surface of sectione Xh-axis need not be
perpendicular to the Poincaré section; apycan be chosen as the integration
variable, provided th&-axis is not parallel to the Poincaré section at the trajgct
intersection point. If the section crossing is transve®8)(v; cannot vanish in
the short segment bracketed by the integration step pragéae section, and the
point on the Poincaré section.

Example 3.6 Computation of R dssler flow Poincar é sections.  Poincaré sections
of figure 3.5 are defined by the fixing angle U(X) = 6—6y = 0. Convert Rdssler equation
(2.17) to cylindrical coordinates:

f = v =-zcosd+arsiné

. z . a .

6 = uH=1+FS|n9+§sm29

Z = vy;=b+2zrcosh-c). (3.13)

In principle one should use the equilibrium X, from (2.18) as the origin, and its eigenvectors

as the coordinate frame, but here original coordinates suffice, as for parameter values
(2.17), and (X0, Yo, o) sufficiently far away from the inner equilibrium, 6 increases monotonically
with time. Integrate

dr dt dz
@=Ur/ve, @=1/U9, @=Uz/ve (3.14)
from (rn, 6n, Zy) to the next Poincaré section at 6.1, and switch the integration back to
(%Y, 2) coordinates. (Radford Mitchell, Jr.)
3.3 Maps

Though we have motivated discrete time dynamics by consiglesections of a l ‘
continuous flow, there are many settings in which dynamiathisrently discrete,
and naturally described by repeated iterations of the saagpe m

fF M- M,
or sequences of consecutive applications of a finite set psma
{fa, fg,... T2} M > M, (315)

for example maps relating fiierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of appligaiof a map. As writing

out formulas involving repeated applications of a set of snagplicitly can be
awkward, we streamline the notation by denoting a map coitigpody ‘o’

fz(--- f8(fa(¥)))--) = fz o~ fe o fa(X), (3.16)
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Figure 3.8: A flow x(t) of figure 3.1 represented by

a Poincaré return map that maps points in the Poincar
sectionP asx,.1 = f(x,). In this example the orbit of
X, consists of the four cycle pointgy(, X,, X3, X4)

and thenth iterate of mapf by

(%) = fo () = f(f™(»), fO(x) = x.

[section 2.1]
Thetrajectoryof x is now the discrete set of points

[ £00, 123, 1"} .

and theorbit of x is the subset of all points o¥1 that can be reached by iterations
of f. For example, the orbit of; in figure 3.8is the 4-cycle X1, Xo, X3, X4) .

The functional form of such Poincaré return mapsas figure3.6 can be
approximated by tabulating the results of integration @ tlow from x to the
first Poincaré section return for mamye £, and constructing a function that
interpolates through these points. If we find a good appration to P(x),
we can get rid of numerical integration altogether, by replg the continuous
time trajectoryf!(x) by iteration of the Poincaré return m&gx). Constructing
accurateP(x) for a given flow can be tricky, but we can already learn muomfr
approximate Poincaré return maps. Multinomial approxioms

d d
Pk(X)Zak+Zbijj+ZCkinin+..., Xep (3.17)
j=1 i.j=1

to Poincaré return maps

X1,n+1 P1(Xn)
X2.n+1 P2(Xn)

= s Xn, Xn+1 € P
Xd,n+1 Pa(Xn)
motivate the study of model mappings of the plane, such adé&men map.

Example 3.7 Hénon map:  The map

Xne1 1-ax; +bys
Yer = Xn (3.18)
is a nonlinear 2-dimensional map most frequently employed in testing various hunches

about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

Xne1 = 1—axe + bx 1. (3.19)
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Figure 3.9: The strange attractor and an unstable Xt-1

period 7 cycle of the HeEnon maf.(8 with a = 1.4,
b = 0.3. The periodic points in the cycle are connected

to guide the eye. (K.T. Hansef]}

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Rdéssler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.17) to a Poincaré return map (3.17) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.18) on a computer. We plot here the dynamics in the (Xn, Xn+1) plane, rather than in
the (xn, Yn) plane, because we think of the Hénon map as a model return map X, —

As we shall soon see, periodic orbits will be key to understanding the long-time
iex rcise 3.5]

Xn+1-
n+1 e
e an

dynamics, so we also plot a typical periodic orbit of such a system, in this ca
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 27.1 , and the cycle point labels 01110101110100--- in sect. 11.3.

Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

Xn+1 1 —alxn| + by,

Vit = Xn.

(3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the “stretch

& fold” type.

What we get by iterating such maps is—at least qualitatiredy unlike what
we get from Poincaré section of flows such as the Rossler fitpuve 3.6. For
an arbitrary initial point this process might converge tdabke limit cycle, to a
strange attractor, to a false attractor (due to rotinelmors), or diverge. In other
words, mindless iteration is essentially uncontrollakleg we will need to resort
to more thoughtful explorations. As we shall explain in doarse, strategies for _

. . . . . exercise 3.5]

systematic exploration rely on stahlastable manifolds, periodic points, saddl[a-

straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.18) stretches and folds a region of the (x,y) plane
centered around the origin. The parameter a controls the amount of stretching, while
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the parameter b controls the thickness of the folded image through the ‘1-step memory’
termbx,_1 in (3.19). In figure 3.9 the parameterb is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

X1 =1-ax. (3.21)

. . ) [exercise 3.7]
By setting b = 0 we lose determinism, as on reals the inverse of map (3.21) has two

preimages {X:_,, X, ,} for most X,. If Bourbaki is your native dialect: the Hénon map
is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in secl0.2.], an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the @tigkt dynamics of many
higher-dimensional dynamical systems. For this reasoryraapositions of the
theory of dynamical systems commence with a study of 1-dgioeal maps. We

prefer to stick to flows, as that is where the physics is. _
[appendix H.8]

Résumé

In recurrent dynamics a trajectory exits a region in states@nd then reenters
it infinitely often, with a finite mean return time. If the otbs periodic, it
returns after a full period. So, on average, nothing muchyréappens along
the trajectory—what is important is behavior of neighbgtirajectories transverse
to the flow. This observation motivates a replacement of dméicuous time flow
by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly faaiéitl by a felicitous
choice of Poincaré sections, and the reduction of flows iod20é return maps.
This observation motivates in turn the study of discreteetidynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré sectinethod is the reduction
of a billiard flow to a boundary-to-boundary return map, dived in chaptes.
As we shall show in chapted, further simplification of a Poincaré return ma|f[)c,haloter .
or any nonlinear map, can be attained through rectifyingg¢hmaps locally by
means of smooth conjugacies.

]
[chapter 6]

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although sempivoids the alternative
of having to interpolate the numerical solution to determniine intersection. The trick
described in sec8.2is due to Hénon{, 6, 7].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical importin
and of itself—its significance lies in the fact that it is a mial normal form for modeling
flows near a saddle-node bifurcation, and that it is a prp®tyf the stretching and
folding dynamics that leads to deterministic chaos. It isegg& in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and mpes of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated leytibst known early example of
‘deterministic chaos’, the Lorenz equatior,[see ref. [] and remark2.2.

Y. Pomeau’s studies of the Lorenz attractor on an analog atenpand his insights
into its stretching and folding dynamics motivated Hénahtp introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can badadn reprint collections
refs. [3, 4]. They are a pleasure to read, and are still the best inttaduto the physics
motivating such models. A detailed description of the dyiwanof the HEnon map is
given by Mira and coworkers?, as well as very many other authors.

The Lozi map [L(] is particularly convenient in investigating the symbalignamics
of 2-d mappings. Both the Lorenz and Lozi systems are uniformlyameystems with
singularities. The continuity of measure for the Lozi ma\weoven by M. Misiurewicz1],

and the existence of the SRB measure was established byvou8g. [section 14.1]

Remark 3.3 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’ was
discussed by Maxwell, 30 years later by Poincaré. In wegihediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopp®ed’ in a book review by
W. S. Franklin[L]. In 1963 Lorenz ascribed a ‘seagullfect’ to an unnamed meteorologist,
and in 1972 he repackaged it as the ‘Butterfijeet’.
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EXERCISES 59
Exercises
3.1. Poincaré sections of the Rssler flow. 3.4. Classical collinear helium dynamics.

3.2.

3.3.

(continuation of exercis@.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rossler flow. As the Rossler flow state spacels the
flow maps onto a R Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section

by a 1-dimensional map be? More precisely, estimatd@.5. Hénon map fixed points.

the thickness of the strange attractor.
exerciselt.4)

(continued as

(R. PaSkauskas)

A return Poincaré map for the Rossler flow.
(continuation of exercis@.1) That Poincaré return maps
of figure 3.6 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn,z0) — (Rni1, Z+1) onto a 1-dimensional subspace
Ry — Rns1.

Construct a genuines,;; = f(sy) return map by
parametrazing points on a Poincaré section of the
attractor figure3.5 by a Euclidean lengtls computed
curvilinearly along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable manifold

of the 1-cycle embedded in the strange attractor,
figure12.1(b). (P. Cvitanovi€)

Arbitrary Poincar & sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equatidw) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dx ¢

ds Kk,
with dt/ds = «, and choosing to be 1 or ¥f;.
This allows one to switch betwearandx; as the
integration 'time.’

(b) Introduce an extra dimensiom,.; into your
system and set

(3.22)

Xne1 = U(X). (3.23)
How can this be used to find a Poincaré section?
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(continuation of exercis2.10 Make a Poincaré surface
of section by plottingi(z, p1) whenever, = 0: Note that
forr, = 0, p2 is already determined by (6). Compare
your results with figuré.3 (b).

(Gregor Tanner, Per Rosenqvist)

Show that the two fixed

points o, Xo), (X1, %) of the Hénon map3.19 are

given by
X = -(1-b)- V(1-b)2+4a
B 2a ’
« -(1-b)+ (@ -b)2+4a
1= .
2a

3.6. How strange is the Henon attractor?

3.7. Fixed points of maps.

(a) Iterate numerically some 100,000 times or so the
Hénon map

[x’ }_[ 1-a+y
y | 7| bx

fora = 1.4,b = 0.3 . Would you describe the
result as a 'strange attractor'? Why?

(b) Now check how robust the Hénon attractor is by
iterating a slightly diferent HEnon map, with =
1.39945219b = 0.3. Keep at it until the 'strange’
attractor vanishes like the smile of the Chesire cat.
What replaces it? Would you describe the result as
a 'strange attractor’? Do you still have confidence
in your own claim for the part (a) of this exercise?

A continuous functiorfF is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity ofF to show that a 1-
dimensional contractioR of the interval [Q 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope
of F is always smaller than ondF’| < 1.
Is the composition of uniform contractions a
contraction? Is it uniform?



