
Chapter 3

Discrete time dynamics

Do it again!
—Isabelle, age 3

(R. Mainieri and P. Cvitanović)

T   in the sect.2.1 definition of a dynamical system can be
either continuous or discrete. Discrete time dynamical systems arise naturally
from flows; one can observe the flow at fixed time intervals (by strobing it),

or one can record the coordinates of the flow when a special event happens (the
Poincaré section method). This triggering event can be as simple as vanishing
of one of the coordinates, or as complicated as the flow cutting through a curved
hypersurface.

3.1 Poincaŕe sections

Successive trajectory intersections with aPoincaré section, a (d− 1)-dimensional
hypersurface or a set of hypersurfacesP embedded in thed-dimensional state
spaceM, define thePoincaré return map P(x), a (d−1)-dimensional map of form

x′ = P(x) = f τ(x)(x) , x′, x ∈ P . (3.1)

Here thefirst return functionτ(x)–sometimes referred to as theceiling function–is
the time of flight to the next section for a trajectory starting atx. The choice of the
section hypersurfaceP is altogether arbitrary. It is rarely possible to define a single
section that cuts across all trajectories of interest. In practice one often needs
only a local section–a finite hypersurface of codimension 1 volume intersected by
a ray of trajectories near to the trajectory of interest. Thehypersurface can be
specified implicitly through a functionU(x) that is zero whenever a pointx is on
the Poincaré section,

x ∈ P iff U(x) = 0 . (3.2)
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Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at times t1, t2, t3, t4, and closes a cycle
(x1, x2, x3, x4), xk = x(tk) ∈ P of topological length 4
with respect to this section. Note that the intersections
are not normal to the section, and that the crossingz
does not count, as it in the wrong direction.
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The gradient ofU(x) evaluated atx ∈ P serves a two-fold function. First, the
flow should pierce the hypersurfaceP, rather than being tangent to it. A nearby
point x + δx is in the hypersurfaceP if U(x + δx) = 0. A nearby point on the
trajectory is given byδx = vδt, so a traversal is ensured by thetransversality
condition

(v · ∂U) =
d
∑

j=1

v j(x)∂ jU(x) , 0 , ∂ jU(x) =
d

dxj
U(x) , x ∈ P . (3.3)

Second, the gradient∂ jU defines the orientation of the hypersurfaceP. The flow
is oriented as well, and a periodic orbit can pierceP twice, traversing it in either
direction, as in figure3.1. Hence the definition of Poincaré return mapP(x) needs
to be supplemented with the orientation condition

xn+1 = P(xn) , U(xn+1) = U(xn) = 0 , n ∈ Z+

d
∑

j=1

v j(xn)∂ jU(xn) > 0 . (3.4)

In this way the continuous timet flow f t(x) is reduced to a discrete timensequence
xn of successiveorientedtrajectory traversals ofP.

[chapter 15]

With a sufficiently clever choice of a Poincaré section or a set of sections,
any orbit of interest intersects a section. Depending on theapplication, one might
need to convert the discrete timen back to the continuous flow time. This is
accomplished by adding up the first return function timesτ(xn), with the accumulated
flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector r0) and a direction vector a
perpendicular to the plane. A point x is in this plane if it satisfies the condition

U(x) = (x− r0) · a = 0 . (3.6)
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é
se

ct
io

ns
,o

ne
fo

r
ea

ch
di

sk
,t

he
dy

na
m

ic
s

is
re

du
ce

d
to

th
e

se
to

fs
ix

m
ap

s

P
σ

n+
1
←
σ

n
:

(s
n
,
p n

)
7→

(s
n+

1
,
p n
+

1)
,

σ
∈
{1
,2
,3
}

(3
.9

)

fr
om

th
e

bo
un

da
ry

of
th

e
di

sk
j

to
th

e
bo

un
da

ry
of

th
e

ne
xt

di
sk

k,
fig

ur
e

3.
4.

T
he

ex
pl

ic
it

fo
rm

of
th

is
m

ap
is

ea
si

ly
w

rit
te

n
do

w
n,

se
e

se
ct

. 8
,b

ut
m

uc
h

m
or

e
ec

on
om

ic
al

m
ap

s
-

13
ju

n2
00

8.
te

x



CHAPTER 3. DISCRETE TIME DYNAMICS 50

Figure 3.5: (Right:) a sequence of Poincaré
sections of the Rössler strange attractor, defined
by planes through thez axis, oriented at angles
(a) −60o (b) 0o, (c) 60o, (d) 120o, in the x-
y plane. (Left:) side andx-y plane view of a typical
trajectory with Poincaré sections superimposed.
(R. Paškauskas)
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is the symmetry quotiented version of chapter 9 which replaces the above 6 maps by
[chapter 9]

a return map pair P0,P1.
[chapter 8]

Embedded withinP12, P13 are four stripsP121, P123, P131,P132 of initial conditions
that survive two bounces, and so forth. Provided that the disks are sufficiently separated,
after n bounces the survivors are labeled by 2n distinct itineraries σ1σ2σ3 . . . σn.

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, thus billiard boundaries are the obvious choice
as Poincaré sections. What about smooth, continuous time flows, with no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.3. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example offers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Rössler flow: Consider figure 2.5, a typical trajectory of the 3-
dimensional Rössler flow (2.17). It wraps around the z axis, so a good choice for a
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Figure 3.6: Return maps for theRn → Rn+1

radial distance Poincaré sections of figure3.5. (R.
Paškauskas)
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Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.5,
illustrates the “stretch & fold” action of the Rössler flow. To orient yourself, compare
this with figure 2.5, and note the different z-axis scales. Figure 3.5 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the x-y plane, and after the stretching (a) →
(b) followed by the folding (c)→ (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2-d return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace Rn → Rn+1.
(Continued in example 4.1)

fast track:

sect. 3.3, p. 54

The above examples illustrate why a Poincaré section givesa more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rössler flow figure2.5 gives us no sense of the thickness of the
attractor, we see clearly in the figure3.5 Poincaré sections that even though the
return map is 2-d → 2-d, the flow contraction is so strong that for all practical
purposes it renders the return map 1-dimensional.

3.1.1 What’s the best Poincaŕe section?

In practice, picking sections is a dark and painful art, especially for high-dimensional
flows where the human visual cortex falls short. It helps to understand why we
need them in the first place.

Whenever a system has a continuous symmetryG, any two solutions related
by the symmetry are equivalent, so it would be stupid to keep recomputing them
over and over. We would rather replace the whole continuous family of solutions
by one.

A smart way to do would be to replace dynamics (M, f ) by dynamics on the
quotient state space(M/G, f̃ ). We will discuss this in chapter9, but in general

[chapter 9]
constructing explicit quotient state space flow̃f appears either difficult, or not
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Figure 3.7: (a) Lorenz flow figure2.4 cut by
y = x Poincaré section planeP through thez
axis and bothEQ1,2 equilibria. Points where flow
pierces into section are marked by dots. To aid
visualization of the flow near theEQ0 equilibrium,
the flow is cut by the second Poincaré section,
P′, throughy = −x and thez axis. (b) Poincaré
sectionsP andP′ laid side-by-side. The singular
nature of these sections close toEQ0 will be
elucidated in example4.6and figure10.7(b). (E.
Siminos) (a) (b)

appreciated enough to generate much readable literature, or perhaps impossible.
So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie group, albeit a highly nontrivial
one (otherwise this book would not be much of a doorstop). Theinvariants of the
flow are its infinite-time orbits; particularly useful invariants are compact orbits
Mp ⊂ M, such as equilibrium points, periodic orbits and tori. For any orbit it
suffices to pick a single state space pointx ∈ Mp, the rest of the orbit is generated
by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamics this is called a
“Poincaré section,” and in theoretical physics this goes by the exceptionally uninformative
name of “gauge fixing.” The price is that one generates “ghosts,” or, in dynamics,
increases the dimensionality of the state space by additional constraints (see sect.12.4).
It is a commonly deployed but inelegant procedure where symmetry is broken for
computational convenience, and restored only at the end of the calculation, when
all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You canpick as many
sections as convenient. (b) For ease of computation, pick linear sections (3.6) if
you can. (c) If equilibria play important role in organizinga flow, pick sections
that go through them (see example3.5). (c) If you have a global discrete or

[chapter 9]
continuous symmetry, pick sections left invariant by the symmetry (see example9.2).
(d) If you are solving a local problem, like finding a periodicorbit, you do not
need a global section. Pick a section or a set of (multi-shooting) sections on the
fly, requiring only that they are locally orthogonal to the flow (e) If you have
another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (Continued from example 2.2.) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.4, as it contains all three equilibria,
xEQ0 = (0, 0, 0) and the (2.13) pair EQ1,2. A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked
by dots.

EQ1,2 are centers of out-spirals, and close to them the section is transverse
to the flow. However, close to EQ0 trajectories pass the z-axis either by crossing the
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section P or staying on the viewer’s side. We are free to deploy as many sections as
we wish: in order to capture the whole flow in this neighborhood we add the second
Poincaré section, P′, through the y = −x diagonal and the z-axis. Together the two
sections, figure 3.7 (b), capture the whole flow near EQ0. In contrast to Rössler sections
of figure 3.5, these appear very singular. We explain this singularity in example 4.6, and
postpone construction of a Poincaré return map to example 9.2.

(E. Siminos and J. Halcrow)

3.2 Constructing a Poincaŕe section

For almost any flow of physical interest a Poincaré section is not available in
analytic form. We describe now a numerical method for determining a Poincaré
section.

[remark 3.1]

Consider the system (2.6) of ordinary differential equations in the vector variable
x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.10)

where the flow velocityv is a vector function of the position in state spacex and
the timet. In general,v cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectories of the system. Our task is
to determine the points at which the numerically integratedtrajectory traverses
a given hypersurface. The hypersurface will be specified implicitly through a
function U(x) that is zero whenever a pointx is on the Poincaré section, such as
the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very smallintegration time
step. In order to land exactly on the Poincaré section one often interpolates the
intersection point from the two trajectory points on eitherside of the hypersurface.
However, there is a better way.

Let ta be the time just beforeU changes sign, andtb the time just after it
changes sign. The method for landing exactly on the Poincar´e section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory betweenta andtb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.11)

we can rewrite the equations of motion (3.10) as

dt
dx1
=

1
v1
, · · · ,

dxd

dx1
=

vd

v1
. (3.12)
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Now we usex1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value ofx1 on the hypersurface, determined by the hypersurface intersection
condition (3.6). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; anyxi can be chosen as the integration
variable, provided thexi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.

Example 3.6 Computation of R össler flow Poincar é sections. Poincaré sections
of figure 3.5 are defined by the fixing angle U(x) = θ−θ0 = 0. Convert Rössler equation
(2.17) to cylindrical coordinates:

ṙ = υr = −zcosθ + ar sin2 θ

θ̇ = υθ = 1+
z
r

sinθ +
a
2

sin 2θ

ż = υz = b+ z(r cosθ − c) . (3.13)

In principle one should use the equilibrium x+ from (2.18) as the origin, and its eigenvectors
as the coordinate frame, but here original coordinates suffice, as for parameter values
(2.17), and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases monotonically
with time. Integrate

dr
dθ
= υr/υθ ,

dt
dθ
= 1/υθ ,

dz
dθ
= υz/υθ (3.14)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (Radford Mitchell, Jr.)

3.3 Maps

Though we have motivated discrete time dynamics by considering sections of a
continuous flow, there are many settings in which dynamics isinherently discrete,
and naturally described by repeated iterations of the same map

f :M→M ,

or sequences of consecutive applications of a finite set of maps,

{ fA, fB, . . . fZ} :M→M , (3.15)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of a map. As writing
out formulas involving repeated applications of a set of maps explicitly can be
awkward, we streamline the notation by denoting a map composition by ‘◦’

fZ(· · · fB( fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.16)
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Figure 3.8: A flow x(t) of figure 3.1 represented by
a Poincaré return map that maps points in the Poincaré
sectionP asxn+1 = f (xn) . In this example the orbit of
x1 consists of the four cycle points (x1, x2, x3, x4)
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x3
x4

x2

x1

and thenth iterate of mapf by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)

, f 0(x) = x .

[section 2.1]

The trajectoryof x is now the discrete set of points

{

x, f (x), f 2(x), . . . , f n(x)
}

,

and theorbit of x is the subset of all points ofM that can be reached by iterations
of f . For example, the orbit ofx1 in figure3.8 is the 4-cycle (x1, x2, x3, x4) .

The functional form of such Poincaré return mapsP as figure3.6 can be
approximated by tabulating the results of integration of the flow from x to the
first Poincaré section return for manyx ∈ P, and constructing a function that
interpolates through these points. If we find a good approximation to P(x),
we can get rid of numerical integration altogether, by replacing the continuous
time trajectory f t(x) by iteration of the Poincaré return mapP(x). Constructing
accurateP(x) for a given flow can be tricky, but we can already learn much from
approximate Poincaré return maps. Multinomial approximations

Pk(x) = ak +

d
∑

j=1

bk jx j +

d
∑

i, j=1

cki j xi x j + . . . , x ∈ P (3.17)

to Poincaré return maps
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motivate the study of model mappings of the plane, such as theHénon map.

Example 3.7 Hénon map: The map

xn+1 = 1− ax2
n + byn

yn+1 = xn (3.18)

is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

xn+1 = 1− ax2
n + bxn−1 . (3.19)
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Figure 3.9: The strange attractor and an unstable
period 7 cycle of the Hénon map (3.18) with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (K.T. Hansen [8])
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An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Rössler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.17) to a Poincaré return map (3.17) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.18) on a computer. We plot here the dynamics in the (xn, xn+1) plane, rather than in
the (xn, yn) plane, because we think of the Hénon map as a model return map xn →

xn+1. As we shall soon see, periodic orbits will be key to understanding the long-time
[exercise 3.5]

dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 27.1 , and the cycle point labels 0111010, 1110100, · · · in sect. 11.3.

Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

xn+1 = 1− a|xn| + byn

yn+1 = xn . (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the “stretch
& fold” type.

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flowfigure 3.6. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable,and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for

[exercise 3.5]
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.18) stretches and folds a region of the (x, y) plane
centered around the origin. The parameter a controls the amount of stretching, while
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the parameter b controls the thickness of the folded image through the ‘1-step memory’
term bxn−1 in (3.19). In figure 3.9 the parameter b is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

xn+1 = 1− ax2
n . (3.21)

[exercise 3.7]
By setting b = 0 we lose determinism, as on reals the inverse of map (3.21) has two
preimages {x+n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon map

is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in sect.10.2.1, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

[appendix H.8]

Résum é

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with a finite mean return time. If the orbit is periodic, it
returns after a full period. So, on average, nothing much really happens along
the trajectory–what is important is behavior of neighboring trajectories transverse
to the flow. This observation motivates a replacement of the continuous time flow
by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly facilitated by a felicitous
choice of Poincaré sections, and the reduction of flows to Poincaré return maps.
This observation motivates in turn the study of discrete-time dynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré section method is the reduction
of a billiard flow to a boundary-to-boundary return map, described in chapter8.
As we shall show in chapter6, further simplification of a Poincaré return map,

[chapter 8]

[chapter 6]
or any nonlinear map, can be attained through rectifying these maps locally by
means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although simple, avoids the alternative
of having to interpolate the numerical solution to determine the intersection. The trick
described in sect.3.2 is due to Hénon [5, 6, 7].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical import in
and of itself–its significance lies in the fact that it is a minimal normal form for modeling
flows near a saddle-node bifurcation, and that it is a prototype of the stretching and
folding dynamics that leads to deterministic chaos. It is generic in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and non–
hyperbolic behaviors. Its construction was motivated by the best known early example of
‘deterministic chaos’, the Lorenz equation [1], see ref. [1] and remark2.2.

Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights
into its stretching and folding dynamics motivated Hénon [2] to introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can be found in reprint collections
refs. [3, 4]. They are a pleasure to read, and are still the best introduction to the physics
motivating such models. A detailed description of the dynamics of the Hénon map is
given by Mira and coworkers [8], as well as very many other authors.

The Lozi map [10] is particularly convenient in investigating the symbolicdynamics
of 2-d mappings. Both the Lorenz and Lozi systems are uniformly smooth systems with
singularities. The continuity of measure for the Lozi map was proven by M. Misiurewicz [11],
and the existence of the SRB measure was established by L.-S.Young.

[section 14.1]

Remark 3.3 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’ was
discussed by Maxwell, 30 years later by Poincaré. In weather prediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book review by
W. S. Franklin [1]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed meteorologist,
and in 1972 he repackaged it as the ‘Butterfly Effect’.
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Exercises

3.1. Poincaré sections of the R̈ossler flow.

(continuation of exercise2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rössler flow. As the Rössler flow state space is 3D, the
flow maps onto a 2D Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section
by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as
exercise4.4)

(R. Paškauskas)

3.2. A return Poincar é map for the Rössler flow.
(continuation of exercise3.1) That Poincaré return maps
of figure 3.6 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn→ Rn+1.

Construct a genuinesn+1 = f (sn) return map by
parametrazing points on a Poincaré section of the
attractor figure3.5 by a Euclidean lengths computed
curvilinearly along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable manifold
of the 1-cycle embedded in the strange attractor,
figure12.1(b). (P. Cvitanović)

3.3. Arbitrary Poincar é sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equationU(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.22)

with dt/ds = κ, and choosingκ to be 1 or 1/ f1.
This allows one to switch betweent andx1 as the
integration ’time.’

(b) Introduce an extra dimensionxn+1 into your
system and set

xn+1 = U(x) . (3.23)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.

(continuation of exercise2.10) Make a Poincaré surface
of section by plotting (r1, p1) wheneverr2 = 0: Note that
for r2 = 0, p2 is already determined by (7.6). Compare
your results with figure6.3(b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.18) are
given by

x0 =
−(1− b) −

√

(1− b)2 + 4a
2a

,

x1 =
−(1− b) +

√

(1− b)2 + 4a
2a

.

3.6. How strange is the H́enon attractor?

(a) Iterate numerically some 100,000 times or so the
Hénon map

[

x′

y′

]

=

[

1− ax2 + y
bx

]

for a = 1.4, b = 0.3 . Would you describe the
result as a ’strange attractor’? Why?

(b) Now check how robust the Hénon attractor is by
iterating a slightly different Hénon map, witha =
1.39945219,b = 0.3. Keep at it until the ’strange’
attractor vanishes like the smile of the Chesire cat.
What replaces it? Would you describe the result as
a ’strange attractor’? Do you still have confidence
in your own claim for the part (a) of this exercise?

3.7. Fixed points of maps. A continuous functionF is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity ofF to show that a 1-
dimensional contractionF of the interval [0, 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope
of F is always smaller than one,|F′| < 1.
Is the composition of uniform contractions a
contraction? Is it uniform?
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