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Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at timesty, tp, t3,t4, and closes a cycle
(X1, X2, X3, Xa), X = X(t) € P of topological length 4
with respect to this section. Note that the intersection
are not normal to the section, and that the crosging

Chapter 3 does not count, as it in the wrong direction.

The gradient otJ(x) evaluated ak € ¥ serves a two-fold function. First, the
flow should pierce the hypersurfa@ rather than being tangent to it. A nearby

D|Screte t| me dyn am|CS point x + 6x is in the hypersurfac if U(x + ¢x) = 0. A nearby point on the

trajectory is given bysx = vét, so a traversal is ensured by ttransversality

condition
d d
Do it again! (V-3U) = Y V09U #0, GUM = -U(), xeP.  (33)
—lsabelle, age 3 =1 ]
(R. Mainieri and P. Cvitanovic) Second, the gradiedU defines the orientation of the hypersurfaeeThe flow

is oriented as well, and a periodic orbit can pieftéwice, traversing it in either
direction, as in figur&.1 Hence the definition of Poincaré return nfx) needs

. . ; . . . . to be supplemented with the orientation condition
either continuous or discrete. Discrete time dynamicaksys arise naturally PP

THE TIME PARAMETER N the sect2.1 definition of a dynamical system can be
from flows; one can observe the flow at fixed time intervals ¢(bytsng it),

or one can record the coordinates of the flow when a speciat éappens (the X1 = P(%n) , U(n1) =U(%) =0, neZ’

Poincaré section method). This triggering event can bemagles as vanishing d

of one of the coordinates, or as complicated as the flow guttirough a curved Z Vj(Xn)d;U(xa) > 0. (3-4)
hypersurface. =1

In this way the continuous timtdlow f'(x) is reduced to a discrete tinmesequence
Xn of successiverientedtrajectory traversals o.

3.1 Poincai sections ° [chapter 15]
& With a suficiently clever choice of a Poincaré section or a set of spsti
Successive trajectory intersections witRaincaré sectiona (d — 1)-dimensional any orbit of interest intersects a section. Depending ofipication, one might
hypersurface or a set of hypersurfadembedded in the-dimensional state need to convert the discrete tinmeback to the continuous flow time. This is
spaceM, define thePoincaré return map £), a (d - 1)-dimensional map of form accomplished by adding up the first return function timg), with the accumulated

flight time given by

X=PX)=f®x, X,xep. (3.1) tit =t +70%),  t0=0, Xae?P. (3.5)

Here thefirst return functionr(x)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtatx. The choice of the
section hypersurfacg is altogether arbitrary. Itis rarely possible to define gkn
section that cuts across all trajectories of interest. hciice one often needs A few examples may help visualize this.
only alocal section—a finite hypersurface of codimensionlime intersected by
a ray of trajectories near to the trajectory of interest. Tipersurface can be
specified implicitly through a functiokl (x) that is zero whenever a poirtis on
the Poincaré section,

Other quantities integrated along the trajectory can baeeéfin a similar manner,
and will need to be evaluated in the process of evaluatinguahjcal averages.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector ro) and a direction vector a
perpendicular to the plane. A point X is in this plane if it satisfies the condition

xe® iff U(X) =0. 3.2) U(X) = (x—rg)-a=0. (3.6)
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Figure 3.6: Return maps for theR, — Ry 4 \ 4
radial distance Poincaré sections of figargé (R.

Figure 3.5: (Right:) a sequence of Poincaré
sections of the Rossler strange attractor, defined
by planes through the axis, oriented at angles
(a) -6 (b) @, (c) 60, (d) 120, in the x-
yplane. (Left:) side and-y plane view of a typical _
trajectory with Poincaré sections superimposed.
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12

(R. Paskauskas)

is the symmetry quotiented version of chapter 9 which replaces the above 6 maﬁﬁal?}(w 9l

areturn map pair Pg, P1. [chapter 8]

Embedded within P12, P13 are four strips P121, P123, P131, P132 of initial conditions
that survive two bounces, and so forth. Provided that the disks are sufficiently separated,
after n bounces the survivors are labeled by 2" distinct itineraries c102073. .. 0.

Billiard dynamics is exceptionally simple - free flight segmts, followed by
specular reflections at boundaries, thus billiard bouedaaie the obvious choice
as Poincaré sections. What about smooth, continuous tows, flvith no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum:  The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.3. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section'y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it ydfisea piece
of paper. The next exampléfers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Réssler flow: Consider figure 2.5, a typical trajectory of the 3-
dimensional Réssler flow (2.17). It wraps around the z axis, so a good choice for a
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Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.5,
illustrates the “stretch & fold” action of the Réssler flow. To orient yourself, compare
this with figure 2.5, and note the different z-axis scales. Figure 3.5 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the X-y plane, and after the stretching (a) —
(b) followed by the folding (c) — (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2-d return map (Rn,z,) — (Rn+1,2Z011) ONnto a 1-dimensional subspace R, — Rqi1.

(Continued in example 4.1)

fast track:
W sect. 3.3, p. 54
The above examples illustrate why a Poincaré section givesre informative
snapshot of the flow than the full flow portrait. For exampléijlesthe full flow

portrait of the Rossler flow figurg.5 gives us no sense of the thickness of the
attractor, we see clearly in the figuBes Poincaré sections that even though the
return map is A — 2-d, the flow contraction is so strong that for all practical

purposes it renders the return map 1-dimensional.

3.1.1 What's the best Poincag section?

In practice, picking sections is a dark and painful art, esply for high-dimensional

flows where the human visual cortex falls short. It helps tdasstand why we
need them in the first place.

Whenever a system has a continuous symm@trgny two solutions related
by the symmetry are equivalent, so it would be stupid to keepmputing them
over and over. We would rather replace the whole continuamsly of solutions
by one.

A smart way to do woul~d be to replace dynamigd,(f) by dynamics on the
quotient state spaceM/G, f). We will discuss this in chapted, but in general
constructing explicit quotient state space fléwappears either flicult, or not

maps - 13jun2008.tex
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CHAPTER 3. DISCRETE TIME D' 2

Figure 3.7: (a) Lorenz flow figure2.4 cut by

y = x Poincaré section plan® through thez
axis and bottEQ, , equilibria. Points where flow
pierces into section are marked by dots. To aid
visualization of the flow near theQ, equilibrium,
the flow is cut by the second Poincaré section,
#’, throughy = —x and thez axis. (b) Poincaré
sectionsP and#”’ laid side-by-side. The singular
nature of these sections close EXQ, will be
elucidated in exampld.6 and figure10.7 (b). (E.
Siminos) (a (b)

appreciated enough to generate much readable literatupgrioaps impossible.
So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie groupedla highly nontrivial
one (otherwise this book would not be much of a doorstop). iferiants of the
flow are its infinite-time orbits; particularly useful invants are compact orbits
Mp € M, such as equilibrium points, periodic orbits and tori. Foy arbit it
sufices to pick a single state space poirg Mp, the rest of the orbit is generated
by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamicgstlis called a
“Poincaré section,” and in theoretical physics this goethkb exceptionally uninformative
name of “gauge fixing.” The price is that one generates “ghjbst, in dynamics,
increases the dimensionality of the state space by addittamstraints (see sedt2.4).

It is a commonly deployed but inelegant procedure where sgtmynis broken for
computational convenience, and restored only at the erfakoddlculation, when
all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You pak as many
sections as convenient. (b) For ease of computation, pielati sections3(6) if
you can. (c) If equilibria play important role in organizimagflow, pick sections
that go through them (see exam@e). (c) If you have a global discrete o&hamm, 9
continuous symmetry, pick sections left invariant by theeyetry (see exampk2). )
(d) If you are solving a local problem, like finding a perioditbit, you do not
need a global section. Pick a section or a set of (multi-shgpsections on the
fly, requiring only that they are locally orthogonal to thewflo(e) If you have
another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (Continued from example 2.2.) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.4, as it contains all three equilibria,
xeqo = (0,0,0) and the (2.13) pair EQ,,. A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked
by dots.

EQ,, are centers of out-spirals, and close to them the section is transverse
to the flow. However, close to EQ, trajectories pass the z-axis either by crossing the
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section P or staying on the viewer’s side. We are free to deploy as many sections as
we wish: in order to capture the whole flow in this neighborhood we add the second
Poincaré section, ', through the y = —x diagonal and the z-axis. Together the two
sections, figure 3.7 (b), capture the whole flow near EQq. In contrast to Réssler sections
of figure 3.5, these appear very singular. We explain this singularity in example 4.6, and
postpone construction of a Poincaré return map to example 9.2.

(E. Siminos and J. Halcrow)

3.2 Constructing a Poincagé section

O

For almost any flow of physical interest a Poincaré sect®nat available in
analytic form. We describe now a numerical method for deiteimg a Poincaré

section. [remark 3.1]

Consider the systen2 (6) of ordinary diferential equations in the vector variable
X = (X1, X2, ..., Xd)

d /.
d—f =Vi(x 1), (3.10)

where the flow velocity is a vector function of the position in state spacand

the timet. In generaly cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectorieshef $ystem. Our task is
to determine the points at which the numerically integrategectory traverses

a given hypersurface. The hypersurface will be specifiediaitlp through a
function U(X) that is zero whenever a pointis on the Poincaré section, such as
the hyperplane3.6).

If we use a tiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory e®#se hypersurface.
The problem with this method is that we have to use a very smtelyration time
step. In order to land exactly on the Poincaré section otenofterpolates the
intersection point from the two trajectory points on eithiele of the hypersurface.
However, there is a better way.

Let ty be the time just beforé) changes sign, ant} the time just after it
changes sign. The method for landing exactly on the Painsaction will be to
convert one of the space coordinates into an integratiaahlerfor the part of the
trajectory betweety andty,. Using

dxcdx;  dxc _
d_xlﬁ = d_lel(X’t) = W(xt) (311

we can rewrite the equations of motidgh 10 as

dt 1 dxd_ﬁ

= o, S =L 12
’ dX1 V1 (3 )

Xm B Vl’
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Now we usex; as the ‘time’ in the integration routine and integrate itfirgy (t) to
the value ofx; on the hypersurface, determined by the hypersurface ettos
condition @3.6). This is the end point of the integration, with no need foy an
interpolation or backtracking to the surface of sectione Xi-axis need not be
perpendicular to the Poincaré section; afycan be chosen as the integration
variable, provided theg-axis is not parallel to the Poincaré section at the trajgct
intersection point. If the section crossing is transveBs8)(v; cannot vanish in
the short segment bracketed by the integration step pregéak section, and the
point on the Poincaré section.

Example 3.6 Computation of R dssler flow Poincar é sections.  Poincaré sections
of figure 3.5 are defined by the fixing angle U(X) = 6 -6y = 0. Convert Rdssler equation
(2.17) to cylindrical coordinates:

i = u =-zcosd+arsinto
0 = uH:1+§sinH+gsinZH
zZ = v;=b+2Zrcosd-c). (3.13)

In principle one should use the equilibrium X, from (2.18) as the origin, and its eigenvectors

as the coordinate frame, but here original coordinates suffice, as for parameter values
(2.17), and (X0, Yo, 20) sufficiently far away from the inner equilibrium, 6 increases monotonically
with time. Integrate

dr dt dz
@ZUr/UH, @Zl/Uﬁ, @ZUz/Uﬁ (3.14)
from (rn, 6n, 1) to the next Poincaré section at 6.1, and switch the integration back to
(X,Y, 2) coordinates. (Radford Mitchell, Jr.)
3.3 Maps

’ °
Though we have motivated discrete time dynamics by corisglesections of a Q

continuous flow, there are many settings in which dynamiagghisrently discrete,
and naturally described by repeated iterations of the saape m

fiM-M,
or sequences of consecutive applications of a finite set pbma
{fa fB,... T2} M= M, (3.15)

for example maps relating fiierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applicagiof a map. As writing

out formulas involving repeated applications of a set of snepplicitly can be
awkward, we streamline the notation by denoting a map coitipody ‘o’

fz(-- fB(fa(X)))--) = fzo -~ fe o fa(x), (3.16)
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Figure 3.8: A flow x(t) of figure 3.1 represented by
a Poincaré return map that maps points in the Poincaré
section® asx,1 = f(X,). In this example the orbit of
X1 consists of the four cycle points( Xo, X3, X4)

and thenth iterate of mapf by

f70) = fo f™ () = F(F"1(x), 909 =x.

[section 2.1]
Thetrajectory of x is now the discrete set of points

X 109, 7209, "9}

and theorbit of xis the subset of all points o¥1 that can be reached by iterations
of f. For example, the orbit of; in figure 3.8is the 4-cycle Xi, X2, X3, X4) -

The functional form of such Poincaré return mapss figure3.6 can be
approximated by tabulating the results of integration & flow from x to the
first Poincaré section return for mamye %, and constructing a function that
interpolates through these points.  If we find a good appration to P(x),
we can get rid of numerical integration altogether, by reiplg the continuous
time trajectoryf!(x) by iteration of the Poincaré return m&¢x). Constructing
accurateP(x) for a given flow can be tricky, but we can already learn muomifr
approximate Poincaré return maps. Multinomial approxiomes

d d
Pk(x):ak+Zbij,~+chijxjxj+m, XeEP (3.17)
=1 (=1

to Poincaré return maps

X1,n+1 P1(Xn)

Xenet | _ | P2(x) ’ Yo Xu1 € P
Xd,n+1 Pd(xn)

motivate the study of model mappings of the plane, such allémen map.

Example 3.7 Hénon map:  The map

X1 = 1-ax +by,

Yner = Xn (3.18)
is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

Xne1 = 1—aX + bXy 1. (3.19)
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oo

\

-1.5 0.0 1.5
Figure 3.9: The strange attractor and an unstable Xi-1

period 7 cycle of the Henon map.(9 with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (K.T. Hansef]}

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Réssler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.17) to a Poincaré return map (3.17) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.18) on a computer. We plot here the dynamics in the (X, Xn+1) plane, rather than in
the (X, Yn) plane, because we think of the Hénon map as a model return map X, —
Xnr1. AS we shall soon see, periodic orbits will be key to understanding the Ioni—time

exercise 3.5]

dynamics, so we also plot a typical periodic orbit of such a system, in this casé an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 27.1, and the cycle point labels 01110101110100- - - in sect. 11.3.

Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

Xn+1 1-alxq| + byn
Yol = Xn. (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the “stretch
& fold” type.

What we get by iterating such maps is—at least qualitatirey unlike what
we get from Poincaré section of flows such as the Rossler fitpuwe 3.6. For
an arbitrary initial point this process might converge tdabke limit cycle, to a
strange attractor, to a false attractor (due to rotiheimors), or diverge. In other
words, mindless iteration is essentially uncontrollakled we will need to resort
to more thoughtful explorations. As we shall explain in doerse, strategies for

. : ; o . ise 3.5
systematic exploration rely on stahlastable manifolds, periodic points, saddlée—xerCIse !

straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.18) stretches and folds a region of the (x,y) plane
centered around the origin. The parameter a controls the amount of stretching, while
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the parameter b controls the thickness of the folded image through the ‘1-step memory’
termbx,-1 in (3.19). In figure 3.9 the parameterb is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

Xni1=1-ax. (3.21)

[exercise 3.7]

By setting b = 0 we lose determinism, as on reals the inverse of map (3.21) has two

preimages {x_,, X, ,} for most x,. If Bourbaki is your native dialect: the Hénon map

is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in secL0.2.] an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the ikt dynamics of many
higher-dimensional dynamical systems. For this reasoryme&positions of the
theory of dynamical systems commence with a study of 1-dgiosial maps. We
prefer to stick to flows, as that is where the physics is.

Résumé

In recurrent dynamics a trajectory exits a region in stasesmnd then reenters
it infinitely often, with a finite mean return time. If the othis periodic, it
returns after a full period. So, on average, nothing muchyréappens along
the trajectory—what is important is behavior of neighbgrirajectories transverse
to the flow. This observation motivates a replacement of dmiguous time flow
by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly feaiétd by a felicitous
choice of Poincaré sections, and the reduction of flows iodaoé return maps.
This observation motivates in turn the study of discrateetidynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré seetioethod is the reduction
of a billiard flow to a boundary-to-boundary return map, diesd in chapteB.
As we shall show in chaptes, further simplification of a Poincaré return marﬁ
or any nonlinear map, can be attained through rectifyingehmaps locally by[
means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although sanpivoids the alternative
of having to interpolate the numerical solution to deterniine intersection. The trick
described in secB.2is due to Hénond, 6, 7].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical importin
and of itself-its significance lies in the fact that it is a imal normal form for modeling
flows near a saddle-node bifurcation, and that it is a prp®tyf the stretching and
folding dynamics that leads to deterministic chaos. It isggee in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and tabes of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated gytibst known early example of
‘deterministic chaos’, the Lorenz equatiaf,[see ref. [] and remark2.2.

Y. Pomeau’s studies of the Lorenz attractor on an analog atenpand his insights
into its stretching and folding dynamics motivated Hénéhtp introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can beddn reprint collections
refs. 3, 4]. They are a pleasure to read, and are still the best inttaduto the physics
motivating such models. A detailed description of the dyitanof the Hénon map is
given by Mira and coworkers3], as well as very many other authors.

The Lozi map [0 is particularly convenient in investigating the symbalignamics
of 2-d mappings. Both the Lorenz and Lozi systems are uniformlyatmeystems with
singularities. The continuity of measure for the Lozi magweoven by M. Misiurewicz1],

and the existence of the SRB measure was established byvoug. [section 14.1]

Remark 3.3 Grasshoppers vs. butterflies.  The 'sensitivity to initial conditions’ was
discussed by Maxwell, 30 years later by Poincaré. In wegthediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopped’ in a book review by
W. S. Franklin [l]. In 1963 Lorenz ascribed a ‘seaguffect’ to an unnamed meteorologist,
and in 1972 he repackaged it as the ‘Butterffjeet’.
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Exercises

3.1

3.2.

3.3.

Poincaré sections of the Rssler flow. 3.4. Classical collinear helium dynamics.

(continuation of exercis€.8) Calculate numerically a (continuation of exercis2.10 Make a Poincaré surf
Poincaré section (or several Poincaré sections) of the  of section by plottingi(;, p;) whenever, = 0: Note thz
Rossler flow. As the Rossler flow state spacels the forry = 0, p is already determined by (€). Compat

flow maps onto a R Poincaré section. Do you see that your results with figuré.3 (b).

in your numerical results? How good an approximation (Gregor Tanner, Per Rosenqv
would a replacement of the return map for this section

by a 1-dimensional map be? More precisely, estimatd.5. Hénon map fixed points. ~ Show that the two fixe
the thickness of the strange attractor. (continued as  POINts (o, %), (X1, x1) of the Hénon map3.1§ ar

exercisel.4) given by

R. Paskausk

(R- PaSkauskas) -(1-b)- JA-bP+4a
A return Poincaré map for the Rossler flow. X = 2a ’
(continuation of exercis.1) That Poincar return maps —(1-b)+ JI-b2+4a
of figure 3.6 appear multimodal and non-invertible is X1 > .
an artifact of projections of a 2-dimensional return map a
(Rn,z0) — (Rns1, Z0+1) ONto a 1-dimensional subspace
R = Roa 3.6. How strange is the Henon attractor?
Construct a genuine,,; = f(s,) return map by - )
parametrazing points on a Poincaré section of the (a) Iterate numerically some 100,000 times or s
attractor figure3.5 by a Euclidean lengtls computed Heénon map
curvilinearly along the attractor section. X1 [1-ak+y
This is best done (using methods to be developed in y | 7| bx

what follows) by a continuation of the unstable manifold
of the 1-cycle embedded in the strange attractor,
figure12.1(b). (P. Cvitanovit)

fora = 1.4,b = 0.3 . Would you describe t
result as a 'strange attractor’? Why?

Now check how robust the Hénon attractor i

iterating a slightly diferent Hénon map, with =

1.39945219b = 0.3. Keep at it until the 'strang

attractor vanishes like the smile of the Chesire

(a) Start by modifying your integrator so that you What replaces it? Would you describe the resi|
can change the coordinates once you get near the a 'strange attractor'? Do you still have confide
Poincaré section. You can do this easily by writing in your own claim for the part (a) of this exerci
the equations as

(b

-

Arbitrary Poincar & sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equatilqw) = 0.

3.7. Fixed points of maps. A continuous functiorF i
=X = iy, (3.22) a contraction of the unit interval if it maps the inte
d inside itself.

with dt/ds = «, and choosing to be 1 or ¥f;.

This allows one to switch betwedérmndx; as the (@) Use the continuity ofF to show that a

integration 'time.” dimensional contractioR of the interval [Q1] ha

(® at least one fixed point.

-

Introduce an extra dimensiom,.; into your
system and set (b) In a uniform (hyperbolic) contraction the sl
of F is always smaller than ondF’| < 1

Xo = U(Y). (3.23) " o

Is the composition of uniform contraction:
How can this be used to find a Poincaré section? contraction? Is it uniform?
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