Chapter 10

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville,Moby Dick chapter 32

order topartition the state space in a topologically invariant way, aadhe

topologically distinct orbits. This will enable us — in chapl3 — to count
the distinct orbits, and in the process touch upon all thearttemes of this book,
going the whole distance from diagnosing chaotic dynanacsomputing zeta
functions.

I N THIS CHAPTER We begin to learn how to use qualitative properties of a flow in

We start by a simple physical example, symbolic dynamics ®fdésk game
of pinball, and then show that also for smooth flows the qai@lié dynamics
of stretching and folding flows enables us to partition ttegesspace and assign
symbolic dynamics itineraries to trajectories. Here wasiitate the method on
a 1- d approximation to Rdssler flow. In chapt&B we turn this topological
dynamics into a multiplicative operation on the state spgzentitions by means
of transition matrice®larkov graphs, the simplest examples of evolution oper-
ators. Deceptively simple, this subject can get veffidilt very quickly, so in
this chapter we do the first pass, at a pedestrian level, @aisigp the discussion
of higher-dimensional, cyclist level issues to chagtér

Even though by inclination you might only care about the@esistdt, like
Rydberg atoms or mesoscopic devices, and resent wastiegotirnthings formal,
this chapter and chapté&B are good for you. Read them.

10.1 Qualitative dynamics o

X

(R. Mainieri and P. Cvitanovi€)
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Figure 10.1: A trajectory with itinerary 021012.

What can a flow do to the state space points? This is a véligudi question
to answer because we have assumed very little about thetievofunction ft;
continuity, and diferentiability a stficient number of times. Trying to make sense
of this question is one of the basic concerns in the study ofnhcal systems.
One of the first answers was inspired by the motion of the partleey appear to
repeat their motion through the firmament. Motivated by tiiservation, the first
attempts to describe dynamical systems were to think of teperiodic.

However, periodicity is almost never quite exact. What arals to observe
is recurrence A recurrence of a poinkg of a dynamical system is a return of
that point to a neighborhood of where it started. How closeghint X, must
return is up to us: we can choose a volume of any size and shageall it the
neighborhoodMy, as long as it encloseg. For chaotic dynamical systems, the
evolution might bring the point back to the starting neigtlomd infinitely often.
That is, the set

fyeMo: y="fi(x). t>to (10.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods afgadihis suggests
another way of describing how points move in state space;wtoirns out to be
the important first step on the way to a theory of dynamicalesys: qualitative,
topological dynamics, or, as itis usually callsgmbolic dynamicsAs the subject
can get quite technical, a summary of the basic notions afimitittns of symbolic
dynamics is relegated to sedt0.5 check that section whenever you run into
obscure symbolic dynamics jargon.

We start by cutting up the state space up into regibfis Mg, ..., Mz. This
can be done in many ways, not all equally clever. Any suchsitivi of the state
space into topologically distinct regions ipartition, and we associate with each
region (sometimes referred to astate a symbols from an N-letter alphabet
or state setA = {A,B,C,---,Z}. As the dynamics moves the point through the
state space, fierent regions will be visited. The visitation sequence thiaith
referred to as théinerary - can be represented by the letters of the alphathet
If, as in the example sketched in figut®.1, the state space is divided into three
regionsMop, Mz, and My, the “letters” are the integek$, 1, 2}, and the itinerary
for the trajectory sketched in the figure is92+— 10+ 1 2> ---.
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23132321",

Figure 10.2: Two pinballs that start out very close

to each other exhibit the same qualitative dynamics
2313 for the first three bounces, but due to the
exponentially growing separation of trajectories with
time, follow different itineraries thereafter: one

escapes after2313, the other one escapes after
_23132321. 2313

If there is no way to reach partitioM; from partition M;, and conversely,
partition M; from partition M;, the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interest@nttipn should be
dynamically connected, i.e., one should be able to go frognragion M; to
any other regionM; in a finite number of steps. A dynamical system with such
partition is said to benetrically indecomposable

In general one also encounters transient regions - regiombkith the dynamics
does not return to once they are exited. Hence we have taglissh between (for
us uninteresting) wandering trajectories that never netuthe initial neighborhood,
and the non—wandering sét ) of therecurrenttrajectories.

The allowed transitions between the regions of a partitiememcoded in the
[N x N]-dimensionaltransition matrixwhose elements take values

o 1 ifatransitionM; — M is possible
Tij = {0 otherwise (10.2)

The transition matrix encodes the topological dynamicsrageariant law of
motion, with the allowed transitions at any instant indegeari of the trajectory
history, requiring no memory.

Example 10.1 Complete N-ary dynamics: All transition matrix entries equal unity
(one can reach any region from any other region in one step):

11 ...1
11 ...1

TC: : : .. : (10.3)
11 ...1

Further examples of transition matrices, such as the 3-disk transition matrix (10.5) and
the 1-step memory sparse matrix (10.13), are peppered throughout the text.

However, knowing that a point from\; reachesM; in one step is not quite
good enough. We would be happier if we knew taay point in A, reachesM;;
otherwise we have to subpartitioW; into the points which land iM;, and those
which do not, and often we will find ourselves partitioniad infinitum
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Figure 10.3: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1 23| \131
with X = (arclength, parallel momentums
(S0, po) , disk radius : center separation ratio 120\ | 132
a:R=1:2.5. (a) Strips of initial pointd\11,, M3
which reach disks 2, 3 in one bounce, respectively.
(b) Strips of initial pointsMi21, Miz1 Mz and

M3 which reach disks 1, 2, 3 in two bounces, ' ¢ o _}25
respectively. (Y. Lan) @) s (b)y -

o

sin@
o
sin@

o
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Such considerations motivate the notion dflarkov partition a partition for
which no memory of preceding steps is required to fix the ttams allowed in
the next step. Dynamicallfinite Markov partitionsan be generated lexpanding
d-dimensional iterated mappings: M — M, if M can be divided intd\
regions{ Mo, Ma, ..., Mn_1} such that in one step points from an initial region
M either fully cover a regiooM;, or miss it altogether,

either Mjnf(M))=0 or M;c f(M). (10.4)
Let us illustrate what this means by our favorite example,ghme of pinball.

Example 10.2 3-disk symbolic dynamics: Consider the motion of a free point
particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure 10.2 have itineraries 2313, 23132321 respectively. The 3-disk

prime cycles given in figures 9.4 and 11.2 are further examples of such itinerarie grercise 11

At each bounce a cone of initially nearby trajectories defocuses (see figure 1.8),
and in order to attain a desired longer and longer itinerary of bounces the initial point
Xo = (S0, Po) has to be specified with a larger and larger precision, and lie within
initial state space strips drawn in figure 10.3.  Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of Xy = (So, Po) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Ms, s,, the
intersection of M s, with the strips Ms, obtained by time reversal (the velocity changes
signsing — —sing). M, s,, figure 10.4, is a “rectangle” of nearby trajectories which
have arrived from the disk $; and are heading for the disk S;.

The itinerary is finite for a scattering trajectory, comimgfiom infinity and
escaping after a finite number of collisions, infinite for apped trajectory, and
infinitely repeating for a periodic orbit. A finite length featory is not uniquely
specified by its finite itinerary, but an isolated unstableleys: its itinerary is
an infinitely repeating block of symbols. More generallyr fyperbolic flows
the intersection of the future and past itineraries, thimfirite itineraryS™.S* =
-85 1%.519S3 - - specifies a unique trajectory. This is intuitively cleardor
3-disk game of pinball, and is stated more formally in therdgéin (10.4) of a
Markov partition. The definition requires that the dynanbesexpanding forward
in time in order to ensure that the cone of trajectories withiven itinerary
becomes sharper and sharper as the number of specified syimbulreased.
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Figure 10.4: The Poincaré section of the state space
for the binary labeled pinball. For definitiveness, this
set is generated by starting from disk 1, preceded l%/ 0
disk 2. Indicated are the fixed poin@ 1 and the
2-cycle periodic point®1, 10, together with strips
which survive 1, 2, ...bounces. lteration corresponds
to the decimal point shift; for example, all points in the
rectangle [0101] map into the rectangle [01J inone 1

iteration. See also figurkl.2(b). 25 J 2
Example 10.3 Pruning rules for a 3-disk alphabet: As the disks are convex, there

can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (10.22) for definition), with the transition matrix (10.2) given by

011
T = [1 0 1]. (10.5)
110

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the fundamental matrix has an expanding eigenvalue. By the Liouville
phase space volume conservation (7.32), the other transverse eigenvalue is contracting.
This example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure 10.6,
and more examples are worked out in sect. 24.2.

Determining whether the symbolic dynamics is complete ¢ahé case for
suficiently separated disks), pruned (for example, for toughin overlapping
disks), or only a first coarse graining of the topology (asgkample, for smooth
potentials with islands of stability) requires case-bgecmvestigation, a discussion
we postpone to secf.0.3 and chapterll. For the time being we assume that
the disks are diiciently separated that there is no additional pruning beytbe
prohibition of self-bounces.

If there are no restrictions on symbols, the symbolic dymanig complete,
and all binary sequences are admissible itineraries. As this typgymbolic
dynamics pops up frequently, we list the shortest binamperiycles in tabld 0.1

[exercise 10.2]

Inspecting the figurd 0.3 we see that the relative ordering of regions with
differing finite itineraries is a qualitative, topological peoty of the flow, so it
makes sense to define a simple “canonical” representatistéiqgna which in a
simple manner exhibits spatial ordering common to an ealiss of topologically
similar nonlinear flows.

in depth:
Q chapter 19, p. 320
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Table 10.1: Prime cycles for the binary symbolic dynamics up to length 9.
Np p Np p Np p Np p Np p
1 o 7 0001001| 8 00001111] 9 000001101] 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
5 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101

10.2 Stretch and fold

Symbolic dynamics foN-disk game of pinball is so straightforward that one may
altogether fail to see the connection between the topoldgymerbolic flows and
their symbolic dynamics. This is brought out more clearlthy 1-dimensional
visualization of “stretch & fold” flows to which we turn now.

Suppose concentrations of certain chemical reactantywour, or the variations
in the Chicago temperature, humidity, pressure and wilfiéstyour mood. All
such properties vary within some fixed range, and so do thasgsrof change.
Even if we are studying an open system such as the 3-disklpgdae, we tend
to be interested in a finite region around the disks and igtiweescapees. So a
typical dynamical system that we care aboubaginded If the price for keeping
going is high - for example, we try to stir up some tar, and olesé& come to
a dead stop the moment we cease our labors - the dynamicstteadtle into
a simple limiting state. However, as the resistance to ohalegreases - the tar
is heated up and we are more vigorous in our stirring - the ycs becomes
unstable.

If a flow is locally unstable but globally bounded, any opedl bé initial
points will be stretched out and then folded back.

At this juncture we show how this works on the simplest examphimodal
mappings of the interval. The erudite reader should skiraudjn this chapter
and then take a more demanding path, via the Smale horseshobkapterll.
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va @ gtretch  ©
a C
f(b)
_—>
Figure 10.5: (a) A recurrent flow that stretches 7 f(a) f(C)
and folds. (b) The “stretch & fold” return map on b
the Poincaré section. (@) a c

Unimodal maps are easier, but physically less motivateck Simale horseshoes
are the high road, more complicated, but the right tool toegalize what we
learned from the 3-disk dynamics, and begin analysis ofigédgnamical systems.
It is up to you - unimodal maps fiice to get quickly to the heart of this treatise.

10.2.1 Temporal ordering: itineraries

In this section we learn how teame(and, in chaptef.3, how tocoun) periodic
orbits for the simplest, and nevertheless very instruatase, for 1-dimensional
maps of an interval.

Suppose that the compression of the folded interval in figOr&is so fierce
that we can neglect the thickness of the attractor. For elartipe Rossler flow
(2.17)is volume contracting, and an interval transverse to ttiecor is stretched,
folded and pressed back into a nearly 1-dimensional integy@cally compressed
transversally by a factor of 10'° in one Poincaré section return. In such cases
it makes sense to approximate the return map of a “stretchl& fow by a
1-dimensional map.

The simplest mapping of this typeusimodal;interval is stretched and folded
only once, with at most two points mapping into a point in teflded interval.
A unimodal mapf (x) is a 1-dimensional functioi® — R defined on an interval
M € R with a monotonically increasing (or decreasing) brandrijtecal point (or
interval) xc for which f(x;) attains the maximum (minimum) value, followed by
a monotonically decreasing (increasing) branthmi-modal means that the map
is a 1-humped map with one critical point within intervied. A multi-modal map
has several critical points within intervafl.

Example 10.4 Complete tent map, quadratic map: The simplest examples of
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Figure 10.6: (a) The complete tent map together
with intervals that follow the indicated itinerary
for n steps. (b) A unimodal repeller with the
remaining intervals after 1, 2 and 3 iterations.
Intervals marked; s, - - - s, are unions of all points
that do not escape in iterations, and follow the
itinerary ST = s;5,---s,. Note that the spatial
ordering does not respect the binary ordering; for
examplexgpy < Xo1 < X311 < Xg0. Also indicated:

= 00 01 1 10
the fi)@ pointsx, X;, the 2-cycle01, and the 3- - on 0 o1
cycle011. (a) (b) ———— ——
unimodal maps are the complete tent map, figure 10.6 (a),
f(y)=1-2y-1/2, (10.6)
and the quadratic map (sometimes also called the logistic map)
X1 =1-ax, (10.7)

with the one critical point at x. = 0. Further examples are the repelling unimodal map
of figure 10.6 (b) and the piecewise linear tent map (10.6).

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall show in sect. 11.3, they may nevertheless serve as effective descriptions
of invertible 2-dimensional hyperbolic flows.

For the unimodal maps of figure 10.6 a Markov partition of the unit interval
M is given by the two intervals { Mo, M1}. We refer to (10.6) as the “complete” tent
map because its symbolic dynamics is complete binary: as both f(Mo) and f(My)
fully cover My and Ms, the corresponding transition matrix is a [2x2] matrix with all
entries equal to 1, as in (10.3). As binary symbolic dynamics pops up frequently in
applications, we list the shortest binary prime cycles in table 10.1.

Example 10.5 Lorenz flow: a 1 -d return map We now deploy the symmetry
of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor
commenced in example 9.2.

The dihedral D1 = {e, R} symmetry identifies the two equilibria EQ, and EQ,
and the traditional “two-eared” Lorenz flow figure 2.4 is replaced by the “single-eared”
flow of figure 9.2 (a). Furthermore, symmetry identifies two sides of any plane through
the z axis, replacing a full-space Poincaré section plane by a half-plane, and the two
directions of a full-space eigenvector of EQ, by a one-sided eigenvector, see figure 9.2 (a).

Example 4.7 explained the genesis of the Xeq1 equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection to
the xeqo = (0, O, 0) equilibrium. All that remains is to describe how the E Qy neighborhood
connects back to the EQ, unstable manifold. Figure 9.2 now shows clearly how the
Lorenz dynamics is pieced together from the 2 equilibria and their unstable manifolds:

Having completed the descent to EQ,, the infinitesimal neighborhood of the
heteroclinic EQ, — EQ, trajectory is ejected along the unstable manifold of EQ, and is
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u WHEQy).
a0l WHEQ,) K
Figure 10.7:(a) A Poincaré section of the Lol
flow in the doubled-polar angle represent: 30r .
figure 10.7, given by the ¥, Z] plane that conta N EQ,
the z-axis and the equilibriunEQ,. X' axis poir 20t
toward the viewer. (b) The Poincaré section
Lorenz flow by the section plane (a); compare 10}
figure 3.7. Crossingsinto the section are mar =,
red (solid) and crossingsut of the section : EQ, wY EQ,
marked blue (dotted). Outermost points of 90 10 0 10 20 30
in- and out-sections are given by tE€), unstak y
manifold W!(EQ,) intersections. (E. Siminos) (b)
25
WSEQ)
20 ’

Figure 10.8: The Poincaré return mag,1 = P(s))

parameterized by Euclidean arclengthmeasured 15

along the EQ; unstable manifold, fromxgq to (,,E

WUY(EQ,) section point, uppermost right point of the 10

blue segment in figur&0.7 (b). The critical point (the

“crease”) of the map is given by the section of thi 5

heteroclinic orbitW3(EQ,) that descends all the way

tq E.QO’ in infinite time and with infinite slope. (E. % s o 15 20 =

Siminos) S,

re-injected into the unstable manifold of EQ,. Both sides of the narrow strip enclosing
the EQ, unstable manifold lie above it, and they get folded onto each other with a knife-
edge crease (contracted exponentially for infinite time at the EQ, heteroclinic point),
with the heteroclinic out-trajectory defining the outer edge of the strange attractor. This
leads to the folding of the outer branch of the Lorenz strange attractor, illustrated in the
figure 10.7 (b), with the outermost edge following the unstable manifold of E Q.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQ,, lower part
of figure 10.7 (b), and the section (blue) above EQ,. The first section, together with
the blowup of the EQy neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQ,. The flat section
above EQ, (which is, believe it or not, a smooth conjugacy by the flow of the knife-
sharp section at EQy) is more convenient for our purposes. Its return map is given by
figure 10.8.

The rest is straight sailing: to accuracy 107* the return map is unimodal, its
“critical” point’s forward trajectory yields the kneading sequence, and the admissible
binary sequences, so any number of cycle points can be accurately determined from
this 1-dimensional return map, and the 3-d cycles then verified by integrating the Lorenz
differential equations (2.12). The map is everywhere expanding on the strange attractor,
so it is no wonder mathematicians can here make the ergodicity rigorous.

Finally, the relation between the full state space periodic orbits, and the fundamental

domain (9.16) reduced orbits: Full state space cycle pairs p, Rpmap into a single cycles
p in the fundamental domain, and any self-dual cycle p = Rp = PRp is a repeat of a
relative periodic orbit p.
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But there is trouble in paradise. By a fluke, the Lorenz attractor, the first flow
to popularize strange attractors, turns to be topologically one of the simplest strange
attractors. But it is not “uniformly hyperbolic.” The flow near EQ, is barely unstable,
while the flow near EQ is arbitrarily unstable. So binary enumeration of cycles mixes
cycles of vastly different stabilities, and is not very useful - presumably the practical
way to compute averages is by stability ordering.

(E. Siminos and J. Halcrow)

Thecritical valuedenotes either the maximum or the minimum valud ©f)
on the defining interval; we assume here that it is a maximiuym) > f(x) for all
x € M. The critical valuef (x;) belongs neither to the left nor to the right partition
M, and is denoted by its own symbsk C. As we shall see, its preimages serve
as partition boundary points.

The trajectoryxy, X, X3, ... Of the initial point Xp is given by the iteration
*n+1 = F(X) . Iterating f and checking whether the point lands to the left or to the
right of x; generates temporallyordered topological itineraryl(0.15 for a given
trajectory,

L i X > X
S”_{O if Xp <X (10.8)

We shall refer td5*(xg) = .s19S3 - - - as thefuture itinerary, Our next task is to
answer the reverse problem: given an itinerary, what is tneespondingspatial
ordering of points that belong to a given trajectory?

10.2.2 Spatial ordering, 1d maps

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—~Professor Gatto Nero

Suppose you have succeeded in constructing a covering $igndignamics, such

as for a well-separated 3-disk system. Now start moving thlesdoward each
other. At some critical separation a disk will start bloakiiamilies of trajectories
traversing the other two disks. The order in which trajéedisappear is determined
by their relative ordering in space; the ones closest to riterviening disk will

be pruned first. Determining inadmissible itineraries megpithat we relate the

spatial ordering of trajectories to their time orderedeitaries. .
[exercise 11.8]

The easiest point of departure is to start out by working bist telation for
the symbolic dynamics of 1-dimensional mappings. As it appempossible
to present this material without getting bogged down in aae@’s, 1's and
subscripted subscripts, we announce the main result befakarking upon its

derivation:
[section 10.3]

The admissibility criterion eliminateall itineraries
that cannot occur for a given unimodal map.
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Figure 10.9: Alternating binary tree relates the, 0 N L

itinerary labeling of the unimodal map figure0.6

intervals to their spatial ordering. Dotted line stands=
fO

10

for O, full line for 1; the binary sub-tree whose root is g, o1 o1 o0 1100 M1 10
full line (symbol 1) reverses the orientation, due to th T‘TI j‘
orientation reversing fold in figurek).5and10.6 R mem

The tent map10.6) consists of two straight segments joineckat 1/2. The
symbols, defined in (L0.8) equals 0 if the function increases, and 1 if the function
decreases. The piecewise linearity of the map makes itlgests analytically
determine an initial point given its itinerary, a propeiat we now use to define
a topological coordinatization common to all unimodal maps

Here we have to face the fundamental problem of pedagogybic@torics
cannot be taught. The best one can do is to state the answl@hemhope that
you will figure it out by yourself. Once you figure it out, feeé€ to complain that
the way the rule is stated here is incomprehensible, andshevihow you did it
better.

The tent map poing(S*) with future itineraryS* is given by converting the
sequence o$,’s into a binary number by the following algorithm:

Wh if $1=0 _
Wh+1 { l—Wn if S’]+l:l s Wi =8
YST) = Owawaws... = > wy/2", (10.9)

This follows by inspection from the binary tree of figur@.9 fexercise 10.4]

Example 10.6 Converting y to S*: y whose itinerary is ST = 0110000 - - is given
by the binary number y = .010000 --. Conversely, the itinerary of y = .0lis s = 0,
f)=1o5=11@FY) =1(1)=1-s=1, etc.

We shall refer toy(S*) as the(future) topological coordinate w's are the
digits in the binary expansion of the starting pojnfor the complete tent map
(10.6). In the left half-interval the mag(x) acts by multiplication by 2, while in
the right half-interval the map acts as a flip as well as miid&@gion by 2, reversing
the ordering, and generating in the process the sequenggsdfom the binary
digits wy.

Themapping  Xp — S*(X0) — Y0 = v(S7) is atopological conjugacy
which maps the trajectory of an initial poirg under iteration of a given unimodal
map to that initial pointy for which the trajectory of the “canonical” unimodal
map (L0.6 has the same itinerary. The virtue of this conjugacy isitharieserves
the ordering for any unimodal map in the sense thakif x, theny > y.
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Figure 10.10: The “dike” map obtained by slicing
of a top portion of the tent map figur&0.6 (a).
Any orbit that visits the primary pruning interval
(x,1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit
interval the primary pruning interval and all its
iterates. Any admissible orbit has the same topological
coordinate and itinerary as the corresponding tent map
figure10.6(a) orbit.

10.3 Kneading theory

(K.T. Hansen and P. Cvitanovit)

The main motivation for being mindful of spatial orderingtemporal itineraries
is that this spatial ordering provides us with criteria tkaparate inadmissible
orbits from those realizable by the dynamics. For 1-dimammai mappings the
kneading theoryprovides such criterion of admissibility.

If the parameter in the quadratic mald(7) is a > 2, then the iterates of the
critical pointx. diverge forn — co. As long asa > 2, any sequenc8* composed
of letterss = {0, 1} is admissible, and any value ofQvy < 1 corresponds to an
admissible orbit in the non—wandering set of the map. Theesponding repeller
is a complete binary labeled Cantor set, the> oo limit of the nth level covering
intervals sketched in figurg0.6

Fora < 2 only a subset of the points in the intergale [0, 1] corresponds
to admissible orbits. The forbidden symbolic values aremined by observing
that the largesk, value in an orbitx; — x> — x3 — ... has to be smaller than or
equal to the image of the critical poirthe critical value 1x;). LetK = S*(xc)
be the itinerary of the critical poin;, denoted th&neading sequenas the map.
The corresponding topological coordinate is calledkheading value

k= y(K) = ¥(S" (%)) (10.10)

A map with the same kneading sequeicas f (X), such as the dike map figui®.1Q
is obtained by slicing fd all v (S*(xo)) > «,

{ fo(y) = 2y y €10 =[0,4/2)
fly)=1{ fcly) =« velc=1[k/2,1-«/2] . (10.12)
fiy) =2(1-vy) yeli=[1-«/21]

The dike map is the complete tent map figlite6 (a) with the top sliced . It is
convenient for coding the symbolic dynamics, as thps@lues that survive the
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pruning are the same as for the complete tent map fij0r&(a), and are easily
converted into admissible itineraries y0(9.

If ¥(S*) > y(K), the pointx whose itinerary isS* would exceed the critical
value,x > f(x;), and hence cannot be an admissible orbit. Let

¥(S) = SHDV((T”‘(SW) (10.12)

be themaximal value the highest topological coordinate reached by the orbit
X1 — Xo — X3 — .... We shall call the interval{ 1] theprimary pruned interval
The orbitS* is inadmissible ify of any shifted sequence &* falls into this
interval.

Criterion of admissibility: Let« be the kneading value of the critical point,
and¥(S*) be the maximal value of the orbit"'S Then the orbit $ is admissible
if and only ify(S*) < «.

While a unimodal map may depend on many arbitrarily chosearpeters, its
dynamics determines the unique kneading valué&/e shall callk thetopological
parameterof the map. Unlike the parameters of the original dynamigatem,
the topological parameter has no reason to be either smoatbntinuous. The
jumps ink as a function of the map parameter suctaas (10.7) correspond to
inadmissible values of the topological parameter. Eactpjimx corresponds to
a stability window associated with a stable cycle of a smawmiimodal map. For
the quadratic maplQ.7) « increases monotonically with the paramedgbut for
a general unimodal map such monotonicity need not hold.

For further details of unimodal dynamics, the reader isreteto appendi®©. 1.
As we shall see in sect.1.5 for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; astiemof fact, there
is an infinity of parameters that need adjustment for a giyenbslic dynamics.
This difficult subject is beyond our current ambition horizon.

10.4 Markov graphs

10.4.1 Finite memory

In the completeN-ary symbolic dynamics case (see examfl@ ) the choice of
the next symbol requires no memory of the previous ones. Memvany further
refinement of the partition requires finite memory.

For example, for the binary labeled repeller with complatety symbolic
dynamics, we might chose to partition the state space intoré&gions Moo, Mo1, Mo, M1},
a 1-step refinement of the initial partitigiMo, M1}. Such partitions are drawn
in figure 10.4, as well as figurel.9. Topologically f acts as a left shiftl(1.10),
and its action on the rectanglé]] is to move the decimal point to the right, to
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Figure 10.11: (a) The self-similarity of the
complete binary symbolic dynamics represented
by a binary tree (b) identification of nod&-= A, \

C = Aleads to the finite 1-node, 2-links Markov p A=B=C

moto\d e

T100

ot000-"
IOIOO\O L
ootoo

0TOTO-

T10T

000T o+

graph. All admissible itineraries are generated as ¢
walks on this finite Markov graph. (@) s

Figure 10.12: (a) The 2-step memory Markov
graph, links version obtained by identifying nodes
A=D=E=F =Ginfigure10.11(a). Links of

this graph correspond to the matrix entries in the
transition matrix £0.13. (b) the 2-step memory
Markov graph, node version. (b)

[0.1], forget the past,.1], and land in either of the two rectanglgsl0], [.11]}.
Filling in the matrix elements for the other three initicdt&ts we obtain the 1-step

memory transition matrix acting on the 4-state vector .
[exercise 10.7]

Toooo O  Too1o O $00
) Toroo O Torio O $o1
=T¢ = . 10.13
¢ ¢ 0 Tigor O  Tig11l]| ¢10 ( )
0 Tio1 O Tiz11/\én1

By the same token, fdvl-step memory the only nonvanishing matrix elements are
of the formTg;s, _sy.1.5s..su» SM+1 € {0, 1}. This is a sparse matrix, as the only
non vanishing entries in th& = S, ... Sy column of Ty are in the rowsd =
S1...sv0andd = s;...sy1. If weincrease the number of steps remembered, the

. . . . . . [exercise 13.1]
transition matrix grows big quickly, as tie-ary dynamics withM-step memory
requires anfiM+1x NM+1] matrix. Since the matrix is very sparse, it pays to find a
compact representation for. Such representation istarded by Markov graphs,
which are not only compact, but also give us an intuitiveyrietof the topological

dynamics.

Construction of a good Markov graph is, like combinatorigsexplainable.
The only way to learn is by some diagrammatic gymnastics, s@ark our way

through a sequence of exercises in lieu of plethora €fibg definitions. _
[exercise 13.4]

To start with, what do finite graphs have to do with infinitedng trajectories? [exercise 13.1]

To understand the main idea, let us construct a graph thatemates all possible
itineraries for the case of complete binary symbolic dyreami

Mark a dot “” on a piece of paper. Draw two short lines out of the dot, end
each with a dot. The full line will signify that the first symlda an itinerary is
“1”, and the dotted line will signifying “0”. Repeat the predure for each of the
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E
T
PRy

two new dots, and then for the four dots, and so on. The restittel binary tree
of figure10.11(a). Starting at the top node, the tree enumerates exhelystir
distinct finite itineraries

Figure 10.13: (a) The self-similarity of the00_
pruned binary tree: trees originating from nodes
C and E are the same as the entire tree. (b)
Identification of nodesA = C = E leads to the
finite 2-node, 3-links Markov graph; as 0 is always
followed by 1, the walks on this graph generate
only the admissible itineraries. (@)

0HOO ~
LHLO
10L0
10+
LEEE
Othbe =
0L0k o
(A1)

(b)

{0, 1},
{00,01, 10,11},
{000 001,01Q,---}, -~ .

The M = 4 nodes in figurel0.11(a) correspond to the 16 distinct binary strings
of length 4, and so on. By habit we have drawn the tree as temating binary
tree of figurel0.9 but that has no significance as far as enumeration of itiresra
is concerned - an ordinary binary tree would serve just ak wel

The trouble with an infinite tree is that it does not fit on a pied paper.
On the other hand, we are not doing much - at each node we aiaguzither
left or right. Hence all nodes are equivalent, and can betiitksh To say it in
other words, the tree is self-similar; the trees origir@tim nodesB andC are
themselves copies of the entire tree. The result of idengf8 = A,C = Ais a
single node, 2-link Markov graph of figuf.11(b): any itinerary generated by
the binary tree figur&0.11(a), no matter how long, corresponds to a walk on this
graph.

This is the most compact encoding of the complete binary sjimbdynamics.
Any number of more complicated Markov graphs can do the jolwel§ and
might be sometimes preferable. For example, identifyirggttbes originating in
D, E, F andG with the entire tree leads to the 2-step memory Markov greph o
figure 10.12a. The corresponding transition matrix is given b.(13.

F in depth: W fast track:
3 chapter 11, p. 174 chapter 13, p. 212
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10.5 Symbolic dynamics, basic notions

O3

In this section we collect the basic notions and definitiohsyanbolic dynamics.
The reader might prefer to skim through this material on festding, return to it
later as the need arises.

Shifts. We associate with every initial pointy € M the future itinerary, a
sequence of symboS™(xg) = 51553 - - which indicates the order in which the
regions are visited. If the trajectory, Xo, X3, ... of the initial pointxg is generated

by

Xnr1 = F(Xn), (10.14)
then the itinerary is given by the symbol sequence

S=S if Xn € MsF. (10.15)

Similarly, thepast itinerary S(Xp) = - - - S.2S.15 describes the history of, the
order in which the regions were visited before arriving te gointxy. To each
point Xy in the dynamical space we thus associate a bi-infinite airyer

S(X0) = (Skez = S™.8" =+ S.25150.919% - - (10.16)

The itinerary will be finite for a scattering trajectory, enhg and then escaping
M after a finite time, infinite for a trapped trajectory, andnitgly repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed fridm letters of the
alphabetA is called thefull shift

AX = {(Sdkez : € Aforallk € 7). (10.17)

The jargon is not thrilling, but this is how professional dymicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as tlogering symbolic
dynamics. The namshiftis descriptive of the way the dynamics acts on these
sequences. As is clear from the definitiacb0(1l9, a forward iterationx —

X = f(X) shifts the entire itinerary to the left through the “decirpaint.” This
operation, denoted by the shift operaigr

(- S251%9.919% ") =S 25190S1.93" - , (10.18)

demoting the current partition label from the futureS* to the “has been”
itinerary S™. The inverse shift-— shifts the entire itinerary one step to the right.
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Afinite sequenc® = S¢S+ 1 - - - Skeny—1 Of Symbols fromA is called ablock of
lengthny,. A state space trajectory feriodicif it returns to its initial point after a
finite time; in the shift space the trajectory is periodidsfitinerary is an infinitely
repeating blockpo™. We shall refer to the set of periodic points that belong to a
given periodic orbit as aycle

p = S[]_SZ e S]p = {XSlSZ"'S"Ip’ Xst,]psl, ey, XS"Ipsl"'S’]p—l} . (1019)

By its definition, a cycle is invariant under cyclic permigas of the symbols
in the repeating block. A bar over a finite block of symbols @tes a periodic
itinerary with infinitely repeating basic block; we shall iitme bar whenever it is
clear from the context that the trajectory is periodic. Eagtie pointis labeled by
the firstn, steps of its future itinerary. For example, the 2nd cyclenpisilabeled

by

Xsp-spst = Xe=581 5551 -

A primecycle pof lengthn, is a single traversal of the orbit; its label is a block of
np symbols that cannot be written as a repeat of a shorter bindkerature such
cycle is sometimes callgatimitive; we shall refer to it as “prime” throughout this
text).

Partitions. A patrtition is calledgenerating if every infinite symbol sequence
corresponds to a distinct point in the state space. Finitekapartition (L0.4)
is an example. Constructing a generating partition for amgsystem is a dicult
problem. In examples to follow we shall concentrate on cadgsh allow finite
partitions, but in practice almost any generating paritbinterest is infinite.

A mappingf : M — M together with a partitionA inducestopological
dynamics(Z, o), where thesubshift

2 = {(Skez} » (10.20)

is the set of aladmissiblenfinite itineraries, and- ;. ¥ — X is the shift operator
(10.19. The designation “subshift” comes form the fact tlatc A% is the
subset of the full shift{0.17. One of our principal tasks in developing symbolic
dynamics of dynamical systems that occur in nature will bdetermineX, the
set of all bi-infinite itinerariesS that are actually realized by the given dynamical
system.

A partition too coarse, coarser than, for example, a Markanitipn, would
assign the same symbol sequence to distinct dynamicattoags. To avoid that,
we often find it convenient to work with partitions finer thamictly necessary.
Ideally the dynamics in the refined partition assigns a umibpiinite itinerary
-+ 825 1%.519S3 - - to each distinct trajectory, but there might exist full shif
symbol sequenced (.17 which are not realized as trajectories; such sequences
are callednadmissible and we say that the symbolic dynamicpisined The
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word is suggested by “pruning” of branches correspondirigrtidden sequences
for symbolic dynamics organized hierarchically into a tsé®icture, as explained
in sect.10.4

Pruning. If the dynamics is pruned, the alphabet must be supplemdnted
agrammar a set of pruning rules. After the inadmissible sequences baen
pruned, it is often convenient to parse the symbolic stringswords of variable
length - this is calleccoding Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finitegm

Q = {bl5 b25 e bk} 5 (1021)

where apruning block bis a sequence of symbols = s1%--- 5y, S € A, of
finite lengthny. In this case we can always construct a finite Markov partitio
(10.4) by replacing finite length words of the original partition letters of a new
alphabet. In particular, if the longest forbidden block idemgth M + 1, we say
that the symbolic dynamics is a shift of finite type with-step memory. In that
case we carecodethe symbolic dynamics in terms of a new alphabet, with each
new letter given by an admissible block of at most lenigithin the new alphabet
the grammar rules are implemented by setfing = 0 in (10.3 for forbidden
transitions.

A topological dynamical systenX(o) for which all admissible itineraries are
generated by a finite transition matrix

Y ={(Skez : Tas,, =1 forallk} (10.22)

is called a subshift diinite type Such systems are particularly easy to handle; the
topology can be converted into symbolic dynamics by repitesg the transition
matrix by a finite directedlarkov graph a convenient visualization of topological
dynamics.

Markov graphs. A Markov graph describes compactly the ways in which the
state space regions map into each other, accounts for firdtaany dfects in
dynamics, and generates the totality of admissible trajest as the set of all
possible walks along its links.

A Markov graph consists of a set nbdeg(or vertices or state$, one for each
state in the alphabe#i = {A,B,C,---,Z}, connected by a set of directéidks
(edgesarcs). Nodei is connected by a directed link to nogl@evhenever the
transition matrix elementl(.2) takes valu€lj; = 1. There might be a set of links
connecting two nodes, or links that originate and termirtatehe same node.
Two graphs are isomorphic if one can be obtained from therdihaelabeling
links and nodes; for us they are one and the same graph. Asewetarested in
recurrent dynamics, we restrict our attentiorirteducible or strongly connected
graphs, i.e., graphs for which there is a path from any no@dayoother node.

Example 10.7 “Golden mean” pruning Consider a simple subshift on two-state
partition A = {0, 1}, with the simplest grammar G possible: a single pruning block b =
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Figure 10.14:(a) The transition matrix for binary
alphabetA = {0,1}, b = _11 pruned. (b) The 1 1 a ‘0 G

corresponding Markov graph. T = (1 0) (b) €

_11 (consecutive repeat of symbol 1 is inadmissible): the state My maps both onto Mg
and M, but the state M1 maps only onto M. The transition matrix for this grammar
is given in figure 10.14 (a). The corresponding finite 2-node, 3-links Markov graph, with
nodes coding the symbols, is given in figure 10.14 (b). All admissible itineraries are
generated as walks on this finite Markov graph.

- in depth:
3 chapter 11, p. 174
Résum é

In chaptersl6 and17 we will establish that spectra of evolution operators can be
extracted from periodic orbit sums:

Z (spectral eigenvaluesy Z (periodic orbits).

In order to implement this theory we need to know what pedauibits can exist,
and the symbolic dynamics developed above and in chdptés an invaluable
tool toward this end.

Commentary

Remark 10.1 Symbolic dynamics, history and good taste. For a brief history of
symbolic dynamics, from J. Hadamard in 1898 onward, seesNotehapter 1 of Kitchens
monograph ], a very clear and enjoyable mathematical introductiorofods discussed
here. Diacu and Holmeg] provide an excellent survey of symbolic dynamics applied
to of celestial mechanics. Finite Markov graphs or finiteoauwdta are discussed in
refs. [3, 4, 5, 6]. They belong to the category of regular languages. A goodi&an
introduction to symbolic dynamics is given in ref..

The binary labeling of the once-folding map periodic poimés introduced by Myrberg [
for 1-dimensional maps, and its utility to 2-dimensionalpmdas been emphasized in
refs. B, 12). For 1-dimensional maps it is now customary to use Rk notation of
Metropolis, Stein and Steinl{l, 15], indicating that the poink, lies either to the left or
to the right of the critical point in figur&0.6 The symbolic dynamics of such mappings
has been extensively studied by means of the Smale horsesieedor example refl{].
Using letters rather than numerals in symbol dynamics detsaprobably reflects good
taste. We prefer numerals for their computational converge as they speed up the
implementation of conversions into the topological conadés §, y) introducedin sectl1.4.1

The alternating binary ordering of figui&.9is related to the Gray codes of computer
science 17].
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Remark 10.2 Counting prime cycles. Duval has an #icient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cydteitaries).

Remark 10.3 Inflating Markov graphs. In the above examples the symbolic dynamics
has been encoded by labeling links in the Markov graph. A#tevely one can encode the
dynamics by labeling the nodes, as in figife12 where the 4 nodes refer to 4 Markov
partition regiong Moo, Mo1, M1o, M11}, and the 8 links to the 8 non-zero entries in the
2-step memory transition matri@.13.

W fast track:
chapter 13, p. 212

Exercises

10.1. Binary symbolic dynamics. Verify that the shortest () (easy) Plot 10.23, and the first 4-8 (whatever
prime binary cycles of the unimodal repeller of looks better) iterates of the critical poixt = 1/2.
figure 10.6 are 0, 1, 01, 001, 011, ---. Compare (b) (hard) Draw corresponding intervals of the
with table 10.1 Try to sketch them in the graph of partition of the unit interval as levels of a Cantor
the unimodal functionf(x); compare ordering of the set, as in the symbolic dynamics partition of
periodic points with figurel0.9 The point is that figure 10.6 (b). Note, however, that some of the
while overlayed on each other the longer cycles look intervals of figure10.6 (b) do not appear in this

like a hopeless jumble, the cycle points are clearly and

. _ . case - they arpruned
logically ordered by the alternating binary tree.

(¢) (medium) Produce ChaosBook.org quality

10.2. Generating prime cycles. Write a program that figure10.6(a).
generates all binary prime cycles up to given finite (d) (easy) Check numerically thit = S*(x), the
length. itinerary or the “kneading sequence” of the critical
10.3. A contracting baker's map.  Consider a contracting point is
(or “dissipative”) baker’s defined in exercides. K = 1011011110110111101011110111110
The symbolic dynamics encoding of trajectories is , - » +
realized via symbols Oy( < 1/2) and 1 ¢ > 1/2). The tent map poing(S*) with future itineraryS

is given by converting the sequence®k into a

Consider the observab#x,y) = x. Verify that for any binary number by the algorith 0.9

periodic orbitp (e1 . .. &), & € {0, 1}
_ W if s..1=0 _
A _§i5» e = {1—Wn if sya=1 M7

P~ 4 = 1

Y(S*) = Owiwews... = an/Z”.
10.4. Unimodal map symbolic dynamics. Show that the n=1
tent map pointy(S*) with future itineraryS* is given (e) (medium) List the the corresponding kneading
by converting the sequence sfs into a binary number value (10.10Q sequencex = y(K) to the same
by the algorithm{0.9. This follows by inspection from number of digits aK.

the binary tree of figure0.9 (f) (hard) Plot the missing dike map, figut®.1q in

10.5. Unimodal map kneading value. Consider the © ChaosBook.org quality, with the same kneading
quadratic map sequenc& asf(x). The dike map is obtained by
slicing of all y(S* (X)) > «, from the complete
f(x)=Ax1l-x), A=38. (10.23) tent map figurel0.6(a), see {0.11).
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How this kneading sequence is converted into a series of (b) Show that no orbit of this map can visit the region
pruning rules is a dark art, relegated to sé&.6 x > (1+ V5)/4 more than once. Verify that once
an orbit exceeds > (V5-1)/4, it does not reenter

10.6. “Golden mean” pruned map. Consider a )
symmetrical tent map on the unit interval such that its the regionx < (V5 - 1)/4.
highest point belongs to a 3-cycle: (c) Ifan orbitisin the interval §/5—1)/4 < x < 1/2,

1 where will it be on the next iteration?

(d) If the symbolic dynamics is such that far< 1/2
0.8 we use the symbol 0 and for> 1/2 we use the
symbol 1, show that no periodic orbit will have the
06 substring 00_in it.
(e) On the second thought, is there a periodic orbit
0.4 that violates the abov&0_ pruning rule?
0.2 For continuation, see exercids.6 and exercisel7.2
See also exercisE3.7and exercisé 3.8
0 02 04 06 08 1 10.7. Binary 3-step transition matrix. Construct [&8]
binary 3-step transition matrix analogous to the 2-step
(a) Find the absolute valu& for the slope (the two transition matrix {0.13. Convince yourself that the
different slopesA just differ by a sign) where the number of terms of contributing to " is independent
maximum at X2 is part of a period three orbit, as of the memory length, and that thisT22™] trace is well
in the figure. defined in the infinite memory limitn — co.
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