Chapter 28

Irrationally winding

| don’t care for islands, especially very small ones.
—D.H. Lawrence

(R. Artuso and P. Cvitanovit)

besides its physical relevance it nicely illustrates theafgycle expansions
away from the dynamical setting, in the realm of renorméliratheory at
the transition to chaos.

Tms CHAPTER iS concerned with the mode locking problems for circle maps:

The physical significance of circle maps is connected witkirtability to
model the two—frequencies mode—locking route to chaosissimhtive systems.
In the context ofdissipative dynamical systems one of the most common and
experimentally well explored routes to chaos is the twaoniency mode-locking
route. Interaction of pairs of frequencies is of deep thicakinterest due to the
generality of this phenomenon; as the energy input into sightive dynamical
system (for example, a Couette flow) is increased, typidaly one and then two
of intrinsic modes of the system are excited. After two Haifdifzations (a fixed
point with inward spiralling stability has become unstaaiw outward spirals to
a limit cycle) a system lives on a two-torus. Such systemd termode-lock:
the system adjusts its internal frequencies slightly so tinay fall in step and
minimize the internal dissipation. In such case the ratitheftwo frequencies
is a rational number. An irrational frequency ratio cor@sgs to a quasiperiodic
motion - a curve that never quite repeats itself. If the miodked states overlap,
chaos sets in. The likelihood that a mode-locking occuredép on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “glékihEory of circle
maps, connected with universality properties of the whobkgional winding set.
We shall see that critical global properties may be expteggecycle expansions
involving “local” renormalization critical exponents. &mwenormalization theory
of critical circle maps demands rather tedious numericahmatations, and our
intuition is much facilitated by approximating circle malpg number-theoretic
models. The models that arise in this way are by no means matieally trivial,

480



CHAPTER 28. IRRATIONALLY WINDING 481

081 i
06
f(x)

0.4

02

Figure 28.1: Unperturbed circle magk(= 0 in (28.1)) ‘
with golden mean rotation number.

they turn out to be related to number-theoretic abysses ascthe Riemann
conjecture, already in the context of the “trivial” models.

28.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotatn a circle is by
1-dimensional circle maps— X' = f(X), restricted to the one dimensional torus,
such as thaine map

X1 = f(Xn) = Xq + Q — %sin(?zrxn) mod 1. (28.1)

f(X) is assumed to be continuous, have a continuous first dedyaind a continuous
second derivative at the inflection point (where the secari/ative vanishes).
For the generic, physically relevant case (the only oneidensd here) the inflection
is cubic. Herek parametrizes the strength of the nonlinear interactiod,iis
thebare frequency.

The state space of this map, the unit interval, can be thafgi#tthe elementary
cell of the map

K1 = F(Rn) = %a + Q — %sin(?m?n) . (28.2)

where "is used in the same sense as in chayter

The winding number is defined as
W(k, Q) = r!im (Rn — Xo)/n. (28.3)

and can be shown to be independent of the initial vaiue ~

Fork = 0, the map is a simple rotation (tlskift map) see figure28.1

Xnel = Xn + O mod 1, (28.4)
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CHAPTER 28. IRRATIONALLY WINDING 482

Figure 28.2: The critical circle mapK = 1 in (28.1)) 02
devil's staircased]; the winding numbeWV as function 00 -
of the parametef.

and the rotation number is given by the paramg&ter
Wk=0,Q)=Q.

For given values of2 and k the winding humber can be either rational or
irrational. For invertible maps and rational winding numso®/ = P/Q the
asymptotic iterates of the map converge to a unique atttaatstable periodic
orbit of periodQ

foR)=%+P, i=0,1,2---,Q0-1.

This is a consequence of the independenceygréviously mentioned. There is
also an unstable cycle, repelling the trajectory. For atipmal winding number,

there is a finite interval of values ®1 values for which the iterates of the circle
map are attracted to tHe/Q cycle. This interval is called the/Q mode-locked

(or stahility) interval, and its width is given by [exercise 28.1]

— ight left
Apjg= Q%70 = Qpit - Qp - (28.5)

whereQp (Qs/5) denote the biggest (smallest) valuefor which Wik, Q) =

P/Q. Parametrizing mode lockings by the expongmather than the widti
will be convenient for description of the distribution oftmode-locking widths,
as the exponenis turn out to be of bounded variation. The stability of &
cycle is

8X ’ ’ ’
Ao =5 = 00 T(a) - F(xq1)

For a stable cycléAp,ql lies between O (the superstable value, the “center” of the
stability interval) and 1 (th€ph), 55, endpoints of £8.5). For the shift map
(28.4), the stability intervals are shrunk to points. Msis varied from 0 to 1,
the iterates of a circle map either mode-lock, with the wigdnumber given by
a rational numbeP/Q € (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numb®V as a function of the shift
parameteK is a convenient visualization of the mode-locking struetaf circle
maps. It yields a monotonic “devil's staircase” of figute.2whose self-similar

structure we are to unravel. Circle maps with zero slopeeairtthection pointx.

irrational - 22sep2000.tex



CHAPTER 28. IRRATIONALLY WINDING 483

Figure 28.3: Critical circle mapk = 1 in (28.1)) with
golden mean bare rotation number. T

(see figure28.3

f'(x) =0, f7(x) =0

(k =1, x; =01in (28.1) are calleccritical: they delineate the borderline of chaos
in this scenario.  As the nonlinearity paramekeincreases, the mode-locked
intervals become wider, and for the critical circle maks=(1) they fill out the
whole interval. A critical map has a superstabl& cycle for any rationaP/Q,

as the stability of any cycle that includes the inflectionnp@quals zero. If the
map is non-invertiblel > 1), it is called supercritical; the bifurcation structurfe o
this regime is extremely rich and beyond the scope of thigitipn.

The physically relevant transition to chaos is connecteti thie critical case,
however the apparently simple “free” shift map limit is guistructive: in essence
it involves the problem of ordering rationals embedded m whit interval on a
hierarchical structure. From a physical point of view, thaimproblem is to
identify a (number-theoretically) consistent hierarchgeeptible of experimental
verification. We will now describe a few ways of organizingioaals along the
unit interval: each has its own advantages as well as itslsheks, when analyzed
from both mathematical and physical perspective.

28.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of rerametef required to
attain it; given finite time and resolution, we expect to biedb resolve cycles up
to some maximal lengtl. This is the physical motivation for partitioning mode
lockings into sets of cycle length up €@. In number theory such sets of rationals
are calledFarey series. They are denoted b¥o and defined as follows. The
Farey series of orddD is the monotonically increasing sequence of all irredecibl
rationals between 0 and 1 whose denominators do not exQeedhus P;/Q;
belongs tofq if 0 < P; < Q; < Qand @i|Q;) = 1. For example
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CHAPTER 28. IRRATIONALLY WINDING 484

A Farey series is characterized by the property thd;if/Q;_1 and P;/Q; are
consecutive terms ofq, then

PiQi-1 - PiaQi = 1

The number of terms in the Farey serteg is given by

Q 3Q2
®Q = ), 4(Q = —5 +0QhQ). (28.6)
n=1

Here the Euler functiop(Q) is the number of integers not exceeding and relatively
prime toQ. For examplegp(1l) = 1, ¢(2) = 1, ¢(3) = 2, ...,¢(12) = 4,¢(13) =
12,...

From a humber-theorist's point of view, tikentinued fraction partitioning of
the unit interval is the most venerable organization obradls, preferred already
by Gauss. The continued fraction partitioning is obtaingdfaering rationals
corresponding to continued fractions of increasing lentjtive turn this ordering
into a way of covering the complementary set to mode-lockiimga circle map,
then the first level is obtained by deleting;, Apy, - -, Afa,], - - - mode-lockings;
their complement are theovering intervals ¢y, {2, ..., {,,, ... which contain all
windings, rational and irrational, whose continued fraictexpansion starts with
[a1,...] and is of length at least 2. The second level is obtained bgtidg
A2, Apaps s A2l ApRaps s Aingms and so on.

Thenth level continued fraction partitios,, = {a1a, - - - @y} is defined as the
monotonically increasing sequence of all ratiorg|sQ; between 0 and 1 whose
continued fraction expansion is of length n:

P, 1
_I_ = [alaaZa""an] =

Qi

The object of interest, the set of the irrational winding fnems, is in this partitioning
labeled byS., = {aiazaz---}, ax € Z%, i.e., the set of winding numbers with
infinite continued fraction expansions. The continuedtfoadabeling is particularly
appealing in the present context because of the close commet the Gauss shift
to the renormalization transformatid®) discussed below. The Gauss map

T(X) = %(—[%(] x+0
0, x=0 (28.7)

([- - -] denotes the integer part) acts as a shift on the continaetidn representation
of numbers on the unit interval

x=[ag,ap,a3,..] = T(X) =[ag,as,...]. (28.8)
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CHAPTER 28. IRRATIONALLY WINDING 485

into the “mother” intervaka,a,....

However natural the continued fractions partitioning niggeem to a number
theorist, it is problematic in practice, as it requires nueag infinity of mode-
lockings even at the first step of the partitioning. Thus nicakand experimental
use of continued fraction partitioning requires at leastsanderstanding of the
asymptotics of mode—lockings with large continued fratgmtries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any twgelatability intervals
(such as 12 and 23) in the devil's staircase of figu8.2there is the next largest
stability interval (such as/®). The winding number of this interval is given by the
Farey mediant®+P’)/(Q+ Q') of the parent mode-locking®/Q andP’/Q’. This
kind of cycle “gluing” is rather general and by no means retgd to circle maps;
it can be attained whenever it is possible to arrange tha@theterate deviation
caused by shifting a parameter from the correct value foiQteycle is exactly
compensated by th@’th iterate deviation from closing th@’-cycle; in this way
the two near cycles can be glued together into an exact cytdagthQ+Q’. The
Farey tree is obtained by starting with the ends of the utétriml written as A
and 71, and then recursively bisecting intervals by means ofyFanediants.

We define theath Farey tree level T, asthe monotonically increasing sequence
of those continued fractions[a;, &, ..., a] whoseentriesg; > 1,i=1,2,...,k—
1, & =>2adduptoyX, & = n+ 2 Forexample

T, = {[4],[2.2],[1.1,2].[1, 3]} = (

ol w
Nl W

% ) (28.9)

N

’

The number of terms ifi, is 2". Each rational inT,_; has two “daughters” iy,
given by

[...’a]
[--,a-12] [--,a+1]

Iteration of this rule places all rationals on a binary ttabeling each by a unique
binary label, figure28.4.

The smallest and the largest denominator jrare respectively given by

1 F
[n-2] = —. [1,1,...,1,2]=FL+zocp”, (28.10)
n+

where the Fibonacci numbefg are defined b¥n,1 = Fn+Fno1; Fo=0, F1 =
1, andp is the golden mean ratio

= 1.61803... (28.11)

1415
P="2
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Note the enormous spread in the cycle lengths on the sanefdhe Farey tree:
n < Q < p". The cycles whose length grows only as a power of the Fareyevel
will cause strong non-hyperbolidtects in the evaluation of various averages.

Figure 28.4: Farey tree: alternating binary ¢
ordered labeling of all Farey denominators on the
nth Farey tree level.
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Having defined the partitioning schemes of interest heraawebriefly summarize
the results of the circle-map renormalization theory.

28.2 Local theory: “Golden mean” renormalization

,
J The way to pinpoint a point on the border of order is to remetlyi adjust
the parameters so that at the recurrence titnes nq, np, ns, - - - the trajectory
passes through a region of contractiorfisiently strong to compensate for the
accumulated expansion of the precedmgsteps, but not so strong as to force
the trajectory into a stable attracting orbit. Thaormalization operation R
implements this procedure by recursively magnifying thigimeorhood of a point
on the border in the dynamical space (by rescaling by a fagton the parameter
space (by shifting the parameter origin onto the border esdaling by a factaf),
and by replacing the initial map by thenth iteratef" restricted to the magnified
neighborhood

fo(X) = Rfp(x) = af],;(x/@)

There are by now many examples of such renormalizations iichntine new
function, framed in a smaller box, is a rescaling of the oadjifunction, i.e., the
fix-point function of the renormalization operat@r The best known is the period
doubling renormalization, with the recurrence tinmes= 2'. The simplest circle
map example is the golden mean renormalization, with reage timesy, = F;
given by the Fibonacci numbergg.10. Intuitively, in this context a metric self-
similarity arises because iterates of critical maps arm#i@dves critical, i.e., they
also have cubic inflection points with vanishing derivagive

The renormalization operator appropriate to circle mapsasa generalization
of the Gauss shift48.38; it maps a circle map (represented as a pair of functions
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CHAPTER 28. IRRATIONALLY WINDING 487

(g, f), of winding number § b,c,...] into a rescaled map of winding number
[b,c,...]:

ot

Acting on a map with winding numbe@][a, a,...], R, returns a map with the
same winding numbeag[ a, . . .], so the fixed point oR; has a quadratic irrational
winding numbeW = [a,a, a, .. .]. This fixed point has a single expanding eigenvalue
da. Similarly, the renormalization transformati®ty, . .. Ry,Ra, = Raja,..a, has a
fixed point of winding numbeW, = [al,az,...,anp,al, ap, ...], with a single
expanding eigenvalug,.

( ag o foat ) (28.12)

a,ga—lofogoa,—l ?

For short repeating blocks} can be estimated numerically by comparing
successive continued fraction approximantdMo Consider theP,/Q; rational
approximation to a quadratic irrational winding numb&f, whose continued
fraction expansion consists ofrepeats of a bloclp. Let Q; be the parameter
for which the map Z8.1) has a superstable cycle of rotation numPBefQ; =
[P, p....,pl. Thed, can then be estimated by extrapolating from

Qr - Qr+l o (SF_)r (2813)
What this means is that the “devil’s staircase” of fig@&e2is self-similar under

magnification by factos, around any quadratic irrationsVy,.

The fundamental result of the renormalization theory (ddreason why all
this is so interesting) is that the ratios of succes§ive), mode-locked intervals
converge tauniversal limits. The simplest example 0£28.13 is the sequence of
Fibonacci number continued fraction approximants to theegomean winding
numberW = [1,1,1,..] = (V5 - 1)/2.

When global problems are considered, it is useful to haveast land idea on
extemal scaling laws for mode—lockings. This is achieved first analysis, by
fixing the cycle lengtiQ and describing the range of possible asymptotics.

For a given cycle length, it is found that thenarrowest interval shrinks with
a power law

Ay o« Q73 (28.14)

For fixedQ thewidest interval is bounded b/Q = F_1/Fn, thenth continued
fraction approximant to thgolden mean. The intuitive reason is that the golden
mean winding sits as far as possible from any short cycle pmzleng.

The golden mean interval shrinks with a universal exponent

Apjg o« Q21 (28.15)
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whereP = F,_1, Q = F, andy; is related to the universal Shenker number
(28.13 and the golden mea28.11) by

_Injoq]
~ 2lnp

" = 1.08218... (28.16)

The closeness @i to 1 indicates that the golden mean approximant mode-lgskin
barely feel the fact that the map is critical (in the(klimit this exponentig = 1).

To summarize: for critical maps the spectrum of exponerisngr from the
circle maps renormalization theory is bounded from abovleyarmonic scaling,
and from below by the geometric golden-mean scaling:

3/2 > pmyn > 1.08218 - - (28.17)

28.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intes\@B.5):

(o0

Or) = Z Z Aslo (28.18)
Q=1 (PIQ=1

The sum is over all irreducible rationg3Q, P < Q, andAp,q is the width of the
parameter interval for which the iterates of a critical lsinmap lock onto a cycle
of lengthQ, with winding numbeP/Q.

The qualitative behavior of28.18 is easy to pin down. For ficiently
negativer, the sum is convergent; in particular, fer= -1, Q(-1) = 1, as for
the critical circle maps the mode-lockings fill the entideange [L1]. However,
ast increases, the contributions of the narrow (la@emode-locked intervals
Apjq get blown up to ,’LA;/Q, and at some critical value afthe sum diverges.
This occurs forr < 0, asQ(0) equals the number of all rationals and is clearly
divergent.

The sum 28.18 is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small fifieHence it is necessary
to split up the sum into subsets, = {i} of rational winding number®;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, wagolution
increasing with the level:

Zo() = AT (28.19)

ieSn

The original sumZ%8.1§ can now be recovered as the 1 value of a “generating”
functionQ(z 7) = 3, Z'Zn(r). Aszis anyway a formal parameter, ands a rather
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arbitrary “level” in somead hoc partitioning of rational numbers, we bravely
introduce a still more generd?/Q weighted generating function fo2§.19:

[ee)

O, 7) = Z Z g PPRQEHPIQ (28.20)
Q=1 (PIQ)=1

The sum £8.1§ corresponds tq = 0. Exponents'p,q Will reflect the importance
we assign to thé&/Q mode-locking, i.e., theneasure used in the averaging over
all mode-lockings. Three choices of of thg g hierarchy that we consider here
correspond respectively to the Farey series partitioning

(o)

Qg =) dQ Y Qe (28.21)
Q=1 (PIQ)=1

the continued fraction partitioning

Qgn =) e? Y QP (28.22)
n=1 [a1,....an]

and the Farey tree patrtitioning

0 2n
Q@)= 2" ™, Q/PeTy. (28.23)
k=n i=1

We remark that we are investigating a set arising in the aisbf the parameter
space of a dynamical system: there is no “natural measuc&dtdd by dynamics,
and the choice of weights reflects only the choice of hielieatipresentation.

28.4 Hausdoff dimension of irrational windings

A finite cover of the set irrational windings at thath level of resolution” is
obtained by deleting the parameter values corresponditttetonode-lockings in
the subseSy; left behind is the set of complemettvering intervals of widths

. _ (min max
6 =Qf0 - QF - (28.24)

HerleF',‘r‘;‘Qr (le%l) are respectively the lower (upper) edges of the mode-hacki
intervals Ap, /o, (Ap,/q) bounding ¢ andi is a symbolic dynamics label, for

example the entries of the continued fraction represem&iQ = [a, ay, ..., an]
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CHAPTER 28. IRRATIONALLY WINDING 490

of one of the boundary mode-lockingss a;az - - - an. ¢; provide a finite cover for
the irrational winding set, so one may consider the sum

Zo() = > 67 (28.25)

i€Sn

The value of—r for which then — oo limit of the sum 8.25 is finite is the
Hausdorff dimension Dy of the irrational winding set. Strictly speaking, this is
the Hausddf dimension only if the choice of covering intervalsis optimal;
otherwise it provides an upper bound@g,. As by construction thé; intervals
cover the set of irrational winding with no slack, we expétittthis limit yields
the Hausddt dimension. This is supported by all numerical evidence alqurioof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical lienmapsDy = 0.870. ..

is a (global) universal number. .
[exercise 28.2]

28.4.1 The Hausdoff dimension in terms of cycles

Estimating then — oo limit of (28.25 from finite numbers of covering intervals
¢ is a rather unilluminating chore. Fortunately, there er@tsiderably more
elegant ways of extractin®y. We have noted that in the case of the “trivial”
mode-locking problem28.4), the covering intervals are generated by iterations
of the Farey map248.37) or the Gauss shift28.38. Thenth level sum £8.25 can

be approximated by’?, where

Ly, %) = 6(x— T I

This amounts to approximating each cover widthy |[df"/dx| evaluated on the
ith interval. We are thus led to the following determinant

ZMp |A

&P\ ZZ r 1- l/Ar

[ 1] [(1-2"iapr/Af) . (28.26)
p k=0

The sum £8.25 is dominated by the leading eigenvalue£f, the Hausddf
dimension conditiorZ,(—Dy) = O(1) means that = —Dy should be such that
the leading eigenvalue 8 = 1. The leading eigenvalue is determined by the
k = 0 part of £8.26; putting all these pieces together, we obtain a pretty fdam
relating the Hausddi dimension to the prime cycles of the mé¢x):

0=[](1-1/1A5"") . (28.27)
p
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Table 28.1: Shenker's, for a few periodic continued fractions, from ref] [
p )

P

[TI11.] -2.833612
[2222..] -6.7992410
[3333..] -13.760499
[4444.] -24.62160
[5555..] -40.38625
6666..] -62.140
1212.] 17.66549

[1313..] 31.62973
[1414.] 50.80988
1515..] 76.01299
2323.] 91.29055

For the Gauss shif2@.39 the stabilities of periodic cycles are available anasjtic
ly, as roots of quadratic equations: For example, xhdixed points (quadratic
irrationals withxy = [a, @, a. . .] infinitely repeating continued fraction expansion)
are given by

2
- Va2 + 4 Va2 + 4
X = A+ V& *A za ey Aa__{—"“ ar } (28.28)

- 2
and thexy, = [a,b,a,b,a,b,...] 2-cycles are given by

o = 2T V(@) + 4ab (28.29)

2b

~ , _(ab+2+ yab@b+4)\’
Aap = (XapXpa) —( > )

We happen to know beforehand tHat, = 1 (the irrationals take the full
measure on the unit interval, or, from another point of vitwe Gauss map
is not a repeller), so is the infinite produ@8(27) merely a very convoluted
way to compute the number 1? Possibly so, but once the meani(B.27
has been grasped, the corresponding formula focthizal circle maps follows
immediately:

0=]](1-1/165°") . (28.30)
p

The importance of this formula relies on the fact that it eggesDy in terms

of universal quantities, thus providing a nice connection from localversal
exponents to global scaling quantities: actual computatiosing £8.30 are
rather involved, as they require a heavy computatioffalieto extract Shenker’s
scalingoy, for periodic continued fractions, and moreover dealindwaib infinite
alphabet requires control over tail summation if an aceuestimate is to be
sought. In tabl&8.4.1we give a small selection of computed Shenker’s scalings.
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CHAPTER 28. IRRATIONALLY WINDING 492

28.5 Thermodynamics of Farey tree: Farey model

,
J We end this chapter by giving an example of a number thealetiodel
motivated by the mode-locking phenomenology. We will cdasiit by means of
the thermodynamic formalism of chapt&2, by looking at the free energy.

Consider the Farey tree partition su@B(23: the narrowest mode-locked
interval 28.19 at thenth level of the Farey tree partition sui®8.23 is the golden
mean interval

Af, F, o |61 (28.31)

It shrinks exponentially, and far positive and large it dominategr) and bounds
dg(r)/dr:

’ _ In|61|
maxX " n2

= 1.502642 .. (28.32)

However, forr large and negativey(r) is dominated by the intervaP8.14 which
shrinks only harmonically, ang(r) approaches 0 as

T 3Inn

So for finite n,qn(r) crosses the axis at—r = Dy, but in then — oo limit, the
q() function exhibits a phase transitiog(r) = O for r < —Dy, but is a non-trivial
function of r for —Dy < 7. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic moddie (critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynassiis given by the
“Farey model,” in which the intervalé, g are replaced bp2:

2n
Zo(r) = Y QF. (28.34)
i=1

Here Q; is the denominator of théh Farey rationalP;/Q;. For example (see
figure 28.4),

Z5(1/2) =4 +5+ 5+ 4

By the annihilation property28.38 of the Gauss shift on rationals, thtéh Farey
level sumZ,(—1) can be written as the integral

2-1)= [ dxa(1") = Y 11, 4,00
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7/2 | Zn(7/ 2)/§n—1(7'/ 2)

3
(5+ V17)/2
7

(5+ V17)/2
7+4+6
26.20249. . .

U b~ WN PO

Table 28.2: Partition function sum rules for the Farey model.

and in general

2,0 = [ axzie.).

with the sum restricted to the Farey leggl+ ... + ax = n + 2. Itis easily checked

the Gauss map preimadésm& 0, i.e., by rationals, rather than by the quadratic
irrationals as inZ8.26. The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the peoidii expansion, but

in this variant of the finite level sums we can can evalagt$ exactly for T = k/2,

k a nonnegative integer. First, one observesZh@l) = 2". Itis also easy to check
thatZ,(1/2) = 3; Qi = 2- 3". More surprisingly,Zn(3/2) = 3; Q® = 54. 7" 1,

A few of these “sum rules” are listed in the talil8.2 they are consequence of
the fact that the denominators on a given level are Farey sfidenominators on

receding levels.
P 9 [exercise 28.3]

A bound onDy can be obtained by approximatingg(34) by
Zn(7) = % + 2Mp2T, (28.35)

In this approximation we have replaced &g, except the widest intervéhn,
by the narrowest intervdk, ,/r, (See £8.19). The crossover from the harmonic
dominated to the golden mean dominated behavior occurg attlue for which
the two terms inZ8.35 contribute equally:

) | . In2
Dn:D+O(%), D=2 _ 72 . (28.36)

For negativer the sum 28.39 is the lower bound on the sur@g.29 , soD is
a lower bound orDy.

From a general perspective the analysis of circle maps thaynamics has
revealed the fact that physically interesting dynamicatesys often exhibit mixtures
of hyperbolic and marginal stabilities. In such systemsdlae orbits that stay
‘glued’ arbitrarily close to stable regions for arbitrgrilong times. This is a
generic phenomenon for Hamiltonian systems, where aliptands of stability
coexist with hyperbolic homoclinic webs. Thus the consatiens of chapteP3
are important also in the analysis of renormalization aifeet of chaos.
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Résumé

The mode locking problem, and the quasiperiodic transitmrthaos €fer an
opportunity to use cycle expansions on hierarchical atrestin parameter space:
this is not just an application of the conventional thernraaiypic formalism, but
offers a clue on how to extend universality theory from localisga to global
quantities.

Commentary

Remark 28.1 The physics of circle maps. Mode—locking phenomenologyis reviewed
in ref. [5], amore theoretically oriented discussion is containgdin3]. While representative
of dissipative systems we may also consider circle mapsaside @pproximation to
Hamiltonian local dynamics: a typical island of stabilitya Hamiltonian 2d map is an
infinite sequence of concentric KAM tori and chaotic regidnghe crudest approximation,
the radius can here be treated as an external parafetend the angular motion can
be modelled by a map periodic in the angular variakle9. By losing all of the
“island-within-island” structure of real systems, circfep models skirt the problems of
determining the symbolic dynamics for a realistic Hamiitomsystem, but they do retain
some of the essential features of such systems, such addemgoean renormalizatiof,|

8] and non-hyperbolicity in form of sequences of cycles acalating toward the borders
of stability. In particular, in such systems there are arthiait stay “glued” arbitrarily close
to stable regions for arbitrarily long times. As this is a gga phenomenon in physically
interesting dynamical systems, such as the Hamiltoniatesyswith coexisting elliptic
islands of stability and hyperbolic homoclinic webs, depeghent of good computational
techniques is here of utmost practical importance.

Remark 28.2 Critical mode—locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposeefs.if?, 10]. The proof that the
set of irrational windings is of zero Lebesgue measure iemgin ref. [L1].

Remark 28.3 Counting noise for Farey series. The number of rationals in the Farey
series of ordef is ¢(Q), which is a highly irregular function a: incrementingQ by 1
increase®(Q) by anything from 2 taQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numericallatitms with the Farey
series partitionings; it blocks smooth extrapolation®te~ o limits from finite Q data.
While this in practice renders inaccurate most Farey-saecpipartitioned averages, the
finite Q Hausdoff dimension estimates exhibit (for reasons that we do not nsitaied)
surprising numerical stability, and the Farey series panting actually yields théoest
numerical value of the Hausddrdimension 28.25 of any methods used so far; for
example the computationin ref.q] for critical sine map28.1), based on 24& Q < 250
Farey series partitions, yield3y = .87012+ .00001. The quoted error refers to the
variation ofDy over this range o®; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a largefact
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CHAPTER 28. IRRATIONALLY WINDING 495

Remark 28.4 Farey tree presentation function. The Farey tree rationals can be generated
by backward iterates of/2 by the Farey presentation functiorn:

fo(X)
f1(x)

X/(1-X) 0<x<1/2
(1-Xx)/x 1/2<x<1.

(28.37)

The Gauss shift48.7) corresponds to replacing the binary Farey presentatiootion
branchfy in (28.3% by an infinity of branches

[N

1
floféa—l)(x)z——a, m<xg

09 :
foo-o fyo fa(x). (28.38)

fab.c(X)

>

Arationalx = [ay, @y, . . ., &] is annihilated by théth iterate of the Gauss shifty, ,..5,(X) =
0. The above maps look innocent enough, but note that whating lpartitioned is not
the dynamical space, but the parameter space. The flow beddsy £8.37 and by its
non-trivial circle-map generalizations will turn out to baenormalization group flow

in the function space of dynamical systems, not an ordinauy fh the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (ascfilipping heads and
tails” relations obtained by reversing the order of the caregd-fraction entries) with as
yet unexploited implications for the renormalization thecsome of these are discussed
in ref. [4].

An alternative labeling of Farey denominators has beewdhiced by Knauff] in
context of number-theoretical modeling of ferromagnepéischains: it allows for a
number of elegant manipulations in thermodynamic averagesected to the Farey tree
hierarchy.

Remark 28.5 Circle map renormalization The idea underlying golden mean renormalization
goes back to Shenkep][ A renormalization group procedure was formulated in.rgfs

14], where moreover the uniqueness of the relevant eigenialtiaimed. This statement

has been confirmed by a computer—assisted prodf and in the following we will

always assume it. There are a number of experimental ewvédeioc local universality,

see refs. 16, 17].

On the other side of the scaling tale, the power law scalimghémmonic fractions
(discussed in refs.Z] ?, 4]) is derived by methods akin to those used in describing
intermittency P1]: 1/Q cycles accumulate toward the edge g1 0node-locked interval,
and as the successive mode-locked intervdl®,1L/(Q — 1) lie on a parabola, their
differences are of ord€2.

Remark 28.6 Farey series and the Riemann hypothesis The Farey series thermodynamics
is of a number theoretical interest, because the Fareyssgraide uniform coverings

of the unit interval with rationals, and because they arsealiorelated to the deepest
problems in number theory, such as the Riemann hypothegigf] . The distribution

of the Farey series rationals across the unit interval ipr&ingly uniform - indeed,

so uniform that in the pre-computer days it has motivated mplation of an entire
handbook of Farey serie24]. A quantitative measure of the non-uniformity of the
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distribution of Farey rationals is given by displacemeritsarey rationals foP;/Q; € Fqo
from uniform spacing:

i PI 1= ...
6|—w_67 |_1727 7(D(Q)

The Riemann hypothesis states that the zeros of the Riengtarfunction lie on the

s = 1/2 + it line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interéstehere. However, there is
a real-line version of the Riemann hypothesis that lies woge to the mode-locking
problem. According to the theorem of Franel and Landay P2, 23], the Riemann
hypothesis is equivalent to the statement that

D7 l6il = 0(Q*)

Q<Q

for all e asQ — oo. The mode-lockingg\p/q contain the necessary information for
constructing the partition of the unit interval into thiecovers, and therefore implicitly
contain thes; information. The implications of this for the circle-maga$ing theory have
not been worked out, and is not known whether some conjeahget the thermodynamics
of irrational windings is equivalent to (or harder than) Riemann hypothesis, but the
danger lurks.

Remark 28.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. [26, 27, 4] and its thermodynamics is discussed in detail in refg, 13]. The Farey
tree hierarchy of rationals is rather new, and, as far as aware, not previously studied
by number theorists. It is appealing both from the experimend from the the golden-
mean renormalization point of view, but it has a serious thaoek of lumping together
mode-locking intervals of wildly dferent sizes on the same level of the Farey tree.

Remark 28.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in réf. [The question was reexamined in refZ], where

it was pointed out how a high-precision numerical estimat@aipractice very hard to
obtain. Itis not at all clear whether this is the optimal glbuantity to test but at least
the Hausddf dimension has the virtue of being independent of how onétjoers mode-
lockings and should thus be the same for the variety of thdymamic averages in the
literature.

The formula £8.30, linking local to global behavior, was proposed in réd.

The derivation of 28.3Q relies only on the following aspects of the “hyperbolicity
conjecture” of refs.4, 18, 19, 20):

1. limitsfor Shenkep's exist and are universal. This should follow from the renormaiaat
theory developed in refs7[ 14, 15], though a general proof is still lacking.

2. dp grow exponentially with np, the length of the continued fraction blopk

3. §p for p = aa@,...n with a large continued fraction entry grows as gpower
of n. According to £8.19, lim,,dp o n°. In the calculation of ref. 1] the
explicit values of the asymptotic exponents and prefact@i® not used, only the
assumption that the growth 6§ with n is not slower than a power of
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Remark 28.9 Farey model. The Farey model48.33 has been proposed in ref.q];
though it might seem to have been pulled out of a hat, the Faegel is as sensible
description of the distribution of rationals as the peréoalibit expansioni8.29.

Remark 28.10 Symbolic dynamics for Hamiltonian rotational orbits.  The rotational
codes of ref. ] are closely related to those for maps with a natural angtabbe, for
example for circle maps3f, 36] and cat mapsi/]. Ref. [6] also dfers a systematic rule
for obtaining the symbolic codes of “islands around isldmdtational orbits B9). These
correspond, for example, to orbits that rotate around @thit rotate around the elliptic
fixed point; thus they are defined by a sequence of rotatiorbeusn

A different method for constructing symbolic codes for “islanasiad islands” was
given in refs. {12, 40]; however in these cases the entire set of orbits in an iskeasl
assigned the same sequence and the motivation was to stutigintisport implications for
chaotic orbits outside the islandsd 41].

Exercises

28.1. Mode-locked intervals.  Check that whetk # 0 the
interval Ap;o have a non-zero width (look for instance
at simple fractions, and considesmall). Show that for

smallk the width ofAq/; is an increasing function d¢ 6. Hitting condition.

for £(s a) (via Euler summation formula) or keep on
subtracting leading contributiong1].

Prove £.39. Hint: together

with the real trajectory consider the line passing through

28.2. Bounds on Hausdoff dimension. By making use of
the boundsZ8.17 show that the Hausdfirdimension
for critical mode lockings may be bounded by

2/3 < Dy <.9240...

28.3. Farey model sumrules. Verify the sum rules reported
in table28.2 An elegant way to get a number of su
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf, see
ref. [29].

28.4. Metric entropy of the Gauss shift. Check

the starting point, with polar angl&,,: then draw the
perpendiculars to the actual trajectory, passing through
the center of the (@) and (, n) disks.

28.7. jnand a¢.  Look at the integration region and how it
scales by plotting it for increasing valuesrof

8. Estimates of the Riemann zeta function.
approximate numerically the Riemann zeta function for
s = 2,4, 6 using diferent acceleration algorithms: check
your results with refs.g2, 33).

that the Lyapunov exponent of the Gauss m2@.7) is 28.9- Farey tree and continued fractions I. ~ Consider the

given byz?/6In2. This result has been claimed to be
relevant in the discussion of “mixmaster” cosmologies,

see ref. B0.

28.5. Refined expansions. Show that the above estimates

can be refined as follows:
F(z2) ~ {(2)+(1-2log(1-2)-(1-2
and

F(z9 ~ {(9+T(1-9(1-2° "' -S(9(1-2)

for s € (1,2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate
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Farey tree presentation functidn [0, 1] — [0, 1], such
thatif | = [0,1/2)andJd = [1/2,1], f], = x/(1 - X) and
fl; = (1 — X)/x. Show that the corresponding induced
map is the Gauss may§x) = 1/x—[1/X].

Farey tree and continued fraction Il. (Lethal weapon

II). Build the simplest piecewise linear approximation
to the Farey tree presentation function (hint: substitute
first the righmost, hyperbolic branch with a linear one):
consider then the spectral determinant of the induced
mapd, and calculate the first two eigenvalues besides
the probability conservation one. Compare the results
with the rigorous bound deduced in retf.].
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