
Chapter 28

Irrationally winding

I don’t care for islands, especially very small ones.

—D.H. Lawrence

(R. Artuso and P. Cvitanović)

T  is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at

the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context ofdissipative dynamical systems one of the most common and
experimentally well explored routes to chaos is the two-frequency mode-locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typicallyfirst one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstableand outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode-lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio ofthe two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states overlap,
chaos sets in. The likelihood that a mode-locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local” renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our
intuition is much facilitated by approximating circle mapsby number-theoretic
models. The models that arise in this way are by no means mathematically trivial,
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Figure 28.1: Unperturbed circle map (k = 0 in (28.1))
with golden mean rotation number.
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they turn out to be related to number-theoretic abysses suchas the Riemann
conjecture, already in the context of the “trivial” models.

28.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle mapsx→ x′ = f (x), restricted to the one dimensional torus,
such as thesine map

xn+1 = f (xn) = xn + Ω −
k

2π
sin(2πxn) mod 1 . (28.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a continuous
second derivative at the inflection point (where the second derivative vanishes).
For the generic, physically relevant case (the only one considered here) the inflection
is cubic. Herek parametrizes the strength of the nonlinear interaction, and Ω is
thebare frequency.

The state space of this map, the unit interval, can be thoughtof as the elementary
cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω −
k

2π
sin(2πx̂n) . (28.2)

where ˆ is used in the same sense as in chapter24.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (28.3)

and can be shown to be independent of the initial value ˆx0.

Fork = 0, the map is a simple rotation (theshift map) see figure28.1

xn+1 = xn + Ω mod 1 , (28.4)
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Figure 28.2: The critical circle map (k = 1 in (28.1))
devil’s staircase [3]; the winding numberW as function
of the parameterΩ.

and the rotation number is given by the parameterΩ.

W(k = 0,Ω) = Ω .

For given values ofΩ and k the winding number can be either rational or
irrational. For invertible maps and rational winding numbers W = P/Q the
asymptotic iterates of the map converge to a unique attractor, a stable periodic
orbit of periodQ

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q − 1 .

This is a consequence of the independence of ˆx0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values ofΩ values for which the iterates of the circle
map are attracted to theP/Q cycle. This interval is called theP/Q mode-locked

[exercise 28.1]
(or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ω
right
P/Q −Ω

le f t
P/Q . (28.5)

whereΩright
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value ofΩ for which W(k,Ω) =
P/Q. Parametrizing mode lockings by the exponentµ rather than the width∆
will be convenient for description of the distribution of the mode-locking widths,
as the exponentsµ turn out to be of bounded variation. The stability of theP/Q
cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle|ΛP/Q| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (theΩright

P/Q , Ωle f t
P/Q endpoints of (28.5)). For the shift map

(28.4), the stability intervals are shrunk to points. AsΩ is varied from 0 to 1,
the iterates of a circle map either mode-lock, with the winding number given by
a rational numberP/Q ∈ (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numberW as a function of the shift
parameterΩ is a convenient visualization of the mode-locking structure of circle
maps. It yields a monotonic “devil’s staircase” of figure28.2whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection pointxc
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Figure 28.3: Critical circle map (k = 1 in (28.1)) with
golden mean bare rotation number.
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(see figure28.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (28.1)) are calledcritical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameterk increases, the mode-locked
intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstableP/Q cycle for any rationalP/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free” shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a
hierarchical structure. From a physical point of view, the main problem is to
identify a (number-theoretically) consistent hierarchy susceptible of experimental
verification. We will now describe a few ways of organizing rationals along the
unit interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

28.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of theparameterΩ required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal lengthQ. This is the physical motivation for partitioning mode
lockings into sets of cycle length up toQ. In number theory such sets of rationals
are calledFarey series. They are denoted byFQ and defined as follows. The
Farey series of orderQ is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceedQ. Thus Pi/Qi

belongs toFQ if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example
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A Farey series is characterized by the property that ifPi−1/Qi−1 and Pi/Qi are
consecutive terms ofFQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey seriesFQ is given by

Φ(Q) =
Q

∑

n=1

φ(Q) =
3Q2

π2
+ O(Q ln Q). (28.6)

Here the Euler functionφ(Q) is the number of integers not exceeding and relatively
prime toQ. For example,φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) = 4, φ(13) =
12, . . .

From a number-theorist’s point of view, thecontinued fraction partitioning of
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode-lockings in a circle map,
then the first level is obtained by deleting∆[1] , ∆[2] , · · · ,∆[a1] , · · · mode-lockings;
their complement are thecovering intervalsℓ1, ℓ2, . . . , ℓa1, . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m] , · · · and so on.

Thenth level continued fraction partitionSn = {a1a2 · · · an} is defined as the
monotonically increasing sequence of all rationalsPi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partitioning
labeled byS∞ = {a1a2a3 · · ·}, ak ∈ Z+, i.e., the set of winding numbers with
infinite continued fraction expansions. The continued fraction labeling is particularly
appealing in the present context because of the close connection of the Gauss shift
to the renormalization transformationR, discussed below. The Gauss map

T (x) =
1
x
−

[

1
x

]

x , 0

0 , x = 0 (28.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction representation
of numbers on the unit interval

x = [a1, a2, a3, . . .] → T (x) = [a2, a3, . . .] . (28.8)
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into the “mother” intervalℓa2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode-
lockings even at the first step of the partitioning. Thus numerical and experimental
use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure28.2there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by the
Farey mediant (P+P′)/(Q+Q′) of the parent mode-lockingsP/Q andP′/Q′. This
kind of cycle “gluing” is rather general and by no means restricted to circle maps;
it can be attained whenever it is possible to arrange that theQth iterate deviation
caused by shifting a parameter from the correct value for theQ-cycle is exactly
compensated by theQ′th iterate deviation from closing theQ′-cycle; in this way
the two near cycles can be glued together into an exact cycle of lengthQ+Q′. The
Farey tree is obtained by starting with the ends of the unit interval written as 0/1
and 1/1, and then recursively bisecting intervals by means of Farey mediants.

We define thenth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k −
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{

[4], [2, 2], [1, 1, 2], [1, 3]
}

=

(1
4
,
1
5
,
3
5
,
3
4

)

. (28.9)

The number of terms inTn is 2n. Each rational inTn−1 has two “daughters” inTn,
given by

[· · · , a]
[· · · , a − 1, 2] [· · · , a + 1]

Iteration of this rule places all rationals on a binary tree,labeling each by a unique
binary label, figure28.4.

The smallest and the largest denominator inTn are respectively given by

[n − 2] =
1

n − 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (28.10)

where the Fibonacci numbersFn are defined byFn+1 = Fn+Fn−1; F0 = 0, F1 =

1, andρ is the golden mean ratio

ρ =
1+
√

5
2

= 1.61803. . . (28.11)
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Figure 28.4: Farey tree: alternating binary
ordered labeling of all Farey denominators on the
nth Farey tree level.
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Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree level
will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, wenow briefly summarize
the results of the circle-map renormalization theory.

28.2 Local theory: “Golden mean” renormalization

The way to pinpoint a point on the border of order is to recursively adjust
the parameters so that at the recurrence timest = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the precedingni steps, but not so strong as to force
the trajectory into a stable attracting orbit. Therenormalization operation R
implements this procedure by recursively magnifying the neighborhood of a point
on the border in the dynamical space (by rescaling by a factorα), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factorδ),
and by replacing the initial mapf by thenth iterate f n restricted to the magnified
neighborhood

fp(x)→ R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, i.e., the
fix-point function of the renormalization operatorR. The best known is the period
doubling renormalization, with the recurrence timesni = 2i. The simplest circle
map example is the golden mean renormalization, with recurrence timesni = Fi

given by the Fibonacci numbers (28.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generalization
of the Gauss shift (28.38); it maps a circle map (represented as a pair of functions
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(g, f ), of winding number [a, b, c, . . .] into a rescaled map of winding number
[b, c, . . .]:

Ra

(

g
f

)

=

(

αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)

, (28.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map with the
same winding number [a, a, . . .], so the fixed point ofRa has a quadratic irrational
winding numberW = [a, a, a, . . .]. This fixed point has a single expanding eigenvalue
δa. Similarly, the renormalization transformationRap . . .Ra2Ra1 ≡ Ra1a2...ap has a
fixed point of winding numberWp = [a1, a2, . . . , anp , a1, a2, . . .], with a single
expanding eigenvalueδp.

For short repeating blocks,δ can be estimated numerically by comparing
successive continued fraction approximants toW. Consider thePr/Qr rational
approximation to a quadratic irrational winding numberWp whose continued
fraction expansion consists ofr repeats of a blockp. Let Ωr be the parameter
for which the map (28.1) has a superstable cycle of rotation numberPr/Qr =

[p, p, . . . , p]. Theδp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ−r
p . (28.13)

What this means is that the “devil’s staircase” of figure28.2is self-similar under
magnification by factorδp around any quadratic irrationalWp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successivePr/Qr mode-locked intervals
converge touniversal limits. The simplest example of (28.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
numberW = [1, 1, 1, ...] = (

√
5− 1)/2.

When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle lengthQ and describing the range of possible asymptotics.

For a given cycle lengthQ, it is found that thenarrowest interval shrinks with
a power law

∆1/Q ∝ Q−3 (28.14)

For fixedQ thewidest interval is bounded byP/Q = Fn−1/Fn, thenth continued
fraction approximant to thegolden mean. The intuitive reason is that the golden
mean winding sits as far as possible from any short cycle mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (28.15)
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whereP = Fn−1, Q = Fn andµ1 is related to the universal Shenker numberδ1
(28.13) and the golden mean (28.11) by

µ1 =
ln |δ1|
2 lnρ

= 1.08218. . . (28.16)

The closeness ofµ1 to 1 indicates that the golden mean approximant mode-lockings
barely feel the fact that the map is critical (in the k=0 limit this exponent isµ = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above bythe harmonic scaling,
and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218· · · . (28.17)

28.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (28.5):

Ω(τ) =
∞
∑

Q=1

∑

(P|Q)=1

∆−τP/Q. (28.18)

The sum is over all irreducible rationalsP/Q, P < Q, and∆P/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of lengthQ, with winding numberP/Q.

The qualitative behavior of (28.18) is easy to pin down. For sufficiently
negativeτ, the sum is convergent; in particular, forτ = −1, Ω(−1) = 1, as for
the critical circle maps the mode-lockings fill the entireΩ range [11]. However,
asτ increases, the contributions of the narrow (largeQ) mode-locked intervals
∆P/Q get blown up to 1/∆τP/Q, and at some critical value ofτ the sum diverges.
This occurs forτ < 0, asΩ(0) equals the number of all rationals and is clearly
divergent.

The sum (28.18) is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small finiteQ. Hence it is necessary
to split up the sum into subsetsSn = {i} of rational winding numbersPi/Qi on
the “level” n, and present the set of mode-lockings hierarchically, withresolution
increasing with the level:

Z̄n(τ) =
∑

i∈Sn

∆−τi . (28.19)

The original sum (28.18) can now be recovered as thez = 1 value of a “generating”
functionΩ(z, τ) =

∑

n znZ̄n(τ). As z is anyway a formal parameter, andn is a rather
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arbitrary “level” in somead hoc partitioning of rational numbers, we bravely
introduce a still more general,P/Q weighted generating function for (28.18):

Ω(q, τ) =
∞
∑

Q=1

∑

(P|Q)=1

e−qνP/Q Q2τµP/Q . (28.20)

The sum (28.18) corresponds toq = 0. ExponentsνP/Q will reflect the importance
we assign to theP/Q mode-locking, i.e., themeasure used in the averaging over
all mode-lockings. Three choices of of theνP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =
∞
∑

Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τµP/Q , (28.21)

the continued fraction partitioning

Ω(q, τ) =
∞
∑

n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an ] , (28.22)

and the Farey tree partitioning

Ω(q, τ) =
∞
∑

k=n

2−qn
2n
∑

i=1

Q2τµi
i , Qi/Pi ∈ Tn . (28.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure” dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.

28.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding tothe mode-lockings in
the subsetSn; left behind is the set of complementcovering intervals of widths

ℓi = Ω
min
Pr/Qr

−Ωmax
Pl/Ql

. (28.24)

HereΩmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-locking
intervals∆Pr/Qr (∆Pl/Ql) bounding ℓi and i is a symbolic dynamics label, for
example the entries of the continued fraction representation P/Q = [a1, a2, ..., an]
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of one of the boundary mode-lockings,i = a1a2 · · · an. ℓi provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑

i∈Sn

ℓ−τi (28.25)

The value of−τ for which then → ∞ limit of the sum (28.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervalsℓi is optimal;
otherwise it provides an upper bound toDH. As by construction theℓi intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, buta proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle mapsDH = 0.870. . .
is a (global) universal number.

[exercise 28.2]

28.4.1 The Hausdorff dimension in terms of cycles

Estimating then → ∞ limit of (28.25) from finite numbers of covering intervals
ℓi is a rather unilluminating chore. Fortunately, there existconsiderably more
elegant ways of extractingDH. We have noted that in the case of the “trivial”
mode-locking problem (28.4), the covering intervals are generated by iterations
of the Farey map (28.37) or the Gauss shift (28.38). Thenth level sum (28.25) can
be approximated byLn

τ, where

Lτ(y, x) = δ(x − f −1(y))| f ′(y)|τ

This amounts to approximating each cover widthℓi by |d f n/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1− zLτ) = exp

















−
∑

p

∞
∑

r=1

zrnp

r

|Λr
p|τ

1− 1/Λr
p

















=
∏

p

∞
∏

k=0

(

1− znp |Λp|τ/Λk
p

)

. (28.26)

The sum (28.25) is dominated by the leading eigenvalue ofLτ; the Hausdorff
dimension conditionZn(−DH) = O(1) means thatτ = −DH should be such that
the leading eigenvalue isz = 1. The leading eigenvalue is determined by the
k = 0 part of (28.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the mapf (x):

0 =
∏

p

(

1− 1/|Λp|DH
)

. (28.27)
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Table 28.1: Shenker’sδp for a few periodic continued fractions, from ref. [1].
p δp

[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

For the Gauss shift (28.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, thexa fixed points (quadratic
irrationals withxa = [a, a, a . . .] infinitely repeating continued fraction expansion)
are given by

xa =
−a +

√
a2 + 4

2
, Λa = −















a +
√

a2 + 4
2















2

(28.28)

and thexab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab +

√

(ab)2 + 4ab
2b

(28.29)

Λab = (xabxba)−2 =

(

ab + 2+
√

ab(ab + 4)
2

)2

We happen to know beforehand thatDH = 1 (the irrationals take the full
measure on the unit interval, or, from another point of view,the Gauss map
is not a repeller), so is the infinite product (28.27) merely a very convoluted
way to compute the number 1? Possibly so, but once the meaningof (28.27)
has been grasped, the corresponding formula for thecritical circle maps follows
immediately:

0 =
∏

p

(

1− 1/|δp|DH
)

. (28.30)

The importance of this formula relies on the fact that it expressesDH in terms
of universal quantities, thus providing a nice connection from local universal
exponents to global scaling quantities: actual computations using (28.30) are
rather involved, as they require a heavy computational effort to extract Shenker’s
scalingδp for periodic continued fractions, and moreover dealing with an infinite
alphabet requires control over tail summation if an accurate estimate is to be
sought. In table28.4.1we give a small selection of computed Shenker’s scalings.
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28.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode-locking phenomenology. We will consider it by means of
the thermodynamic formalism of chapter22, by looking at the free energy.

Consider the Farey tree partition sum (28.23): the narrowest mode-locked
interval (28.15) at thenth level of the Farey tree partition sum (28.23) is the golden
mean interval

∆Fn−1/Fn ∝ |δ1|−n. (28.31)

It shrinks exponentially, and forτ positive and large it dominatesq(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|
ln 2

= 1.502642. . . (28.32)

However, forτ large and negative,q(τ) is dominated by the interval (28.14) which
shrinks only harmonically, andq(τ) approaches 0 as

q(τ)
τ
=

3 lnn
n ln 2

→ 0. (28.33)

So for finite n,qn(τ) crosses theτ axis at−τ = Dn, but in then → ∞ limit, the
q(τ) function exhibits a phase transition;q(τ) = 0 for τ < −DH, but is a non-trivial
function ofτ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given by the
“Farey model,” in which the intervalsℓP/Q are replaced byQ−2:

Zn(τ) =
2n
∑

i=1

Q2τ
i . (28.34)

Here Qi is the denominator of theith Farey rationalPi/Qi. For example (see
figure28.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (28.38) of the Gauss shift on rationals, thenth Farey
level sumZn(−1) can be written as the integral

Zn(−1) =
∫

dx δ( f n(x)) =
∑

1/| f ′a1...ak
(0)| ,
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5+

√
17)/2

3 7
4 (5+

√
17)/2

5 7+ 4
√

6
6 26.20249. . .

Table 28.2: Partition function sum rules for the Farey model.

and in general

Zn(τ) =
∫

dxLn
τ(0, x) ,

with the sum restricted to the Farey levela1 + . . . + ak = n + 2. It is easily checked
that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages ofx = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (28.26). The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluateq(τ) exactly for τ = k/2,
k a nonnegative integer. First, one observes thatZn(0) = 2n. It is also easy to check
that Zn(1/2) =

∑

i Qi = 2 · 3n. More surprisingly,Zn(3/2) =
∑

i Q3 = 54 · 7n−1.
A few of these “sum rules” are listed in the table28.2, they are consequence of
the fact that the denominators on a given level are Farey sumsof denominators on
preceding levels.

[exercise 28.3]

A bound onDH can be obtained by approximating (28.34) by

Zn(τ) = n2τ + 2nρ2nτ. (28.35)

In this approximation we have replaced allℓP/Q, except the widest intervalℓ1/n,
by the narrowest intervalℓFn−1/Fn (see (28.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at theτ value for which
the two terms in (28.35) contribute equally:

Dn = D̂ + O

(

ln n
n

)

, D̂ =
ln 2

2 lnρ
= .72. . . (28.36)

For negativeτ the sum (28.35) is the lower bound on the sum (28.25) , soD̂ is
a lower bound onDH.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mixtures
of hyperbolic and marginal stabilities. In such systems there are orbits that stay
‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic webs. Thus the considerations of chapter23
are important also in the analysis of renormalization at theonset of chaos.
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Résum é

The mode locking problem, and the quasiperiodic transitionto chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 28.1 The physics of circle maps. Mode–locking phenomenology is reviewed
in ref. [5], a more theoretically oriented discussion is contained inref. [3]. While representative
of dissipative systems we may also consider circle mapsas a crude approximation to
Hamiltonian local dynamics: a typical island of stability in a Hamiltonian 2-d map is an
infinite sequence of concentric KAM tori and chaotic regions. In the crudest approximation,
the radius can here be treated as an external parameterΩ, and the angular motion can
be modelled by a map periodic in the angular variable [8, 9]. By losing all of the
“island-within-island” structure of real systems, circlemap models skirt the problems of
determining the symbolic dynamics for a realistic Hamiltonian system, but they do retain
some of the essential features of such systems, such as the golden mean renormalization [5,
8] and non-hyperbolicity in form of sequences of cycles accumulating toward the borders
of stability. In particular, in such systems there are orbits that stay “glued” arbitrarily close
to stable regions for arbitrarily long times. As this is a generic phenomenon in physically
interesting dynamical systems, such as the Hamiltonian systems with coexisting elliptic
islands of stability and hyperbolic homoclinic webs, development of good computational
techniques is here of utmost practical importance.

Remark 28.2 Critical mode–locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposed in refs. [?, 10]. The proof that the
set of irrational windings is of zero Lebesgue measure in given in ref. [11].

Remark 28.3 Counting noise for Farey series. The number of rationals in the Farey
series of orderQ is φ(Q), which is a highly irregular function ofQ: incrementingQ by 1
increasesΦ(Q) by anything from 2 toQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations toQ → ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields thebest
numerical value of the Hausdorff dimension (28.25) of any methods used so far; for
example the computation in ref. [12] for critical sine map (28.1), based on 240≤ Q ≤ 250
Farey series partitions, yieldsDH = .87012± .00001. The quoted error refers to the
variation ofDH over this range ofQ; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a large factor.
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Remark 28.4 Farey tree presentation function. The Farey tree rationals can be generated
by backward iterates of 1/2 by the Farey presentation function [13]:

f0(x) = x/(1− x) 0 ≤ x < 1/2
f1(x) = (1− x)/x 1/2 < x ≤ 1 . (28.37)

The Gauss shift (28.7) corresponds to replacing the binary Farey presentation function
branchf0 in (28.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a − 1

< x ≤ 1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (28.38)

A rationalx = [a1, a2, . . . , ak] is annihilated by thekth iterate of the Gauss shift,fa1a2···ak (x) =
0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by (28.37) and by its
non-trivial circle-map generalizations will turn out to bea renormalization group flow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (suchas “flipping heads and
tails” relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [4].

An alternative labeling of Farey denominators has been introduced by Knauf [6] in
context of number-theoretical modeling of ferromagnetic spin chains: it allows for a
number of elegant manipulations in thermodynamic averagesconnected to the Farey tree
hierarchy.

Remark 28.5 Circle map renormalization The idea underlying golden mean renormalization
goes back to Shenker [9]. A renormalization group procedure was formulated in refs. [7,
14], where moreover the uniqueness of the relevant eigenvalueis claimed. This statement
has been confirmed by a computer–assisted proof [15], and in the following we will
always assume it. There are a number of experimental evidences for local universality,
see refs. [16, 17].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [2, ?, 4]) is derived by methods akin to those used in describing
intermittency [21]: 1/Q cycles accumulate toward the edge of 0/1 mode-locked interval,
and as the successive mode-locked intervals 1/Q, 1/(Q − 1) lie on a parabola, their
differences are of orderQ−3.

Remark 28.6 Farey series and the Riemann hypothesis The Farey series thermodynamics
is of a number theoretical interest, because the Farey series provide uniform coverings
of the unit interval with rationals, and because they are closely related to the deepest
problems in number theory, such as the Riemann hypothesis [22, 23] . The distribution
of the Farey series rationals across the unit interval is surprisingly uniform - indeed,
so uniform that in the pre-computer days it has motivated a compilation of an entire
handbook of Farey series [24]. A quantitative measure of the non-uniformity of the
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distribution of Farey rationals is given by displacements of Farey rationals forPi/Qi ∈ FQ

from uniform spacing:

δi =
i
Φ(Q)

− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interested in here. However, there is
a real-line version of the Riemann hypothesis that lies veryclose to the mode-locking
problem. According to the theorem of Franel and Landau [25, 22, 23], the Riemann
hypothesis is equivalent to the statement that

∑

Qi≤Q

|δi| = o(Q
1
2+ǫ)

for all ǫ as Q → ∞. The mode-lockings∆P/Q contain the necessary information for
constructing the partition of the unit interval into theℓi covers, and therefore implicitly
contain theδi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjectureabout the thermodynamics
of irrational windings is equivalent to (or harder than) theRiemann hypothesis, but the
danger lurks.

Remark 28.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. [26, 27, 4] and its thermodynamics is discussed in detail in refs. [12, 13]. The Farey
tree hierarchy of rationals is rather new, and, as far as we are aware, not previously studied
by number theorists. It is appealing both from the experimental and from the the golden-
mean renormalization point of view, but it has a serious drawback of lumping together
mode-locking intervals of wildly different sizes on the same level of the Farey tree.

Remark 28.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [3]. The question was reexamined in ref. [12], where
it was pointed out how a high-precision numerical estimate is in practice very hard to
obtain. It is not at all clear whether this is the optimal global quantity to test but at least
the Hausdorff dimension has the virtue of being independent of how one partitions mode-
lockings and should thus be the same for the variety of thermodynamic averages in the
literature.

The formula (28.30), linking local to global behavior, was proposed in ref. [1].

The derivation of (28.30) relies only on the following aspects of the “hyperbolicity
conjecture” of refs. [4, 18, 19, 20]:

1. limits for Shenkerδ’s exist and are universal. This should follow from the renormalization
theory developed in refs. [7, 14, 15], though a general proof is still lacking.

2. δp growexponentially with np, the length of the continued fraction blockp.

3. δp for p = a1a2 . . . n with a large continued fraction entryn grows as apower
of n. According to (28.14), limn→∞ δp ∝ n3. In the calculation of ref. [1] the
explicit values of the asymptotic exponents and prefactorswere not used, only the
assumption that the growth ofδp with n is not slower than a power ofn.
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Remark 28.9 Farey model. The Farey model (28.33) has been proposed in ref. [12];
though it might seem to have been pulled out of a hat, the Fareymodel is as sensible
description of the distribution of rationals as the periodic orbit expansion (28.26).

Remark 28.10 Symbolic dynamics for Hamiltonian rotational orbits. The rotational
codes of ref. [6] are closely related to those for maps with a natural angle variable, for
example for circle maps [34, 36] and cat maps [37]. Ref. [6] also offers a systematic rule
for obtaining the symbolic codes of “islands around islands” rotational orbits [39]. These
correspond, for example, to orbits that rotate around orbits that rotate around the elliptic
fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [42, 40]; however in these cases the entire set of orbits in an islandwas
assigned the same sequence and the motivation was to study the transport implications for
chaotic orbits outside the islands [39, 41].

Exercises

28.1. Mode-locked intervals. Check that whenk , 0 the
interval∆P/Q have a non-zero width (look for instance
at simple fractions, and considerk small). Show that for
smallk the width of∆0/1 is an increasing function ofk.

28.2. Bounds on Hausdorff dimension. By making use of
the bounds (28.17) show that the Hausdorff dimension
for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240. . .

28.3. Farey model sum rules. Verify the sum rules reported
in table28.2. An elegant way to get a number of sum
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf, see
ref. [28].

28.4. Metric entropy of the Gauss shift. Check
that the Lyapunov exponent of the Gauss map (28.7) is
given byπ2/6 ln 2. This result has been claimed to be
relevant in the discussion of “mixmaster” cosmologies,
see ref. [30].

28.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2)+ (1− z) log(1− z) − (1− z)

and

F(z, s) ∼ ζ(s) + Γ(1− s)(1− z)s−1 − S (s)(1− z)

for s ∈ (1, 2) (S (s) being expressed by a converging
sum). You may use either more detailed estimate

for ζ(s, a) (via Euler summation formula) or keep on
subtracting leading contributions [31].

28.6. Hitting condition. Prove (S.39). Hint: together
with the real trajectory consider the line passing through
the starting point, with polar angleθm,n: then draw the
perpendiculars to the actual trajectory, passing through
the center of the (0, 0) and (m, n) disks.

28.7. jn and αcr. Look at the integration region and how it
scales by plotting it for increasing values ofn.

28.8. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s = 2, 4, 6 using different acceleration algorithms: check
your results with refs. [32, 33].

28.9. Farey tree and continued fractions I. Consider the
Farey tree presentation functionf : [0, 1] 7→ [0, 1], such
that if I = [0, 1/2) andJ = [1/2, 1], f |I = x/(1− x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss mapg(x) = 1/x − [1/x].

28.10. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approximation
to the Farey tree presentation function (hint: substitute
first the righmost, hyperbolic branch with a linear one):
consider then the spectral determinant of the induced
map ĝ, and calculate the first two eigenvalues besides
the probability conservation one. Compare the results
with the rigorous bound deduced in ref. [17].
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[28.1] P. Cvitanović, G.H. Gunaratne and M. Vinson,Nonlinearity 3 (1990)

[28.2] K. Kaneko,Prog. Theor. Phys. 68, 669 (1982);69, 403 (1983);69, 1427
(1983)

[28.3] M.H. Jensen, P. Bak, T. Bohr,Phys. Rev. Lett. 50, 1637 (1983);Phys. Rev.
A 30, 1960 (1984); P. Bak, T. Bohr and M.H. Jensen,Physica Scripta T9,
50 (1985)
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