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Chapter 28

Figure 28.1: Unperturbed circle magk(= 0in (28.1)) \
with golden mean rotation number.

Irrationally windin
y g they turn out to be related to number-theoretic abysses asctine Riemann
conjecture, already in the context of the “trivial” models.

I don't care for islands, especially very small ones. 28.1 Mode Iocking
—D.H. Lawrence
(R. Artuso and P. Cvitanovic) The simplest way of modeling a nonlinearly perturbed rotatin a circle is by
1-dimensional circle maps— X’ = f(X), restricted to the one dimensional torus,
such as thaine map

besides its physical relevance it nicely illustrates threafycle expansions K
away from the dynamical setting, in the realm of renorméliwatheory at Xni1 = F(%) = X1 + Q — — sin(2rxy) mod 1. (28.1)
the transition to chaos. 2n

Tms CHAPTER iS concerned with the mode locking problems for circle maps:

The physical significance of circle maps is connected witirthbility to f(x) is assumed to be continuous, have a continuous first degyand a continuous
model the two_frequencies mode_|ocking route to Chaosimphtive Systems_ second derivative at the inflection pOint (Where the secaerilative vanishes).
In the context ofdissipative dynamical systems one of the most common and For the generic, physically relevant case (the only oneidensd here) the inflection
experimentally well explored routes to chaos is the twepdency mode-locking is cubic. Herek parametrizes the strength of the nonlinear interactiod, s
route. Interaction of pairs of frequencies is of deep thiakinterest due to the the bare frequency.
generality of this phenomenon; as the energy input into sightive dynamical . o
system (for example, a Couette flow) is increased, typidatiy one and then two The state space of this map, the unit interval, can be thafgistthe elementary
of intrinsic modes of the system are excited. After two Hoiftfitzations (a fixed cell of the map
point with inward spiralling stability has become unstadhel outward spirals to
a limit cycle) a systgm ]ives ona two-tor'us. 'Such systemd terTnode-Iock: St = f(R0) = % + Q — k sin(2ry) - (28.2)
the system adjusts its internal frequencies slightly so tihey fall in step and 21
minimize the internal dissipation. In such case the ratitheftwo frequencies
is a rational number. An irrational frequency ratio conmsgs to a quasiperiodic where"is used in the same sense as in chajter
motion - a curve that never quite repeats itself. If the mlod&ed states overlap,
chaos sets in. The likelihood that a mode-locking occursdeg on the strength The winding number is defined as
of the coupling of the two frequencies.

W(k, Q) = lim (%, — %o)/n. (28.3)

Our main concern in this chapter is to illustrate the “glélthkory of circle N—eo
maps, connected with universality properties of the whobgibnal winding set.

We shall see that critical global properties may be expresiecycle expansions and can be shown to be independent of the initial vatue

involving “local” renormalization critical exponents. &menormalization theory . . . . .

of critical circle maps demands rather tedious numericatatations, and our Fork = 0, the map is a simple rotation (tisift map) see figure28.1
intuition is much facilitated by approximating circle malpg number-theoretic

models. The models that arise in this way are by no means matfeally trivial, X1 = Xn + Q mod 1, (28.4)
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weQ)

Figure 28.2: The critical circle mapK = 1 in (28.1) 02 ‘
devil’s staircased]; the winding numbeWw as function 00

of the parametef. ) 0
and the rotation number is given by the paramgter
Wk=0,Q)=0Q.

For given values of2 and k the winding number can be either rational or
irrational.  For invertible maps and rational winding numb®&/ = P/Q the
asymptotic iterates of the map converge to a unique attraatstable periodic
orbit of periodQ

fo%)=%+P. i=012---,Q-1.

This is a consequence of the independencrygfréviously mentioned. There is
also an unstable cycle, repelling the trajectory. For atipmal winding number,
there is a finite interval of values ®f values for which the iterates of the circle
map are attracted to tHe&/Q cycle. This interval is called the/Q mode-locked
(or stability) interval, and its width is given by

- ight left
Apjg = Q%P = Qpff - Q5 . (28.5)

whereQ’Fl/gg‘ (Q'Pe/fé) denote the biggest (smallest) valuebfor which W(k, Q) =
P/Q. Parametrizing mode lockings by the expongniather than the width\
will be convenient for description of the distribution oftinode-locking widths,
as the exponents turn out to be of bounded variation. The stability of &)

cycle is
OX
Apig= 5.2 = 100)1'0x) -+ 1'(q-)

For a stable cyclé\p/gl lies between O (the superstable value, the “center” of the
stability interval) and 1 (th@:fg[, Q'F,E;é endpoints of 28.5). For the shift map
(28.4), the stability intervals are shrunk to points. Asis varied from 0 to 1,
the iterates of a circle map either mode-lock, with the wigdhumber given by

a rational numbeP/Q € (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numbV as a function of the shift
parameteq is a convenient visualization of the mode-locking struetaf circle
maps. It yields a monotonic “devil’s staircase” of figut&.2whose self-similar
structure we are to unravel. Circle maps with zero slopeeaairtflection pointx.
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Figure 28.3: Critical circle map k = 1in (28.1)) with | | | ,

golden mean bare rotation number. X

(see figure28.3

Fx)=0. 7(x)=0

(k =1, % =0in (28.1) are calleccritical: they delineate the borderline of chaos
in this scenario.  As the nonlinearity paramekencreases, the mode-locked
intervals become wider, and for the critical circle maks=(1) they fill out the
whole interval. A critical map has a superstaBj& cycle for any rationaP/Q,

as the stability of any cycle that includes the inflectionnp@&quals zero. If the
map is non-invertiblel > 1), it is called supercritical; the bifurcation structurfe o
this regime is extremely rich and beyond the scope of thigsitipn.

The physically relevant transition to chaos is connectet thie critical case,
however the apparently simple “free” shift map limit is @uiitstructive: in essence
it involves the problem of ordering rationals embedded & thit interval on a
hierarchical structure. From a physical point of view, thaimproblem is to
identify a (number-theoretically) consistent hierarchgceptible of experimental
verification. We will now describe a few ways of organizingioaals along the
unitinterval: each has its own advantages as well as itsttheks, when analyzed
from both mathematical and physical perspective.

28.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of fr@ametef2 required to
attain it; given finite time and resolution, we expect to bleab resolve cycles up
to some maximal lengt®. This is the physical motivation for partitioning mode
lockings into sets of cycle length up @ In number theory such sets of rationals
are calledFarey series. They are denoted b¥qo and defined as follows. The
Farey series of orde® is the monotonically increasing sequence of all irredwcibl
rationals between 0 and 1 whose denominators do not exQeedhus P;/Q;
belongs torg if 0 < P; < Q; < Qand @i|Q) = 1. For example
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A Farey series is characterized by the property th&;if/Q;_1 and P;/Q; are
consecutive terms of g, then

PiQ-1 - PiaQ = 1

The number of terms in the Farey serfeg s given by

Q 2
Q) = ) 4@ = 22 + 0QINQ). (28.6)
n=1

Here the Euler functiog(Q) is the number of integers not exceeding and relatively
prime toQ. For exampleg(1) = 1, ¢(2) = 1, ¢(3) = 2, ..., ¢(12) = 4,¢(13) =
12...

From a number-theorist's point of view, tieentinued fraction partitioning of
the unit interval is the most venerable organization obrals, preferred already
by Gauss. The continued fraction partitioning is obtaingdiwering rationals
corresponding to continued fractions of increasing lentjtive turn this ordering
into a way of covering the complementary set to mode-lockiimga circle map,
then the first level is obtained by deleting, Ay, - -+, Aa,, - - - mode-lockings;
their complement are theovering intervals £y, £, ..., {a,, ... which contain all
windings, rational and irrational, whose continued fraictexpansion starts with
[a1,...] and is of length at least 2. The second level is obtained HWgtidg
A2p, Aaps - > A2p Aap s Al and so on.

Thenth level continued fraction partitioS, = {a;az - - - a,} is defined as the
monotonically increasing sequence of all ratioralsQ; between 0 and 1 whose
continued fraction expansion is of length n:

P lava, - al !
- = s A2,y =

Qi '

a +

a+t...—
an

The object of interest, the set of the irrational winding s, is in this partitioning
labeled byS., = {aqjapa3---}, ax € Z7, i.e., the set of winding numbers with
infinite continued fraction expansions. The continuedtfemdabeling is particularly
appealing in the present context because of the close coomef the Gauss shift
to the renormalization transformati@®) discussed below. The Gauss map

T = )-l(—[;l(] x%0
0

, x=0 (28.7)

([- - -] denotes the integer part) acts as a shift on the continaetidn representation
of numbers on the unit interval

X =[ag,a,az3,...] > T(X) =[agas,...]. (28.8)
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into the “mother” intervala,a, ...

However natural the continued fractions partitioning nbiggem to a number
theorist, it is problematic in practice, as it requires nueiag infinity of mode-
lockings even at the first step of the partitioning. Thus nucaéand experimental
use of continued fraction partitioning requires at leastsainderstanding of the
asymptotics of mode—lockings with large continued fratgatries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any twgelatability intervals
(such as 12 and ¥3) in the devil’s staircase of figu28.2there is the next largest
stability interval (such as/&). The winding number of this interval is given by the
Farey mediantR+P’)/(Q+Q’) of the parent mode-locking®/Q andP’/Q’. This
kind of cycle “gluing” is rather general and by no means ietgd to circle maps;
it can be attained whenever it is possible to arrange thaQtheterate deviation
caused by shifting a parameter from the correct value foiQeycle is exactly
compensated by th@'th iterate deviation from closing th@’-cycle; in this way
the two near cycles can be glued together into an exact cj@agthQ+Q’. The
Farey tree is obtained by starting with the ends of the utérial written as
and ¥1, and then recursively bisecting intervals by means ofyFarediants.

We define thenth Farey treelevel T,, asthe monotonically increasing sequence
of those continued fractions [a, @y, . .., &] whose entriesa; > 1, i =1,2,..., k-
1, a=>2addupto XX, & = n+ 2 Forexample

To=1[4L22. L 120,30 = (5.5 5 o) (28.9)

allw

The number of terms i, is 2". Each rational in,_; has two “daughters” iff,,
given by

[...’a]
[.--,a=-1,2] [---,a+1]

Iteration of this rule places all rationals on a binary tiabgeling each by a unique
binary label, figure28.4

The smallest and the largest denominatof irare respectively given by

[n—2]:r12, [l,l,..‘,l,Z]:ELtocpn, (28.10)
n+

where the Fibonacci numbefg are defined by.1 = Fh+Fn1; Fo=0, F1 =
1, andp is the golden mean ratio

1+ 5

5— = 161803.. (28.11)
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Figure 28.4: Farey tree: alternating binary ¢
ordered labeling of all Farey denominators on the
nth Farey tree level.
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Note the enormous spread in the cycle lengths on the sanmefdhe Farey tree:
n < Q < p". The cycles whose length grows only as a power of the Fareyevel
will cause strong non-hyperbolidfects in the evaluation of various averages.

Having defined the partitioning schemes of interest hereyavebriefly summarize

the results of the circle-map renormalization theory.
28.2 Local theory: “Golden mean” renormalization

X
J The way to pinpoint a point on the border of order is to remetlyi adjust
the parameters so that at the recurrence times ny, ny, ng, - - - the trajectory
passes through a region of contractiortisiently strong to compensate for the
accumulated expansion of the precedmgsteps, but not so strong as to force
the trajectory into a stable attracting orbit. Thanormalization operation R
implements this procedure by recursively magnifying thigimeorhood of a point
on the border in the dynamical space (by rescaling by a fagton the parameter
space (by shifting the parameter origin onto the border aschling by a factaf),
and by replacing the initial map by thenth iteratef" restricted to the magnified
neighborhood

(%) = Rfp(x) = a0 (x/a)

There are by now many examples of such renormalizations iichane new
function, framed in a smaller box, is a rescaling of the o@gifunction, i.e., the
fix-point function of the renormalization operat@r The best known is the period
doubling renormalization, with the recurrence tinmes= 2'. The simplest circle
map example is the golden mean renormalization, with recge timesy = F;
given by the Fibonacci numbergg.10. Intuitively, in this context a metric self-
similarity arises because iterates of critical maps armt@dves critical, i.e., they
also have cubic inflection points with vanishing derivasive

The renormalization operator appropriate to circle mapsaa generalization

of the Gauss shiftA8.39; it maps a circle map (represented as a pair of functions
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(g, ), of winding number §,b,c,...] into a rescaled map of winding number
[b,c,...]:

a-1 -1
g) _ ( ag®¥lofoa (28.12)

Ra(f agtlofogoa )
Acting on a map with winding numberja, a,...], Ra returns a map with the
same winding numbeg[a, . . ], so the fixed point oR, has a quadratic irrational
winding numbei = [a,a, a,...]. This fixed point has a single expanding eigenvalue
da. Similarly, the renormalization transformati®, ... Ra,Re; = Raja,.a, has a

fixed point of winding numbeW, = [a, ag, ..., an,, a1, a, ..., with a single
expanding eigenvalug,.

For short repeating blocks; can be estimated numerically by comparing
successive continued fraction approximantdAto Consider theP,/Q; rational
approximation to a quadratic irrational winding numi&p whose continued
fraction expansion consists ofrepeats of a bloclp. Let Q, be the parameter
for which the map 8.1 has a superstable cycle of rotation numPBerQ, =
[p.p.....pl. Thed, can then be estimated by extrapolating from

Q = Qi 6y (28.13)
What this means is that the “devil’s staircase” of fig@ge2is self-similar under
magnification by factos, around any quadratic irrations,.

The fundamental result of the renormalization theory (dedreason why all
this is so interesting) is that the ratios of succes8iv&, mode-locked intervals
converge tainiversal limits. The simplest example o28.13 is the sequence of
Fibonacci number continued fraction approximants to theeyomean winding

numberw = [1,1,1,..] = (V5-1)/2.

When global problems are considered, it is useful to haveaatland idea on
extemal scaling laws for mode—lockings. This is achievedj first analysis, by
fixing the cycle lengtiQ and describing the range of possible asymptotics.

For a given cycle length, it is found that thenarrowest interval shrinks with
a power law

Aygq « Q73 (28.14)

For fixedQ thewidest interval is bounded b?/Q = F,_1/Fn, thenth continued
fraction approximant to thgolden mean. The intuitive reason is that the golden
mean winding sits as far as possible from any short cycle Amzieng.

The golden mean interval shrinks with a universal exponent

Apjq o Q1 (28.15)
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whereP = Fp1, Q = Fpandy; is related to the universal Shenker number
(28.13 and the golden mea2§.11) by

njesyl
HL= 2lnp

= 1.08218... (28.16)

The closeness ¢f; to 1 indicates that the golden mean approximant mode-lgskin
barely feel the fact that the map is critical (in theklimit this exponentig: = 1).

To summarize: for critical maps the spectrum of exponerignar from the
circle maps renormalization theory is bounded from abovaéyharmonic scaling,
and from below by the geometric golden-mean scaling:

3/2 > ppyn > 1.08218 - -. (28.17)

28.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intes\@B.5):

Q) = Z Z Avlo (28.18)
Q=1 (PIQ)=1

The sumis over all irreducible rationa®Q, P < Q, andAp,q is the width of the
parameter interval for which the iterates of a critical leinmap lock onto a cycle
of lengthQ, with winding numbeP/Q.

The qualitative behavior 0f28.19 is easy to pin down. For $iciently
negativer, the sum is convergent; in particular, for= -1, Q(-1) = 1, as for
the critical circle maps the mode-lockings fill the entiterange [L1]. However,
ast increases, the contributions of the narrow (laf@emode-locked intervals
Apyq get blown up to 1AL o and at some critical value afthe sum diverges.
This occurs forr < 0, asQ?O) equals the number of all rationals and is clearly
divergent.

The sum 28.19 is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small fif@eHence it is necessary
to split up the sum into subses, = {i} of rational winding number®;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, vé#olution
increasing with the level:

Zor) = ) A (28.19)

i€Sh

The original sumZ8.18 can now be recovered as the 1 value of a “generating”
functionQ(z 7) = ¥, 2'Zy(7). Aszis anyway a formal parameter, ands a rather

irrational - 22sep2000.tex

CHAPTER 28. IRRATIONALLY WINDING 489

arbitrary “level” in somead hoc partitioning of rational numbers, we bravely
introduce a still more generdP/Q weighted generating function fo28.19:

Qg 7) = Z Z e PPeQHRQ | (28.20)
Q=1 (PIQ)=1

The sum £8.18 corresponds tq = 0. Exponentsp,q will reflect the importance
we assign to th&/Q mode-locking, i.e., theneasure used in the averaging over
all mode-lockings. Three choices of of thgq hierarchy that we consider here
correspond respectively to the Farey series partitioning

Q(q,7) = i O(Q)™ Z Qe | (28.21)
Q=1 (PIQ)=1

the continued fraction partitioning

Q@ 7) = Z en Z Q¥Hia..anl | (28.22)
n=1

[ag,....an]

and the Farey tree partitioning

o0 n
Q)= 2" ", Q/PET,. (28.23)
k=n i=1

We remark that we are investigating a set arising in the aisbf the parameter
space of a dynamical system: there is no “natural measucédtdd by dynamics,
and the choice of weights reflects only the choice of hieiaatipresentation.

28.4 Hausdoff dimension of irrational windings

A finite cover of the set irrational windings at theth level of resolution” is
obtained by deleting the parameter values corresponditigetmode-lockings in
the subsesy; left behind is the set of complemettvering intervals of widths

6= 0o - %% - @824

HereQ’F',“?Q (QFFY, ) are respectively the lower (upper) edges of the mode-fggki
. r/Qr 1/Q . . R .
intervals Ap,;q, (Ap/q) bounding¢ andi is a symbolic dynamics label, for

example the entries of the continued fraction represem&iQ = [ay, &, ..., &)
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of one of the boundary mode-lockindss a;a; - - - a,. ¢ provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(7) = Z 6T (28.25)

i€Sh

The value of-7 for which then — oo limit of the sum 8.2 is finite is the
Hausdorf dimension Dy of the irrational winding set. Strictly speaking, this is
the Hausddf dimension only if the choice of covering intervalsis optimal;
otherwise it provides an upper boundg,. As by construction thé; intervals
cover the set of irrational winding with no slack, we expéuwttthis limit yields
the Hausddf dimension. This is supported by all numerical evidence ahuioof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical lénmapsDy = 0.870. ..

is a (global) universal number. )
[exercise 28.2]

28.4.1 The Hausdoff dimension in terms of cycles

Estimating then — oo limit of (28.25 from finite numbers of covering intervals
¢ is a rather unilluminating chore. Fortunately, there egistsiderably more
elegant ways of extractin®y. We have noted that in the case of the “trivial”
mode-locking problem28.4), the covering intervals are generated by iterations
of the Farey map28.37) or the Gauss shift28.39. Thenth level sum 28.25 can

be approximated by’?, where

Loy, ) = 5(x = T O

This amounts to approximating each cover wiéthy |df"/dx| evaluated on the
ith interval. We are thus led to the following determinant

& 2 AL
det(1-zL;) = exp -;; IR
= ﬂ ]—[ (1- Z%IAp[7/AY) - (28.26)
p k=0

The sum 28.25 is dominated by the leading eigenvalue£f, the Hausddf
dimension conditiorZ,(—Dy) = O(1) means that = —Dy should be such that
the leading eigenvalue 8 = 1. The leading eigenvalue is determined by the
k = 0 part of £8.26; putting all these pieces together, we obtain a pretty tdam
relating the Hausdd dimension to the prime cycles of the mé&fx):

0= ﬂ (1-2/1Ap%%) . (28.27)
p
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Table 28.1: Shenker's,, for a few periodic continued fractions, from ref][
p
[1111.] -2.833612
[2222..] -6.7992410

3333..] -13.760499
4444.] -24.62160
5555..] -40.38625
6666... -62.140
1212.. 17.66549
1313.. 31.62973
1414 .. 50.80988
1515.. 76.01299
2323.. 91.29055

For the Gauss shif28.39 the stabilities of periodic cycles are available anasjtic
ly, as roots of quadratic equations: For example, sthéixed points (quadratic
irrationals withx, = [a, a,a. . .] infinitely repeating continued fraction expansion)
are given by

2
_ 2 2
roo At V@4 Za+4 Aam [w] (28.28)

and thexasp = [a,b,a,b,a,b,...] 2—cycles are given by

—ab+ +/(ab)? + 4ab

oy = ot VR F A0 (28.29)

2b
L, (ab+2+ vab(@b+ 4)\°
(Xabxba)z— f)

>
8
Il

We happen to know beforehand tHay; = 1 (the irrationals take the full
measure on the unit interval, or, from another point of vithe Gauss map
is not a repeller), so is the infinite produ@8(27) merely a very convoluted
way to compute the number 1? Possibly so, but once the meai(@B.27)
has been grasped, the corresponding formula focthial circle maps follows
immediately:

0= ﬂ (1-1/1601%) (28.30)
p

The importance of this formula relies on the fact that it eggesDy in terms

of universal quantities, thus providing a nice connection from localvarsal
exponents to global scaling quantities: actual computatiosing 28.30 are
rather involved, as they require a heavy computatioffaketo extract Shenker’s
scalingd,, for periodic continued fractions, and moreover dealingwain infinite
alphabet requires control over tail summation if an aceuegtimate is to be
sought. In tabl€8.4.1we give a small selection of computed Shenker’s scalings.
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28.5 Thermodynamics of Farey tree: Farey model

X
J We end this chapter by giving an example of a number theaiatiodel
motivated by the mode-locking phenomenology. We will cdasiit by means of
the thermodynamic formalism of chapt2, by looking at the free energy.

Consider the Farey tree partition su@B(23: the narrowest mode-locked
interval 28.19 at thenth level of the Farey tree partition sui2gq.23 is the golden
mean interval

Ar /R, o 1627 (28.31)

It shrinks exponentially, and farpositive and large it dominategr) and bounds
dq(r)/dr:

AL Y YP (28.32)

max In2

However, forr large and negativey(r) is dominated by the interva28.14 which
shrinks only harmonically, ang{r) approaches 0 as

@ _ 3Inn

== (28.33)

So for finite n,gn(7) crosses the axis at—r = Dy, but in then — oo limit, the
q(r) function exhibits a phase transitiog(r) = 0 for r < —Dy, but is a non-trivial
function ofr for -Dy < 7. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic modéte (critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynarsiis given by the
“Farey model,” in which the intervalé,q are replaced bp2

»
Zy(d) = ) Q. (28.34)

i=1

Here Q; is the denominator of thah Farey rationalP;/Q;. For example (see
figure28.4),

Z5(1/2) =4+ 5+ 5+ 4

By the annihilation property28.39 of the Gauss shift on rationals, thth Farey
level sumZ,(—1) can be written as the integral

2,(-2)= [ dxa("09) = Y 118, 0 0).
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/2 | Zn(z/ 2)/§n—1(7/ 2)

3
5+ Vi7)/2
7

5+ V17)/2
7+46
26.20249...

U WN PO

Table 28.2: Partition function sum rules for the Farey model.

and in general

Zo(r) = f dxL7(0, %),

with the sum restricted to the Farey leegl+ ... + ax = n + 2. Itis easily checked

the Gauss map preimages»ok 0, i.e., by rationals, rather than by the quadratic
irrationals as in28.26. The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the peoidadi expansion, but

in this variant of the finite level sums we can can evalagt® exactly for r = k/2,

k a nonnegative integer. First, one observesZij@l) = 2". Itis also easy to check
thatZ,(1/2) = 3, Q = 2-3". More surprisingly,Z,(3/2) = ¥; Q% = 54. 71,

A few of these “sum rules” are listed in the tatil8.2, they are consequence of
the fact that the denominators on a given level are Farey sfidenominators on

r ing levels.
preceding levels [exercise 28.3]

A bound onDy can be obtained by approximatingd;34 by
Zn(1) = n% + 272", (28.35)

In this approximation we have replaced &g, except the widest intervath,,
by the narrowest intervdk, ,,r, (see £8.15). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs atmdlue for which
the two terms in28.39 contribute equally:

Dn=D+ o('”T”), D=2 72 . (28.36)

For negativer the sum £8.35 is the lower bound on the suri§.29 , soD is
a lower bound oDy

From a general perspective the analysis of circle maps thdynamics has
revealed the fact that physically interesting dynamicatesys often exhibit mixtures
of hyperbolic and marginal stabilities. In such systemsetae orbits that stay
‘glued’ arbitrarily close to stable regions for arbitrgrilong times. This is a
generic phenomenon for Hamiltonian systems, where aliptands of stability
coexist with hyperbolic homoclinic webs. Thus the consitiens of chaptef3
are important also in the analysis of renormalization abihget of chaos.
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Résumé

The mode locking problem, and the quasiperiodic transitmmrhaos fer an
opportunity to use cycle expansions on hierarchical airestin parameter space:
this is not just an application of the conventional thermuatyic formalism, but
offers a clue on how to extend universality theory from localisga to global
quantities.

Commentary

Remark 28.1 The physics of circle maps. Mode—locking phenomenology is reviewed

in ref. [5], amore theoretically oriented discussion is containedin3]. While representative

of dissipative systems we may also consider circle mapsaside @pproximation to
Hamiltonian local dynamics: a typical island of stabilitya Hamiltonian 2d map is an
infinite sequence of concentric KAM tori and chaotic regidnghe crudest approximation,
the radius can here be treated as an external parafetnd the angular motion can
be modelled by a map periodic in the angular varialile9]. By losing all of the
“island-within-island” structure of real systems, circiap models skirt the problems of
determining the symbolic dynamics for a realistic Hamileansystem, but they do retain
some of the essential features of such systems, such adtlemgeean renormalization [
8] and non-hyperbolicity in form of sequences of cycles acalating toward the borders
of stability. In particular, in such systems there are artfiit stay “glued” arbitrarily close
to stable regions for arbitrarily long times. As this is a gga phenomenon in physically
interesting dynamical systems, such as the Hamiltoniaresyswith coexisting elliptic
islands of stability and hyperbolic homoclinic webs, depshent of good computational
techniques is here of utmost practical importance.

Remark 28.2 Critical mode—locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been propose@fs.i?, 10]. The proof that the
set of irrational windings is of zero Lebesgue measure irmin ref. [L1].

Remark 28.3 Counting noise for Farey series. The number of rationals in the Farey
series of ordef is ¢(Q), which is a highly irregular function o®: incrementingQ by 1
increase®(Q) by anything from 2 taQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numericallatitms with the Farey
series partitionings; it blocks smooth extrapolation®te» o limits from finite Q data.
While this in practice renders inaccurate most Farey-secgipartitioned averages, the
finite Q Hausdoff dimension estimates exhibit (for reasons that we do not nsiaied)
surprising numerical stability, and the Farey series paning actually yields thébest
numerical value of the Hausdbrdimension £8.25 of any methods used so far; for
example the computation in ref.f] for critical sine map£8.1), based on 24 Q < 250
Farey series partitions, yield3y = .87012+ .00001. The quoted error refers to the
variation ofDy over this range o®; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a largefact
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Remark 28.4 Farey tree presentation function. The Farey tree rationals can be generated
by backward iterates of/2 by the Farey presentation functiord]:

fo(x)
fi(x)

x/(1-X) 0<x<1/2
(1-x)/x 1/2<x<1.

(28.37)

The Gauss shift48.7) corresponds to replacing the binary Farey presentatinotion
branchfy in (28.3% by an infinity of branches

5

| =

- 1 1
fa(x) fro i V(0 = X2 2o <%=
fopc() = foo-ofpo fa(x). (28.38)

Arationalx = [ay, @, ..., &] is annihilated by théth iterate of the Gauss shift, a,..5,(X) =
0. The above maps look innocent enough, but note that whagimng fpartitioned is not
the dynamical space, but the parameter space. The flow beddsy 8.3% and by its
non-trivial circle-map generalizations will turn out to beenormalization group flow
in the function space of dynamical systems, not an ordinawy fh the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (asclflipping heads and
tails” relations obtained by reversing the order of the targd-fraction entries) with as
yet unexploited implications for the renormalization thecsome of these are discussed
in ref. [4].

An alternative labeling of Farey denominators has beewdhiced by Knauf(] in
context of number-theoretical modeling of ferromagnepmschains: it allows for a
number of elegant manipulations in thermodynamic averagesected to the Farey tree
hierarchy.

Remark 28.5 Circle map renormalization The idea underlying golden mean renormalization
goes back to ShenkeP][ A renormalization group procedure was formulated in.rgfs

14], where moreover the uniqueness of the relevant eigenisilaimed. This statement

has been confirmed by a computer—assisted prodf fand in the following we will

always assume it. There are a number of experimental evédefioc local universality,

see refs. 6, 17].

On the other side of the scaling tale, the power law scalimghésmonic fractions
(discussed in refs.2] ?, 4]) is derived by methods akin to those used in describing
intermittency P1]: 1/Q cycles accumulate toward the edge ¢1 ®node-locked interval,
and as the successive mode-locked intervdl®,1/(Q — 1) lie on a parabola, their
differences are of ord€y2.

Remark 28.6 Farey series and the Riemann hypothesis The Farey series thermodynamics
is of a number theoretical interest, because the Fareysspravide uniform coverings

of the unit interval with rationals, and because they arseaiprelated to the deepest
problems in number theory, such as the Riemann hypothesigf] . The distribution

of the Farey series rationals across the unit interval iprigingly uniform - indeed,

so uniform that in the pre-computer days it has motivated rapsiation of an entire
handbook of Farey serieg4]. A quantitative measure of the non-uniformity of the
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distribution of Farey rationals is given by displacemeritSarey rationals foP;/Q; € o
from uniform spacing:

i P

"TeQ

i=12---,0(Q)

The Riemann hypothesis states that the zeros of the Riemetanfunction lie on the

s = 1/2 + it line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interdstehere. However, there is
a real-line version of the Riemann hypothesis that lies \woge to the mode-locking
problem. According to the theorem of Franel and Landay P2, 23], the Riemann
hypothesis is equivalent to the statement that

> Il = o(QF)

Q=Q

for all e asQ — oo. The mode-lockingg\p,q contain the necessary information for
constructing the partition of the unit interval into thecovers, and therefore implicitly
contain thes; information. The implications of this for the circle-magating theory have
not been worked out, and is not known whether some conjeahget the thermodynamics
of irrational windings is equivalent to (or harder than) fRiemann hypothesis, but the
danger lurks.

Remark 28.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. 26, 27, 4] and its thermodynamics is discussed in detail in ref§, [ 3]. The Farey
tree hierarchy of rationals is rather new, and, as far as waware, not previously studied
by number theorists. It is appealing both from the experimemd from the the golden-
mean renormalization point of view, but it has a serious thask of lumping together
mode-locking intervals of wildly dierent sizes on the same level of the Farey tree.

Remark 28.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in réf. [The question was reexamined in refZ], where

it was pointed out how a high-precision numerical estimataipractice very hard to
obtain. Itis not at all clear whether this is the optimal glbguantity to test but at least
the Hausddf dimension has the virtue of being independent of how onétjpers mode-
lockings and should thus be the same for the variety of thdymamic averages in the
literature.

The formula 28.30, linking local to global behavior, was proposed in réf. [

The derivation of 28.30 relies only on the following aspects of the “hyperbolicity
conjecture” of refs.4, 18, 19, 2(]:

1. limitsfor Shenkep’s exist and are universal. This should follow from the renormalzat
theory developed in refs/[ 14, 15], though a general proof is still lacking.

2. 6 growexponentially with ny, the length of the continued fraction blopk

3. 6p for p = aia...n with a large continued fraction entry grows as apower
of n. According to £8.19, limy_. 6p o n3. In the calculation of ref. 1] the
explicit values of the asymptotic exponents and prefact@i® not used, only the
assumption that the growth 6§ with nis not slower than a power of

irrational - 22sep2000.tex

EXERCISES 497

Remark 28.9 Farey model. The Farey model48.33 has been proposed in rei.q;
though it might seem to have been pulled out of a hat, the Faiagyel is as sensible
description of the distribution of rationals as the perioatibit expansion8.26.

Remark 28.10 Symbolic dynamics for Hamiltonian rotational orbits.  The rotational
codes of ref. ] are closely related to those for maps with a natural angt@abte, for
example for circle maps3fi, 36] and cat mapsi/]. Ref. [6] also dfers a systematic rule
for obtaining the symbolic codes of “islands around isldmdgtional orbits 9. These
correspond, for example, to orbits that rotate around ®thit rotate around the elliptic
fixed point; thus they are defined by a sequence of rotatiorbeusn

A different method for constructing symbolic codes for “islandsiad islands” was
given in refs. {2, 40]; however in these cases the entire set of orbits in an iskeasl
assigned the same sequence and the motivation was to seuttgutisport implications for
chaotic orbits outside the islands9 41].

Exercises
28.1. Mode-locked intervals.  Check that wheik # O the for {(s a) (via Euler summation formula) or keep
interval Ap/q have a non-zero width (look for instance subtracting leading contributions7].

at simple fractions, and considesmall). Show that for

smallk the width ofAg/1 is an increasing function d¢ 28.6. Hitting condition.

28.2. Bounds on Hausdoff dimension. By making use of the starting point, with polar angté,n: then draw tt
the boundsZ8.17% show that the Hausdfirdimension
for critical mode lockings may be bounded by the center of the (@) and (n, n) disks.

2/3 < Dy <.9240...

in table28.2 An elegant way to get a number of su 8
rules for the Farey model is by taking into account an™*
lexical ordering introduced by Contucci and Knauf, see
ref. [2€].

28.4. Metric entropy of the Gauss shift. Check

that the Lyapunov exponent of the Gauss map. ) is 28.9. Farey tree and continued fractions I.
given byn2/61In2. This result has been claimed to be ~ Farey tree presentation functién [0, 1] - [0, 1], suc
relevant in the discussion of “mixmaster” cosmologies, ~ thatifl =[0,1/2) andJ = [1/2,1], f|; = x/(1-X) an
see ref. B(]. fl; = (1 - x)/x. Show that the corresponding indu
map is the Gauss magfx) = 1/x— [1/x].

28.5. Refined expansions. Show that the above estimates

can be refined as follows: 28.10. Farey tree and continued fraction I1. (Lethal weapor
I).  Build the simplest piecewise linear approxima

F(z2) ~ {(2)+(1-2)log(1-2 - (1-2)

Prove §.39. Hint: togethe
with the real trajectory consider the line passing thr

perpendiculars to the actual trajectory, passing thi

28.7. jnand aer.  Look at the integration region and ho
28.3. Farey model sum rules. Verify the sum rules reported scales by plotting it for increasing valuesrof

. Estimates of the Riemann zeta function.
approximate numerically the Riemann zeta functio
s = 2,4,6 using diferent acceleration algorithms: ch
your results with refs.g2, 33).

and

Fzs) ~ {9 +T(1-9(1-251-S(5)(1-2)

for s € (1,2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate
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to the Farey tree presentation function (hint: subs
first the righmost, hyperbolic branch with a linear o
consider then the spectral determinant of the inc
mapd, and calculate the first two eigenvalues be:
the probability conservation one. Compare the re
with the rigorous bound deduced in ref.].
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