Chapter 5

Cycle stability

and the ways in which the orbits intertwine—are invariandama general
continuous change of coordinates. Surprisingly, therstepiantities that
depend on the notion of metric distance between points, értheless do not
change value under a smooth change of coordinates. Localitigs such as
the eigenvalues of equilibria and periodic orbits, and glajuantities such as

TOPOLOGICAL reATURES Of @ dynamical system—singularities, periodic orbits,

Lyapunov exponents, metric entropy, and fractal dimersséwe examples of properties

of dynamical systems independent of coordinate choice.

We now turn to the first, local class of such invariants, Imstability of
periodic orbits of flows and maps. This will give us metricarmhation about
local dynamics. If you already know that the eigenvalues esfqalic orbits are
invariants of a flow, skip this chapter.

fast track:
W chapter 7, p. 108
5.1 Stability of periodic orbits

As noted on pag@&5, a trajectory can be stationary, periodic or aperiodic.
chaotic systems almost all trajectories are aperiodicentieeless, equilibria and
periodic orbits will turn out to be the key to unraveling chiaalynamics. Here
we note a few of the properties that makes them so preciouthteoaist.

An obvious virtue of periodic orbits is that they a@pologicalinvariants: a
fixed point remains a fixed point for any choice of coordinatesd similarly a
periodic orbit remains periodic in any representation &f dlynamics. Any re-
parametrization of a dynamical system that preservesptdagy has to preserve
topological relations between periodic orbits, such as tieative inter-windings
and knots. So the mere existence of periodic orbificas to partially organize
the spatial layout of a non—wandering set. No less impar@stwe shall now
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show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—-wandering set.

To prove this, we start by noting that due to the multiplicatstructure 4.44)
of fundamental matrices, the fundamental matrix for therepeat of a prime
cycle p of periodT, is
r

ITe(x) = JTe(FDTe(x)) - - ITe(FTP(x))ITP(x) = (Ip(%)) (5.1)

whereJp(x) = JTr(x) is the fundamental matrix for a single traversal of the jgrim
cyclep, x € pis any point on the cycle, anfiTe(x) = x as f{(x) returns tox every
multiple of the periodT. Hence, it sffices to restrict our considerations to the
stability of prime cycles.

fast track:
W sect. 5.2, p. 87
5.1.1 Nomenclature, again

When dealing with periodic orbits, some of the quantitiésotiuced above inherit
terminology from the theory of dierential equations with periodic ciieients.
For instance, if we consider the equation of variatioh<)(evaluated on a
periodic orbitp,
5% = A(t)SX, At) = A(X(t)) = At + Tp)., (5.2)

the T, periodicity of the stability matrix implies that ix(t) is a solution of $.2)
then alsasx(t + Tp) satisfies the same equation: moreover the two solutions are
related by (see4(6))

OX(t + Tp) = Jp(X)0xX(t). (5.3)

Even though the fundamental matidy(x) depends upox (the “starting” point
of the periodic orbit), its eigenvalues do not, so we mayenidt its eigenvectors

ol
Jo(9eD(x) = Ap jei(x) = ol +i8)eli) (x)

Where,u(pj) andw(r)j) are independent of, and expand

axt) = uyed.

J

invariants - 31jan2008.tex



CHAPTER 5. CYCLE STABILITY 85

Figure 5.1: For a prime cyclep, fundamental matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € p stretched into an ellipsoid, with overlap ratio 7
along the expanding eigdirecti@? of J,(x) given by X+8
the the expanding eigenvalug|A;|. These ratios are
invariant under smooth nonlinear reparametrizations of
state space coordinates, and are intrinsic property of
cyclep.

If we take 6.3) into account, we get

oX(t+Tp) = Z uj(t+ Tp)e = Z Uj(t)eTp(l—l%)-ng))e(j)

i ]
which shows that the cdiécientsu;(t) may be written as

)i ()
uj(t) = &4 Ry, (1)

wherev;(t) is periodic with period T,. Thus each solution of the equation of
variations may be expressed as

ax(t) = > v D) vt + Ty) = vi(o), (5.4)

J

the form predicted by Floquet theorem fofffdirential equations with periodic
codficients.

The continuous timeappearing in%.4) does not imply that eigenvalues of the
fundamental matrix enjoy any multiplicative propergg) andw(pj) refer to a full
evolution over the complete periodic orbihpj is called the Floquet multiplier,

andu! +iwl the Floguet or characteristic exponent, whag = el +ifl)

5.1.2 Fundamental matrix eigenvalues and exponents

We sort theFloquet multipliersAp1, Apo, ..., Apg Of the [dxd] fundamental
matrix Jp evaluated on th@-cycle into setge, m, ¢}

expanding:  {Ale = {Apj:|Apj|>1)

marginal:  {Alm = {Apj:|Apj|=1) (5.5)
contracting:  {Ale = {Apj:|Apj| <1}
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and denote by\, (no jth eigenvalue index) the product ekpandingFlogquet
multipliers

Ap=] | Ape. (5.6)

As Jp is a real matrix, complex eigenvalues always come in comptjugate
pairs,Apjs1 = AL SO the product of expanding eigenvalugsis always real.

The stretchingcontraction rates per unit time are are given by the reabmdrt
Flogquet exponents

i 1
‘u(FI)) = T_p In |Ap,i| . (5.7)

The factorTi in the definition of the Floquet exponents is motivated byatan for
the linear dynamical systems, for examplel), as well as the fact that exponents
so defined can be interpreted as Lyapunov expondri89 evaluated on the
prime cyclep. As in the three cases db.6), we sort the Floquet exponents=
=+ iw into three sets
[section 15.3]
expanding:  {1le = {/l(,;) : yg) > 0}
marginal: {Um ={
contracting: {1} = {/I(F;) : ,u%) <0}. (5.8)

A periodic orbitp of a d-dimensional flow or a map istableif real parts of
all of its Floquet exponents (other than the vanishing lominal exponent, to be
explained in sect5.2.1) are strictly negativeu(,;) < 0. The region of system
parameter values for which a periodic orlptis stable is called thetability
window of p. The setM, of initial points that are asymptotically attracted to
p ast — +oo (for a fixed set of system parameter values) is calledbthen of
attractionof p.

If all Floquet exponents (other than the vanishing longitudinabaent) of
all periodic orhits of a flow are strictly bounded away from zéu)| > ymin > 0,
the flow is said to béayperbolic Otherwise the flow is said to beonhyperbolic
In particular, if allx® = 0, the orbit is said to belliptic. Such orbits proliferate

in Hamiltonian flows.
[section 7.3]

We often do care abowtg) = Apj/IApjl, the sign of thejth eigenvalue, and,
if Apjis complex, its phase

Apj = a'(pj)efl(l’j)Tp = a'(pj)e("g)ii‘“g)ﬁp‘ (5.9)
[section 7.2]
Keeping track of this by case-by-case enumeration is anagssary nuisance,
followed in much of the literature. To avoid this, almostafllour formulas will
be stated in terms of the Floquet multipliess rather than in the terms of the
overall signs, Floquet exponent§) and phases().
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Example 5.1 Stability of 1- d map cycles:  The simplest example of cycle stability is
afforded by 1-dimensional maps. The stability of a prime cycle p follows from the chain
rule (4.50) for stability of the nyth iterate of the map

np-1

Ap= %f""(xo) =[r0m. = "00). (5.10)
m=0

Ap is a property of the cycle, not the initial point, as taking any periodic point in the p
cycle as the initial point yields the same result.

A critical point X. is a value of x for which the mapping f(X) has vanishing
derivative, f’(x;) = 0. For future reference we note that a periodic orbit of a 1-
dimensional map is stable if

[Ap] = (%o, ) ' (Xnpa) -+ F/0) F/(x0)] < 1.,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope of the nth iterate f"(x) evaluated on a
periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1, p-cycle
is unstable.

Example 5.2 Stability of cycles for maps: No matter what method we use to
determine the unstable cycles, the theory to be developed here requires that their
Floquet multipliers be evaluated as well. For maps a fundamental matrix is easily
evaluated by picking any cycle point as a starting point, running once around a prime
cycle, and multiplying the individual cycle point fundamental matrices according to
(4.51). For example, the fundamental matrix My, for a Hénon map (3.18) prime cycle p
of length ny is given by (4.52),

M _ L -2ax b
p(XO)—H 1 0/ X< € P,

k=np

and the fundamental matrix My, for a 2-dimensional billiard prime cycle p of length n,

w-corf1(3 1)(E )

k=n,

follows from (8.11) of chapter 8. We shall compute Floquet multipliers of Hénon map
cycles once we learn how to find their periodic orbits, see exercise 12.10.

5.2 Cycle Floquet multipliers are cycle invariants

A
The 1-dimensional map cycle Floquet multipligy, is a product of derivatives

over all points around the cycle, and is therefore independewhich periodic

point is chosen as the initial one. In higher dimensionsohe fof the fundamental

matrix Jp(Xo) in (5.1) does depend on the choice of coordinates and the initial
point xg € p. Nevertheless, as we shall now show, the cyritEjuet multipliers

are intrinsic property of a cycle also for multi-dimensibflaws. Consider the
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ith eigenvalue, eigenvector paik ;. ) computed fromJ, evaluated at a cycle
point,

1,9V (x) = Apie?(x), xep. (5.11)

Consider another point on the cycle at titrlater, X' = f'(x) whose fundamental
matrix isJp(X'). By the group property4(44), JTett = J%To and the fundamental
matrix atx’ can be written either as

I (x) = JTe(x)3'(x) = Jp(X)I'(¥),  or Jp(X)I(X) = 3'(X)Ip(X) .

Multiplying (5.11) by J'(x), we find that the fundamental matrix evaluatedkat
has the same eigenvalue,

()N () = Apie(x), eV(x) = (e (%), (5.12)

but with the eigenvectoel) transported along the flow — x to e)(x) =
J{(0eD(x). Hence,J, evaluated anywhere along the cycle has the same
of Floquet multipliers{Ap1, Ap2,---Apd-1,1}. As quantities such as Jp(x),
detJ,(x) depend only on the eigenvalues B(x) and not on the starting poing
in expressions such as tﬂ&t— J[,(x)) we may omit reference te:

det(1- Jp) = det(1- Jy(x)) foranyxe p. (5.13)

We postpone the proof that the cycle Floquet multipliers sam®oth conjugacy
invariants of the flow to sec6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either ancamits symmetry of the
flow (which one should immediately exploit to simplify theoptem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical
of parameter values for which bifurcations occur) one hagadeyond linear
stability, deal with Jordan type subspaces (see exarhf)eand sub-exponential
growth rates, such as.

For flow-invariant solutions such as periodic orbits, tiegtievolution is itself
a continuous symmetry, hence a periodic orbit of a flow alwegs amarginal
eigenvalue

As JY(x) transports the velocity field(x) by (4.7), after a complete period
Jp(v(X) = V(x), (5.14)
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so a periodic orbit of dlow always has an eigenvectet)(x) = v(x) parallel to
the local velocity field with the unit eigenvalue

Apa=1, AP=o0. (5.15)
[exercise 6.2]

The continuous invariance that gives rise to this margiiggre/alue is the invariance
of a cycle under a translation of its points along the cyal& points on the cycle
(see figuret.3) initially distancesx apart,x’(0)—x(0) = 6x(0), are separated by the
exactly samex after a full periodT,. As we shall see in sed5.3, this marginal
stability direction can be eliminated by cutting the cycjedPoincaré section and
eliminating the continuous flow fundamental matrix in faeérthe fundamental
matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltoniarg #nergy is
conserved, and that leads to an additional marginal eijgav@emember, by
symplectic invariance7(19 real eigenvalues come in pairs).

5.3 Stability of Poincaré map cycles

¢

(R. PaSkauskas and P. Cvitanovic)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.56)

A viU
Jij = (6ik - (Vl—k) Jj» (5.16)

with all primes dropped, as the initial and the final pointscide, X' = fTp(x) =
x. If the periodic orbitp pierces the Poincaré sectintimes, the same observation
applies to thenth iterate ofP.

We have already established ihg7) thaE the velocity/(x) is a zero-eigenvector
of the Poincaré section fundamental mattx,= 0. Consider nextAp.. el), the

full state spaceth (eigenvalue, eigenvector) pafr.( 1), evaluated at a cycle point
on a Poincaré section,

JXED(X) = A€ (x), xeP. (5.17)

Multiplying (5.16) by € and inserting §.17), we find that the full state space
fundamental matrix and the Poincaré section fundamengaiixnj has the same
eigenvalue

JXEI () = AN, xeP, (5.18)
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where & is a projection of the full state space eigenvector onto thimdarée
section:

(@) = (5ik - %)(e‘d))k- (5.19)

Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multipliergA 1, Ap2, - - - Apg) as the full state space fundamental
matrix Jp.

As established in4.57), due to the continuous symmetry (time invariané@)
is a rankd — 1 matrix. We shall refer to any such full rankd[¢ N)x (d — N)]
submatrix withN continuous symmetries quotiented out asrttwodromy matrix
M, (from Greekmono-= alone, single, andromo= run, racecourse, meaning a
single run around the stadium).

5.4 There goes the neighborhood o .
In what follows, our task will be to determine the size afeighborhoodf x(t), QQ
and that is why we care about the Floquet multipliers, ané@afly the unstable
(expanding) ones. Nearby points aligned along the stabletr@cting) directions
remain in the neighborhood of the trajectory) = f!(xo); the ones to keep an eye

on are the points which leave the neighborhood along thehlestirections. The
sub-volumelMi| = []7 Ax of the set of points which get no further away from
fY(xo) thanL, the typical size of the system, is fixed by the condition thai\; =

O(L) in each expanding direction Hence the neighborhood size scalesxas
1/IApl whereA, is the product of expanding eigenvaluésgj only; contracting

ones play a secondary role. So secondary that even infimtalyy of them will

not matter.

So the physically important information is carried by thpaxding sub-volume,
not the total volume computed so easily ©147). That is also the reason why
the dissipative and the Hamiltonian chaotic flows are muchenadike than one
would have naively expected for ‘compressibls. ‘incompressible’ flows. In
hyperbolic systems what matters are the expanding directid/hether the contracting
eigenvalues are inverses of the expanding ones or not izofdary importance.

As long as the number of unstable directions is finite, theesthrmory applies both
to the finite-dimensional ODEs and infinite-dimensional BDE

Résumé

Periodic orbits play a central role in any invariant chagazation of the dynamics,
because (a) their existence and inter-relations twpalogical coordinate-independent
property of the dynamics, and (b) their Floquet multiplitzsn an infinite set of
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metric invariants The Floquet multipliers of a periodic orbit remain invanta
under any smooth nonlinear change of coordindtes ho f o h™1 .

We shall show in chapteirO that extending their local stability eigendirections
into stable and unstable manifolds yields important glabfrmation about the
topological organization of state space.

In hyperbolic systems what matters are the expanding dirextThe physically
important information is carried by the unstable manifeldd the expanding sub-
volume characterized by the product of expanding eigeegatii J,. As long as
the number of unstable directions is finite, the theory caafyied to flows of
arbitrarily high dimension.

Commentary

Remark 5.1 Floquettheory.  Floquet theory is a classical subject in the theory of
differential equations?]. In physics literature Floquet exponents often assurffereint
names according to the context where the theory is appley: dre called Bloch phases
in the discussion of Schrodinger equation with a periodieptial [3], or quasimomenta
in the quantum theory of time-periodic Hamiltonians.

Exercises

5.1. A limit cycle with analytic Floquet exponent. Ermentrout
There are only two examples of nonlinear flows
for which the stability eigenvalues can be evaluatecb.2. The other example of a limit cycle with analytic
analytically. Both are cheats. One example is tha 2- Floguet exponent. ~ What is the other example of a
flow nonlinear flow for which the stability eigenvalues can be
evaluated analytically? Hint: email G.B. Ermentrout.
q = p+al-d-pd)

p = -q+pl-c?-pd. 5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
Determine all periodic solutions of this flow, and by solving a third example (or more) of a nonlinear
determine analytically their Floquet exponents. Hint: go flow for which the stability eigenvalues can be evaluated
to polar coordinategy( p) = (r cosd,r sind).  G. Bard analytically.
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