Chapter 29

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanovic)

play a game of classical pinball, and a skilled neuros@eman poke

rat brains. We learned that information about chaotic dyinaran be
obtained by calculating spectra of linear operators sudhesvolution operator
of sect.15.2 or the associated partialftBrential equations such as the Liouville
equation {4.37). The spectra of these operators can be expressed in terms of
periodic orbits of the deterministic dynamics by meansaférformulas and cycle
expansions.

Y ou HAVE READ the first volume of this book. So far, so good — anyone can

But what happens quantum mechanically, i.e., if we scattefew rather than
point-like pinballs? Can we turn the problem round and stliggar PDE’s in
terms of the underlying deterministic dynamics? And, is¢he link between
structures in the spectrum or the eigenfunctions of a PDEtheddynamical
properties of the underlying classical flow? The answer & Yeit... things
are becoming somewhat more complicated when studying 2rdgber order
linear PDE’s. We can find classical dynamics associated witmear PDE,
just take geometric optics as a familiar example. Propagatf light follows a
second order wave equation but may in certain limits be vestdbed in terms of
geometric rays. A theory in terms of properties of the clzdglynamics alone,
referred to here as theemiclassical theorywill not be exact, in contrast to thé
classical periodic orbit formulas obtained so far. Wavdsitiknew phenomena,
such as interference, fifiaction, and highef: corrections which will only be
partially incorporated into the periodic orbit theory.
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29.1 Quantum pinball

In what follows, we will restrict the discussion to the natativistic Schrodinger
equation.  The approach will be very much in the spirit of thelyedays of
guantum mechanics, before its wave character has beenfidiyvered by Schrodinger
in the mid 1920’s. Indeed, were physicists of the period aslfar with classical
chaos as we are today, this theory could have been devel@gzh&s ago. It was
the discrete nature of the hydrogen spectrum which inspire@®ohr - de Broglie
picture of the old quantum theory: one places a wave instéadparticle on a
Keplerian orbit around the hydrogen nucleus. The quaiizatondition is that
only those orbits contribute for which this wave is statigndrom this followed
the Balmer spectrum and the Bohr-Sommerfeld quantizatisictweventually led
to the more sophisticated theory of Heisenberg, Schr@diagd others. Today
we are very aware of the fact that elliptic orbits are an igihasacy of the Kepler
problem, and that chaos is the rule; so can the Bohr quaiotizhe generalized
to chaotic systems?

The question was answereffiamatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a waveamadaheinfinity
of unstable periodic orbits. Due to the instability of théits the wave does not
stay localized but leaks into neighborhoods of other périotbits. Contributions
of different periodic orbits interfere and the quantization cimlican no longer
be attributed to a single periodic orbit: A coherent sumarativer the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamicalfaatdion (L.9)

derived in the context of classical chaotic dynamics, )
[chapter 17]
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also yield excellent estimates gfiantunresonances, with the quantum amplitude
associated with a given cycle approximated semiclasgibglthe weight

1 g
th= — e Spimmp/2. (29.1)
[Apl2

whose magnitude is the square root of the classical weight.Q

t, = ie‘f'Ap‘STp
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and the phase is given by the Bohr-Sommerfeld action inteyatogether with
an additional topological phasep, the number of caustics along the periodic

trajectory, points where the naive semiclassical appration fails. )
[chapter 32]
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In this approach, the quantal spectra of classically cbatythamical systems
are determined from the zeros of dynamical zeta functicefned by cycle expansions
of infinite products of form

ye=[la-t=1->t-> a (29.2)
P f k

with weightt, associated to every prime (non-repeating) periodic odsitycle
p.

The key observation is that the chaotic dynamics is oftermmgd around
a few fundamentalcycles. These short cycles capture the skeletal topology of
the motion in the sense that any long orbit can approximaielpieced together
from the fundamental cycles. In chaptes it was shown that for this reason the
cycle expansion9.2) is a highly convergent expansion dominated by short cycles
grouped intofundamentalkontributions, with longer cycles contributing rapidly
decreasingcurvature corrections.  Computations with dynamical zeta functions
are rather straightforward; typically one determines teagand stabilities of a
finite number of shortest periodic orbits, substitutes titm(29.2), and estimates
the zeros of 1/ from such polynomial approximations.

From the vantage point of the dynamical systems theory,rttee tformulas
(both the exact Selberg and the semiclassical Gutzwiltretiformula) fit into
a general framework of replacing phase space averages by euen periodic
orbits. For classical hyperbolic systems this is possillessthe invariant density
can be represented by sum over all periodic orbits, with ktsigelated to their
instability. The semiclassical periodic orbit sum#feli from the classical ones
only in phase factors and stability weights; suclietences may be traced back
to the fact that in quantum mechanics the amplitudes raktzar the probabilities
are added.

The type of dynamics has a strong influence on the convergehcgcle
expansions and the properties of quantal spectra; thisssiéaes development
of different approaches forférent types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, tregnmittent dynamics
of chaptersl8 and23. For generic nonhyperbolic systems (which we shall not
discuss here), with mixed phase space and marginally stahites, periodic orbit
summations are hard to control, and it is still not clear thatperiodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the bodk idemonstrate
that the cycle expansions, developed so far in classidaigstare also a powerful
tool for evaluation ofjuantumresonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this timea quantum
version. Were the game of pinball a closed system, quantuohamécally one
would determine its stationary eigenfunctions and eigergges. For open systems
one seeks instead complex resonances, where the imagaraof the eigenenergy
describes the rate at which the quantum wave function leak®fothe central
scattering region. This will turn out to work well, except evtiuly wants to know
accurately the resonances of a quantum pinball?
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Figure 29.1: A typical collinear helium trajectory in
ther; —r, plane; the trajectory enters along theaxis
and escapes to infinity along theaxis. r,

29.2 Quantization of helium

Once we have derived the semiclassical weight associatedhvei periodic orbip
(29.1), we will finally be in position to accomplish something @ether remarkable.
We are now able to put together all ingredients that make #megof pinball
unpredictable, and compute a “chaotic” part of the heliumcsium to shocking
accuracy. From the classical dynamics point of view, helisran example of
Poincaré’s dreaded and intractable 3-body problem. Umteal we forge ahead
and consider theollinear helium, with zero total angular momentum, and the
two electrons on the+J(r)pposite sides of the nucleus.

We set the electron mass to 1, the nucleus mass, tine helium nucleus chargefchapm 36]

to 2, the electron charges to -1. The Hamiltonian is

(29.3)

Due to the energy conservation, only three of the phase sjacdinatesr(, r,, p1, p2)
are independent. The dynamics can be visualized as a mottbe §1,r2), ri > 0
quadrant, figure29.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in ther, ry) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, butén@oulomb potential.
The classical collinear helium is also a repeller; almdsifahe classical trajectories
escape. Miraculously, the symbolic dynamics for the samgvturns out to be
binary, just as in the 3-disk game of pinball, so we know whates need to
be computed for the cycle expansionh10). A set of shortest cycles up to a
given symbol string length then yields an estimate of theuhebpectrum. This
simple calculation yields surprisingly accurate eigenga| even though the cycltlzCh
expansion was based on themiclassical approximatiof29.1) which is expected
to be good only in the classical large energy limit, the e@gemgies are good to
1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulateesbasic notions
of quantum mechanics; after having defined the main quanhjetts of interest,
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the quantum propagator and the Green’s function, we wiiteethe quantum
propagation to the classical flow of the underlying dynatrggatem. We will then
proceed to construct semiclassical approximations totla@tym propagator and
the Green'’s function. A rederivation of classical Hamileondynamics starting
from the Hamilton-Jacobi equation will befered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zetefion as a sum and as
a product over periodic orbits will be given in chap&% In subsequent chapters
we buttress our case by applying and extending the theorycle expansion
calculation of scattering resonances in a 3-disk billiardhapte34, the spectrum
of helium in chapteB6, and the incorporation of firaction dfects in chapteB7.

Commentary

Remark 29.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian naegbs. For that, Arnol'd
monograph §6] is the essential reference. Ozorio de Almeida’s monogfaphoffers a
compactintroduction to the aspects of Hamiltonian dynamequired for the quantization
of integrable and nearly integrable systems, with emphasiperiodic orbits, normal
forms, catastrophy theory and torus quantization. The bmoBrack and Bhaduril]]

is an excellent introduction to the semiclassical metho@stzwiller's monograph4]

is an advanced introduction focusing on chaotic dynamitk oclassical Hamiltonian
settings and in the semiclassical quantization. This beakadrth browsing through for
its many insights and erudite comments on quantum and @lestchanics even if one
is not working on problems of quantum chaos. More suitabie gaduate course text is
Reichl's exposition ).

This book does not discuss the random matrix theory apprwachaos in quantal
spectra; no randomness assumptions are made here, raeatlis to milk the deterministic
chaotic dynamics for its full worth. The book concentratastte periodic orbit theory.
For an introduction to “quantum chaos” that focuses on tmeloan matrix theory the
reader is referred to the excellent monograph by Hadkefnong others.

Remark 29.2 The dates.  Schrodinger’s first wave mechanics papéf (hydrogen
spectrum) was submitted 27 January 1926. Submission datdddelung’s ‘quantum
theory in hydrodynamical form’ pape¥]was 25 October 1926.
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