Chapter 1

Overture

If | have seen less far than other men it is because | have
stood behind giants.

—Edoardo Specchio

holes large enough to steam a Eurostar train through theme e learn

about harmonic oscillators and Keplerian ellipses - butreligethe chapter
on chaotic oscillators, the tumbling Hyperion? We have qusintized hydrogen,
where is the chapter on the classical 3-body problem andrifdigations for
quantization of helium? We have learned that an instantansislution of field-
theoretic equations of motion, but shouldn’t a stronglylmaar field theory have
turbulent solutions? How are we to think about systems wttengs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehiia are

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you mpeated to
know/learn this material

indicates that the section is on a cyclist, somewhat advhlesel

,
& indicates that the section requires a hearty stomach ancbimlply best
skipped on first reading

W fast track points you where to skip to

3 tells you where to go for more depth on a particular topic
‘El? indicates an exercise that might clarify a point in the text

% indicates that a figure is still missing—you are urged totfétc
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CHAPTER 1. OVERTURE 2

We start out by making promises—we will right wrongs, no lenghall you sffer
the slings and arrows of outrageous Science of Perplexigralégate a historical
overview of the development of chaotic dynamics to appeAdiand head straight
to the starting line: A pinball game is used to motivate ahgsitate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shetddle to follow
the thread of the argument without constant excursionsiurces. Hence there are
no literature references in the text proper, all learnedar&sand bibliographical
pointers are relegated to the “Commentary” section at tideogéeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
SOrrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton'’s first frustratamgl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is mcéyistems governed
by simple deterministic laws whose asymptotic dynamicscamaplex beyond
belief, systems which are locally unstable (almost) evésng but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detertnitake a
logarithm. It would hardly merit a learned treatise, wenait for the fact that this
determinant that we are to compute is fashioned out of iefininany infinitely
small pieces. The feel is of statistical mechanics, andithdbw the problem
was solved; in the 1960’s the pieces were counted, and in9f6’d they were
weighted and assembled in a fashion that in beauty and if dapks along with
thermodynamics, partition functions and path integrale@gst the crown jewels
of theoretical physics.

This book isnota book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shortet dynamically invariant
compact sets (equilibria, periodic orbits, partially hgpmic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, gnedinterweaving of
their global stable and unstable manifolds. These featreobust and accessible
in systems as noisy as slices of rat brains. Poincaré, stédiunderstand deterministic
chaos, already said as much (modulo rat brains). Once fiddgy is understood,

a powerful theory yields the observable consequences aftichdynamics, such
as atomic spectra, transport €ibg@ents, gas pressures.

That is what we will focus on in ChaosBook. The book is a selitained
graduate textbook on classical and quantum chaos. Youegsof does not know
this material, so you are on your own. We will teach you how valgate a

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 3

determinant, take a logarithm—stlike that. Ideally, this should take 100 pages
or so. Well, we fail-so far we have not found a way to travetse material in
less than a semester, or 200-300 page subset of this textingdd be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systevesbiesn studied for
over 200 years. During this time many have contributed, badield followed no
single line of development; rather one sees many interwstramds of progress.

In retrospect many triumphs of both classical and quantugsiph were a
stroke of luck: a few integrable problems, such as the haitnescillator and
the Kepler problem, though ‘non-generic,’ have gotten uy ¥ar. The success
has lulled us into a habit of expecting simple solutions opdé equations—an
expectation tempered by our recently acquired ability tmerically scan the state
space of non-integrable dynamical systems. The initiaré@sgion might be that
all of our analytic tools have failed us, and that the chagygtems are amenable
only to numerical and statistical investigations. Neveldls, a beautiful theory
of deterministic chaos, of predictive quality comparaldehat of the traditional
perturbation expansions for nearly integrable systemsady exists.

In the traditional approach the integrable motions are wsederoth-order
approximations to physical systems, and weak nonlineargire then accounted
for perturbatively. For strongly nonlinear, non-integeabystems such expansions
fail completely; at asymptotic times the dynamics exhiaitgazingly rich structure
which is not at all apparent in the integrable approximatioklowever, hidden
in this apparent chaos is a rigid skeleton, a self-similae tof cycles(periodic
orbits) of increasing lengths. The insight of the modernaitgital systems theory
is that the zeroth-order approximations to the harshly thatynamics should
be very diferent from those for the nearly integrable systems: a goadirsg
approximation here is the stretching and folding of bakéoagh, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get satiregéor how
and why unstable cycles come about, we start by playing a gdupiaball. The
reminder of the chapter is a quick tour through the mateaa¢oed in ChaosBook.
Do not worry if you do not understand every detail at the fesiding—the intention
is to give you a feeling for the main themes of the book. Detaill be filled out
later. If you want to get a particular point clarified rightmopzs= on the margin :

i i i tion 1.4
points at the appropriate section. section 1.4]
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CHAPTER 1. OVERTURE 4
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Figure 1.1: A physicist’s bare bones game of pinbal

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprisayone who has tried
pool, billiards or snooker-the game is about beating clemsve start our story
about what chaos is, and what to do about it, with a gam@rdfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatwehpendulum is
to integrable systems: thinking clearly about what ‘chdnsa game of pinball
is will help us tackle more dlicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfiognt of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmeghamong the
pinball machine’s disks, and only high-school level Euetid geometry is needed
to describe its trajectory. A physicist’s pinball game is game of pinball strip-
ped to its bare essentials: three equidistantly placedctiftedisks in a plane,
figurel.1. A physicist’s pinball is free, frictionless, point-likepin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adigles from random starting
positions and angles; they spend some time bouncing bettieatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew evengha deterministic
system would do far into the future. He wrotH,[anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant aelliigence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establishedigss just
as certain as that three times three is nine. [...] If, fomeple, one sphere
meets another sphere in free space and if their sizes andpihiktis and
directions before collision are known, we can then foreaaltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how msplyeres
are taken or whether objects are taken other than spherem this one
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CHAPTER 1. OVERTURE 5

23132321",

Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time. 2313

3x(t)

ox(0

Figure 1.3: Unstable trajectories separate with time. X(O) X(t)

sees then that everything proceeds mathematically—thafadlibly—in the
whole wide world, so that if someone could have #isient insight into
the inner parts of things, and in addition had remembranderdalligence
enough to consider all the circumstances and to take themastount, he
would be a prophet and would see the future in the presentaminror.

Leibniz chose to illustrate his faith in determinism pretyswith the type of
physical system that we shall use here as a paradigm of ‘chélis claim is
wrong in a deep and subtle way: a state of a physical systemesasibe specified
to infinite precision, and by this we do not mean that evehtube Heisenberg
uncertainty principle kicks in. In the classical, deterisiic dynamics there is no
way to take all the circumstances into account, and a simgjectory cannot be
tracked, only a ball of nearby initial points makes physgeise.

1.3.1 Whatis ‘chaos’?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present stat@iinciple fully determined
by its initial conditions, in contrast to a stochastic syste

For a stochastic system the initial conditions determiedukure only partially,
due to noise, or other external circumstances beyond ouratorihe present
state reflects the past initial conditions plus the pariicubalization of the noise
encountered along the way.

A deterministic system with ghiciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling therdehistic from the
stochastic is the main challenge in many real-life settiriggm stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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CHAPTER 1. OVERTURE 6

In a game of pinball, any two trajectories that start out velgse to each
other separate exponentially with time, and in a finite (amgbriactice, a very
small) number of bounces their separatitxft) attains the magnitude df, the
characteristic linear extent of the whole system, figlr2 This property of
sensitivity to initial conditiongan be quantified as

X (t)| ~ €"16x(0)|

where 1, the mean rate of separation of trajectories of the systeroalled the
Lyapunov exponent For any finite accuracyx = |6x(0)| of the initial data, the

dynamics is predictable only up to a finitgapunov time [section 15.3]

1
-nmpz—szWH, (1.1)

despite the deterministic and, for Baron Leibniz, infadilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&dse could try
to play 1- or 2-disk pinball game, but it would not be much oang; trajectories
would only separate, never to meet again. What is also neisdmiking the
coming together again and again of trajectories. Whilellptiae nearby trajectories
separate, the interesting dynamics is confined to a globaltg region of the state
space and thus the separated trajectories are necessétiyg back and can re-
approach each other arbitrarily closely, infinitely mamgds. For the case at hand
there are 2topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectorieighw bounces can be

quantified as _
[section 13.1]

N(n) ~ €M

whereh, the growth rate of the number of topologically distinctjéories, is
called the'topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in datastic dynamics
there is no chaos in the everyday sense of the word; evegypinoteeds mathematically—
that is, as Baron Leibniz would have it, infallibly. When aypltist says that a
certain system exhibits ‘chaos, he means that the syst@ysateterministic laws
of evolution, but that the outcome is highly sensitive to Bmacertainties in the
specification of the initial state. The word ‘chaos’ has iis ttbntext taken on a
narrow technical meaning. If a deterministic system is llgaanstable (positive
Lyapunov exponent) and globally mixing (positive entregigure 1.4-it is said
to bechaotic

While mathematically correct, the definition of chaos assifiee Lyapunov
+ positive entropy’ is useless in practice, as a measurenighese quantities is
intrinsically asymptotic and beyond reach for systems ondggkin nature. More
powerful is Poincaré’s vision of chaos as the interplayoofl instability (unstable
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CHAPTER 1. OVERTURE 7

Figure 1.4: Dynamics of achaotic dynamical

system is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing
(positive entropy). (A. Johansen) @) (b)

periodic orbits) and global mixing (intertwining of thetable and unstable manifolds).
In a chaotic system any open ball of initial conditions, naterehow small, will

in finite time overlap with any other finite region and in thense spread over the
extent of the entire asymptotically accessible state sp@uwe this is grasped,

the focus of theory shifts from attempting to predict indival trajectories (which

is impossible) to a description of the geometry of the spdg®ssible outcomes,

and evaluation of averages over this space. How this is guiisimd is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Iniety, the word
refers to irregular behavior of an infinite-dimensional dgmcal system described
by deterministic equations of motion—say, a bucket of stastvater described by
the Navier-Stokes equations. But in practice the word tlabce’ tends to refer
to messy dynamics which we understand poorly. As soon as ropt@non is
understood better, it is reclaimed and renamed: ‘a routbdo€, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamickidimensional
attractors visualized as a succession of nearly periodicibstable motions. In
the same spirit, we shall think of turbulence in spatiall{eexied systems in terms
of recurrent spatiotemporal patterns. Pictorially, dyi@ndrives a given spatially
extended system (clouds, say) through a repertoire of biesfatterns; as we
watch a turbulent system evolve, every so often we catchnapgk of a familiar
pattern:

For any finite spatial resolution, a deterministic flow falloapproximately for a
finite time an unstable pattern belonging to a finite alphabatimissible patterns,
and the long term dynamics can be thought of as a walk thrdugkgace of such
patterns. In ChaosBook we recast this image into mathesnatic
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CHAPTER 1. OVERTURE 8

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited

magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical

fractals.

— Richard P. Taylof4, 5]

When should we be mindful of chaos? The solar system is ‘atiaget
we have no trouble keeping track of the annual motions ofgitan The rule
of thumb is this; if the Lyapunov timel(l)-the time by which a state space
region initially comparable in size to the observationatuaacy extends across
the entire accessible state space—is significantly shtréer the observational
time, you need to master the theory that will be developed.heiThat is why
the main successes of the theory are in statistical mechamuantum mechanics,
and questions of long term stability in celestial mechanics

In science popularizations too much has been made of thecingbachaos
theory, so a number of caveats are already needed at tms poi

At present the theory that will be developed here is in pcactipplicable only
to systems of a low intrinsidimension— the minimum number of coordinates
necessary to capture its essential dynamics. If the systerary turbulent (a
description of its long time dynamics requires a space df higrinsic dimension)
we are out of luck. Hence insights that the theoffigis in elucidating problems of
fully developed turbulence, quantum field theory of straomgliactions and early
cosmology have been modest at best. Even that is a caveatjudtliications.
There are applications—such as spatially extended (noifilggum) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeseeflom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success whpliegfto the very
noisy systems so important in the life sciences and in ecarsontven though
we are often interested in phenomena taking place on timessocauch longer
than the intrinsic time scale (neuronal inter-burst indésy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980’s something happened that might be without pardhé is an area of
science where the advent of cheap computation had actwddtyasted from our
collective understanding. The computer pictures and nigaideplots of fractal
science of the 1980’s have overshadowed the deep insightseaf970’s, and
these pictures have since migrated into textbooks. By eetidple oversight,
ChaosBook has none, so ‘Untitled 5’ of figuré&will have to do as the illustration
of the power of fractal analysis. Fractal science posit$ deatain quantities
(Lyapunov exponents, generalized dimensions, . ..) castbea&ed on a computer.
While some of the numbers so obtained are indeed matheithatieasible characterizations
of fractals, they are in no sense observable and measuraliteedength-scales
and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal gégnaf nature
is circumstantial 7], in studies of probabilistically assembled fractal agates
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CHAPTER 1. OVERTURE 9

Figure 1.5: Katherine Jones-SmifhUntitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te=]
the fractal analysis of Pollock’s drip paintingg[

we know of nothing better than contemplating such quastitie deterministic
systems we can dmuchbetter.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten seat
belts and turn fi all electronic devices. But first, a disclaimer: If you unstand
the rest of this chapter on the first reading, you either doneed this book, or
you are delusional. If you do not understand it, it is not lbseathe people who
wrote it are smarter than you: the most you can hope for atstage is to get a
flavor of what lies ahead. If a statement in this chapter rfigsiintrigues, fast
forward to a section indicated by on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALl afr otherwise
we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical systenr,analysis proceeds
in three stages; |I. diagnose, Il. count, lll. measure. Fing determine the
intrinsic dimensiorof the system—the minimum number of coordinates necessary
to capture its essential dynamics. If the system is veryutaerti we are, at present,
out of luck. We know only how to deal with the transitional ireg between
regular motions and chaotic dynamics in a few dimensionat iBstill something;
even an infinite-dimensional system such as a burning flaom¢ é&an turn out to
have a very few chaotic degrees of freedom. In this regimeltiaetic dynamics
is restricted to a space of low dimension, the number of agleyparameters
is small, and we can proceed to step Il; weuntand classifyall possible

. L . . . . . [chapter 10]

topologically distinct trajectories of the system into ararchy whose successw%C hapter 13]
layers require increased precision and patience on theop#re observer. This
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CHAPTER 1. OVERTURE 10

Figure 1.6: Binary labeling of the 3-disk pinball 0 . ]
trajectories; a bounce in which the trajectory returns

to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

we shall do in sectl.4.2 If successful, we can proceed with step Ill: investigate
theweightsof the diferent pieces of the system.

We commence our analysis of the pinball game with steps Idiignose,

count. We shall return to step lll-measure—in s&ci.
[chapter 18]

1.4.1 Symbolic dynamics

With the game of pinball we are in luck-it is a low dimensiosgktem, free

motion in a plane. The motion of a point particle is such tHagraa collision

with one disk it either continues to another disk or it essapk we label the

three disks by 1, 2 and 3, we can associate every trajectahyamiitinerary, a

sequence of labels indicating the order in which the diskvaited; for example,

the two trajectories in figur&.2 have itineraries2313, 23132321 respectively.
Such labeling goes by the nansgmbolic dynamics As the particle cannot

collide two times in succession with the same disk, any twtseoutive symbols[Section 2.1]

must difer. This is an example @iruning, a rule that forbids certain subsequences

of symbols. Deriving pruning rules is in general #idult problem, but with the

game of pinball we are lucky—for well-separated disks tlaeeeno further pruning

rules.

[exercise 1.1]

[chapter 11]

The choice of symbols is in no sense unique. For example, escatbounce
we can either proceed to the next disk or return to the previisk, the above
3-letter alphabet can be replaced by a bin@yi} alphabet, figurel.6. A clever
choice of an alphabet will incorporate important featuriethe dynamics, such as

its symmetries.
y [section 10.5]

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—what would berdngistrategy?
The simplest thing would be to try to aim the pinball so it boem many times
between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centersyould stay there
forever. Your game would be just as good if you managed to tgtet keep
bouncing between the three disks forever, or place it on ampgic orbit. The
only rub is that any such orbit isnstable so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear tii@ne is interested in
playing well, unstable periodic orbits are important—thesymn the skeleton onto
which all trajectories trapped for long times cling.
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CHAPTER 1. OVERTURE 11

121212313

Figure 1.7: The 3-disk pinball cycled232 and
121212313.

Figure 1.8: (@) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper ¢
with initial conditions that hit further consecutive disk
nested within each other, as in Fig9.

5)

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting posii and momentum. We
shall refer to the set of periodic points that belong to amigeriodic orbit as a
cycle

Short periodic orbits are easily drawn and enumerated—ampbe is drawn
in figure 1.7-but it is rather hard to perceive the systematics of orbiamftheir
configuration space shapes. In mechanics a trajectorylysafindl uniquely specified
by its position and momentum at a given instant, and no twindisstate space
trajectories can intersect. Their projections onto aabjtrsubspaces, however,
can and do intersect, in rather unilluminating ways. In tivball example the
problem is that we are looking at the projections of a 4-disn@mal state space
trajectories onto a 2-dimensional subspace, the configarapace. A clearer
picture of the dynamics is obtained by constructing a setaiésspace Poincaré
sections.

Suppose that the pinball has just bouncédlsk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. iNoth happens in
between the bounces—the ball just travels at constantityeldong a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional Prilpt takes the
coordinates of the pinball from one disk edge to another éiie. The trajectory
just after the moment of impact is defined by, the arc-length position of the
nth bounce along the billiard wall, ang, = psing, the momentum component
parallel to the billiard wall at the point of impact, see figir9. Such section of a
flow is called aPoincaré section In terms of Poincaré sections, the dynamics[(i;.iample 3.2]
reduced to the set of smaps B, : (Sh, Pn) = (Sn+1, Pnsa), With s € {1, 2,3}, ’
from the boundary of the diskto the boundary of the next digk

[section 8]

Next, we mark in the Poincaré section those initial condii which do not
escape in one bounce. There are two strips of survivorsedsdjectories originating
from one disk can hit either of the other two disks, or escajleout further ado.
We label the two stripg\li,, Mi1s. Embedded within them there are four strips
Mao1, Ma2s, Miz1, Maisp of initial conditions that survive for two bounces, and
so forth, see figures.8and1.9. Provided that the disks areffigiently separated,
after n bounces the survivors are divided int® @stinct strips: theM;th strip
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CHAPTER 1. OVERTURE 12

Figure 1.9: The 3-disk game of pinball Poincaré \
section, trajectories emanating from the disk 1

with Xo = (S, Po) . (&) Strips of initial points

M., Miz which reach disks 2, 3 in one bounce, 23 \131
respectively. (b) Strips of initial point&1;21, Miz;
M1z and My,3 which reach disks 1, 2, 3 in two 122\ |132
bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are
obtained by the appropriate relabeling of the strips.

Disk radius : center separation ratio a=R1:2.5. by s o _fzs

(Y. Lan) @ s (b)

sing
o

nw o
N

consists of all points with itinerary = $15S3...S, S = {1,2,3}. The unstable
cycles as a skeleton of chaos are almost visible here: eathpaich contains
a periodic point$;5,53... 5, with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further atfuefy the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it pded a navigation
chart through chaotic state space. There exists a unigjectoey for every
admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeled1yis the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; arer dthjectory starting
out as 12.. either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
[example 15.2]

What is a good physical quantity to compute for the game obaldl? Such
a system, for which almost any trajectory eventually leaadmite region (the
pinball table) never to return, is said to be open, c@eller. The repellelescape
rate is an eminently measurable quantity. An example of such asurement
would be an unstable molecular or nuclear state which candtleapproximated
by a classical potential with the possibility of escape irtaia directions. In an
experiment many projectiles are injected into a macroscttack box’ enclosing
a microscopic non-confining short-range potential, and thean escape rate is
measured, as in figure L The numerical experiment might consist of injecting
the pinball between the disks in some random direction akthghow many
times the pinball bounces on the average before it escapasdion between the
disks.

[exercise 1.2]

For a theorist, a good game of pinball consists in predicéingurately the
asymptotic lifetime (or the escape rate) of the pinball. \&& show how periodic
orbit theory accomplishes this for us. Each step will be sapi that you can
follow even at the cursory pace of this overview, and st#l tesult is surprisingly
elegant.

Consider figurel.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previousniceu The total area
that remains at a given time is the sum of the areas of thessipthat the fraction
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CHAPTER 1. OVERTURE 13

of survivors aftem bounces, or theurvival probabilityis given by

- Mol IMy] - Mool IMaol  [Moal  [IMayl

N = —+——, I'; = + + + ,
! M M 2T5OM M T M T TIM

R 1 o

I, = — Mil, 1.2
n M Z IMi| (1.2)

wherei is a label of thdth strip, M| is the initial area, andM;| is the area of
theith strip of survivors.i = 01, 10,11,... is a label, not a binary number. Since
at each bounce one routinely loses about the same fractitrajettories, one

expects the sunil(2) to fall off exponentially withn and tend to the limit chapter 20]

fn+1/fn = e_y“ - e_y. (13)

The quantityy is called theescape ratérom the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution paéieuli
guelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que lafilérence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut. Dailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c'est qu’elles sont, pour ans
dire, la seule bréche par ou nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape rat&an be extracted from a highly convergent
exactexpansion by reformulating the sur.?) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk ofigadlj center-
center separation 6, velocity 1, you answer that the coatisuime escape rate
is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological edg of the strips,
but, as we shall now show, they also determine their size.
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x(t) o 0X(t) = 35 x(0)

Figure 1.10: The fundamental matrix)* maps an X(O)
infinitesimal displacemerdix at X into a displacement
J'(x0)ox finite timet later. ox(0

As atrajectory evolves, it carries along and distorts fimitesimal neighborhood.
Let

X(t) = f'(x)

denote the trajectory of an initial poih = x(0). Expandingf(xo + 6Xo) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x(t)
is given by the fundamental matrik

a%(t) .

d
ox(0) = ) I0aioxoj. I = —
= %]

A trajectory of a pinball moving on a flat surface is specifigdtlwo position
coordinates and the direction of motion, so in this cdse 3. Evaluation of a
cycle fundamental matrix is a long exercise - here we jusédtee result. The
fundamental matrix describes the deformation of an infénib@l neighborhood
of x(t) along the flow; its eigenvectors and eigenvalues give trectons and the
corresponding rates of expansion or contraction, figui€ The trajectories that
start out in an infinitesimal neighborhood separate aloegutistable directions
(those whose eigenvalues are greater than unity in mag)ijtagpproach each
other along the stable directions (those whose eigenvauedess than unity
in magnitude), and maintain their distance along the matdgiirections (those
whose eigenvalues equal unity in magnitude).

[section 8.2]

In our game of pinball the beam of neighboring trajectorsedafocused along
the unstable eigendirection of the fundamental maitix

As the heights of the strips in figure.9 are dfectively constant, we can
concentrate on their thickness. If the heightig, then the area of thi¢h strip is
M =~ LI for a strip of widthl;.

Each stripi in figure 1.9 contains a periodic point;. The finer the intervals,
the smaller the variation in flow across them, so the cortiohufrom the strip

of width I; is well-approximated by the contraction around the pedqgubint x;
within the interval,

li = a/IAil, (1.4)
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whereA; is the unstable eigenvalue of the fundamental mali(x ) evaluated at
theith periodic point fort = Ty, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). ti@nipagnitude of
this eigenvalue matters, we can disregard its sign. Theg@®ka, reflect the
overall size of the system and the particular distributibstarting values ok. As
the asymptotic trajectories are strongly mixed by bouncimgotically around the
repeller, we expect their distribution to be insensitivestaooth variations in the

distribution of initial points. _
[section 14.4]

To proceed with the derivation we need thygerbolicityassumption: for large
n the prefactors; ~ O(1) are overwhelmed by the exponential growthAgf so
we neglect them. If the hyperbolicity assumption is judiifigve can replace

IMil ~ LI; in (1.2) by 1/|A;| and consider the sum secton 16.4.4]

(n)
o= 1/IAil,

where the sum goes over all periodic points of periotlve now define a generating
function for sums over all periodic orbits of all lengths:

I'(2) = i . (1.5)
n=1

Recall that for largen the nth level sum {.2) tends to the limil’, — €™, so the
escape ratg is determined by the smallest e for which (1.5 diverges:

ze?’
1-ze7r’

@2~ i (ze")" = (1.6)
n=1

This is the property of (z) that motivated its definition. Next, we devise a formula
for (1.5) expressing the escape rate in terms of periodic orbits:

I
[
N
5

|

r'@

z,z,z 2z 2 7z
Aol IA1l  |Aocol 1Aocal A0l [A11l
z z z z

+ + + + +...
|Aood  [Aocodl  |Aoid  [Azod

(1.7)

For suficiently smallz this sum is convergent. The escape rate now given by section 16.3]
the leading pole of1(.6), rather than by a numerical extrapolation of a sequence '
of y, extracted from 1.3). As any finite truncatiom < nyync of (1.7) is a

polynomial inz, convergent for any, finding this pole requires that we know
something about, for anyn, and that might be a tall order.
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We could now proceed to estimate the location of the leadingufarity
of I'(2) from finite truncations of {.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a sinmpsimmation
that converts this divergence int@aroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalueAs,. A
prime cyclep is a single traversal of the orbit; its label is a non-repeasymbol
string of n, symbols. There is only one prime cycle for each cyclic peatioi
class. For examplep = 0011 = 1001= 1100= 0110 is prime, bub101= 01
is not. By the chain rule for derivatives the stability of ecleyis the same
everywhere along the orbit, so each prime cycle of lemgtbontributesn, terms
to the sum {.7). Hence (.7) can be rewritten as

> 7%\ Nptp ks
r@=>n >, (m) =2 T YTy (1.8)
Pl P

[exercise 13.5]
[section 4.5]

where the indexp runs through all distincprime cycles. Note that we have
resummed the contribution of the cygo all times, so truncating the summation
up to givenp is nota finite timen < n, approximation, but an asymptotiafinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. Tip#" factors in (L.8) suggest rewriting
the sum as a derivative

d
r@=-zg Zp: In(1—tp).

Hencel (2) is a logarithmic derivative of the infinite product

Zp

tp=—. 1.9
P = A (1.9)

1@ =] |-,
p

This function is called thelynamical zeta functignin analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definitios H/(2). This is the
prototype formula of periodic orbit theory. The zero g () is a pole ofl'(2),
and the problem of estimating the asymptotic escape raiesfiniten sums such
as (1.2 is now reduced to a study of the zeros of the dynamical zetatifun
(1.9. The escape rate is related Hy®) to a divergence df(z), andI'(2) diverges

section 20.1
whenever 1/(z) has a zero. ; ]

[section 17.4]
Easy, you say: “Zeros ofl(9) can be readf the formula, a zero
z,=| Ap|1/np
for each term in the product. What's the problem?” Dead wrong
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1.5.3 Cycle expansions

How are formulas such a4.0) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,
such as the Newton method searches for periodic solutioashall assume that
the numerics are under control, and th#itshort cycles up to given length have
been found. In our pinball example this can be done by eleamgigieometrical
optics. It is very important not to miss any short cycles,resdalculation is as
accurate as the shortest cycle dropped-including cyclagelothan the shortest
omitted does not improve the accuracy (unless expongntiainy more cycles
are included). The result of such numerics is a table of tloetsst cycles, their
periods and their stabilities.

[chapter 12]

[section 27.3]

Now expand the infinite product (9), grouping together the terms of the same
total symbol string length

1/¢

(1 —to)(1 —t1)(1 — ta)(1 — tapo) - - -

= 1-to—t1—[tio—tato] — [(ta00 — ticto) + (tr01 — taot1)]

—[(ta000 — tot100) + (t1110— tat110)

+(t1001 — tatoo1 — troato + taotots)] —. .. (1.10)

The virtue of the expansion is that the sum of all terms of #reestotal length
n (grouped in brackets above) is a number that is expongntatialler than a
typical term in the sum, for geometrical reasons we explaiié next section.

[chapter 18]

[section 18.1]

The calculation is now straightforward. We substitute adisget of the eigenvalues
and lengths of the shortest prime cycles into the cycle esipar{l.10), and obtain
a polynomial approximation to/Z. We then varyz in (1.9) and determine the
escape ratg by finding the smallest = € for which (1.10 vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you fmidl out that the
convergence is very impressive: only three input numb@est{o fixed point9,
1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significagits
We have omitted an infinity of unstable cycles; so why does@pmating the

[ ini i tion 18.2.2
dynamics by a finite number of the shortest cycle eigenvakeek so well? ecton )

The convergence of cycle expansions of dynamical zetaifurgts a consequence
of the smoothness and analyticity of the underlying flow. uilintely, one can
understand the convergence in terms of the geometricairpisketched in figuré.11;
the key observation is that the long orbits atedowedy sequences of shorter
orbits.

Atypical termin (L.10) is a diference of a long cyclgb} minus its shadowing
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Figure 1.11:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cy«
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

approximation by shorter cyclé¢a} and{b}

Aap
tap — tatp = tab(:L - tatb/tab) =tan|1- ‘ 2 ’ s (1-11)
AaAb

wherea andb are symbol sequences of the two shorter cycles. If all oeis
weighted equallyt, = z™), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in st@hbinations almost
cancel.

This can be understood in the context of the pinball gamellsv® Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diskig wh
the second corresponds to bouncing successively aroutiared, tracing out an
equilateral triangle. The cyclel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk@®so on, so its
itinerary is2321. In terms of the bounce types shown in figlig the trajectory is
alternating between 0 and 1. The incoming and outgoing anghen it executes
these bounces are very close to the corresponding anglésafai 1 cycles. Also
the distances traversed between bounces are similar sin¢ghzicycle expanding
eigenvalueAo; is close in magnitude to the product of the 1-cycle eigeraslu
AoA1.

To understand this on a more general level, try to visualiee fgartition of
a chaotic dynamical system’s state space in terms of cydtghbberhoods as a
tessellation (a tiling) of the dynamical system, with sniofbdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a paicgoint, and the scale
of the ‘tile’ determined by the linearization of the flow ar@lthe periodic point,
figurel.11

The orbits that follow the same symbolic dynamics, suctabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential drowtseparation with
time. If the weights associated with the orbits are multigive along the flow
(for example, by the chain rule for products of derivativasyl the flow is smooth,
the term in parenthesis id (1]) falls off exponentially with the cycle length, and

therefore the curvature expansions are expected to beyhighizergent. (chapter 21]
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1.6 Evolution

The above derivation of the dynamical zeta function fornfolathe escape rate
has one shortcoming; it estimates the fraction of surviass function of the
number of pinball bounces, but the physically interestingrdity is the escape
rate measured in units of continuous time. For continuaus flows, the escape
rate (L.2) is generalized as follows. Define a finite state space regibsuch
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figufielis gone forever. Start with a uniform
distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

Sy dxdys(y - () R

Jx

The integral ovelx starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still itM at timet. The kernel of this integral

r(t) = e,

L'y, %) = o(y - f'(x) (1.12)

is the Dirac delta function, as for a deterministic flow thiéiahpoint x maps into a
unique pointy at timet. For discrete timef"(x) is thenth iterate of the ma. For
continuous flowsf!(x) is the trajectory of the initial point, and it is appropriate
to express the finite time kerngl' in terms of a generator of infinitesimal time
translations

L'=e",
[section 14.6]

very much in the way the quantum evolution is generated byHdmailtonianH,
the generator of infinitesimal time quantum transformation

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as évelution operatofor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially Withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattastphfeour computations
will be carried out in then — oo limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond beltafs distribution is
still generated by a simple deterministic law, and with sdno& and insight, our
labeling of possible motions will reflect this simplicityf the rule that gets us
from one level of the classification hierarchy to the nextgdoet depend strongly
on the level, the resulting hierarchy is approximately-setfilar. We now turn
such approximate self-similarity to our advantage, byingrit into an operation,
the action of the evolution operator, whose iteration eesdtie self-similarity.
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ted = Z eut MIGhT DIVERGE |
’ = R,
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M P}(;du /cr&ds
- 4 I( = Fct-rTp)
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Figure 1.12: The trace of an evolution operator is GM%'\ ¥ thickness ﬁn
concentrated in tubes around prime cycles, of leng
T, and thickness A" for the rth repetition of the Z >,
ey repial Vi

prime cyclep.
1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—NMatthias Neubert

Recasting dynamics in terms of evolution operators chamgesything. So
far our formulation has been heuristic, but in the evolutigrerator formalism
the escape rate and any other dynamical average are giveraby fermulas,
extracted from the spectra of evolution operators. The éelgtarerace formulas
andspectral determinants

The trace of an operator is given by the sum of its eigenvalliége explicit
expression 1.12) for £1(x,y) enables us to evaluate the trace. Idenyifywith x
and integratex over the whole state space. The result is an expression fbrats

a sum over neighborhoods of prime cycfeand their repetitions [section 16.2]

tr £t = ZTpi|d5(:l rT'\;)r) . (1.13)

This formula has a simple geometrical interpretation steddn figurel.12 After
the rth return to a Poincaré section, the initial tubé, has been stretched out
along the expanding eigendirections, with the overlap Wl initial volume
given by ¥ |det(1 - M[)) — 1/|Ap|, the same weight we obtained heuristically in
sect.1.5.1

The ‘spiky’ sum (L.13) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-haxeé & the smooth eigenvalue
sum tre™ = ¥ e®!, while the right-hand side equals zero everywhere except fo
the set = rTp. A Laplace transform smooths the sum over Dirac delta fonsti
in cycle periods and yields theace formulafor the eigenspectrurg, sy, - - - of
the classical evolution operator:

[chapter 16]
0 1
dtes'tr £ = tr =
0. S—-A
0 1 o (B-Ap—sTy)
S - Yt @19
Ls-s, 1 |det(1- m)
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The beauty of trace formulas lies in the fact that everytlongthe right-hand-
side—prime cycle®, their periodsT, and the stability eigenvalues ®,—is an
invariant property of the flow, independent of any coordénettoice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdbeoBppropriate
determinant. One way to evaluate determinants is to expasa in terms of
traces, using the identities

[exercise 4.1]
d d 1
d—slndet(s—ﬂ)_trd—sln(s—ﬂ)_trs_ﬂ, (1.15)
and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed
[chapter 17]
@ STpr
det(s— A) = exp (1.16)
Z Z |det 1- M)
The 1/r factor is due to theintegration, leading to the replaceméit— T,/rT,
in the periodic orbit expansiori (14). _
[section 17.5]

The motivation for recasting the eigenvalue problem in thisn is sketched
in figure 1.13 exponentiation improves analyticity and trades in a djeace
of the trace sum for a zero of the spectral determinant. We haw retraced
the heuristic derivation of the divergent sufn@) and the dynamical zeta func-
tion (1.9), but this time with no approximations: formula.(6 is exact The
computation of the zeros of det{ A) proceeds very much like the computations
of sect.1.5.3

1.7 From chaos to statistical mechanics

Under heaven, all is chaos.
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of dynamics of individual trajectories \glation operators
which propagate densities feels like a bit of mathematicadoo. Actually,
something very radical has taken place. Consider a chaaotig 8uch as the
stirring of red and white paint by some deterministic maehlhwe were able to
track individual trajectories, the fluid would forever rema striated combination
of pure white and pure red; there would be no pink. What is pibree reversed
the stirring, we would return to the perfect whired separation. However, that
cannot be—in a very few turns of the stirring stick the thiess of the layers goes
from centimeters to Angstroms, and the result is irretdyspink.
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det(i-2L)
Figure 1.13: Spectral determinant is preferable to th . ‘( '
trace as it vanishes smoothly at the leading eigenvalt b:
while the trace formula diverges.

D

s Z
"\

Understanding the distinction between evolution of indiial trajectories and
the evolution of the densities of trajectories is key to ustdnding statistical
mechanics—this is the conceptual basis of the second laweofibdynamics, and
the origin of irreversibility of the arrow of time for detemmistic systems with
time-reversible equations of motion: reversibility isaatble for distributions
whose measure in the space of density functions goes exjlheto zero with
time.

By going to a description in terms of the asymptotic time atioh oper-
ators we give up tracking individual trajectories for longnés, by trading it in
for a very dfective description of the asymptotic trajectory densitiggis will
enable us, for example, to give exact formulas for transpostficients such as
the difusion constants withowtny probabilistic assumptions (in contrast to tf}e

chapter 24]
stosszahlansataf Boltzmann).

A century ago it seemed reasonable to assume that stdtischanics applies
only to systems with very many degrees of freedom. More Iitesehe realization
that much of statistical mechanics follows from chaoticaiyiics, and already at
the level of a few degrees of freedom the evolution of dessiis irreversible.
Furthermore, the theory that we shall develop here gerzeratiotions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and trarép us into regions
hitherto inaccessible with the tools of equilibrium stital mechanics.

The concepts of equilibrium statistical mechanics do hedp however, to
understand the ways in which the simple-minded periodidt thbory falters. A
non-hyperbolicity of the dynamics manifests itself in povaav correlations and

. .. , [chapter 23]
even phase transitions.

1.8 What is not in ChaosBook

This book dfers a breach into a domain hitherto reputed unreachablemaido
traditionally traversed only by mathematical physicisid enathematicians. What
distinguishes it from mathematics is the insistence on adaiyplity and numerical
convergence of methodgfered. A rigorous proof, the end of the story as far
as a mathematician is concerned, might state that in a giting for times in
excess of 18 years, turbulent dynamics settles onto an attractor of aigioe less
than 600. Such a theorem is of a little use to an honest, harlling plumber,
especially if her hands-on experience is that within thenspiaeven the most
careful simulation the dynamics seems to have settled aaas(ent?) attractor
of dimension less than 3. If rigor, magic, fractals or bramgour thing, read
remarkl.4and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Résumé

This text is an exposition of the best of all possible thendkdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, naterahow small,
will spread over the entire accessible state space. Hercthéory focuses on
describing the geometry of the space of possible outcomes\aluating averages
over this space, rather than attempting the impossibleigg@rediction of individual
trajectories. The dynamics of densities of trajectoriedascribed in terms of
evolution operators. In the evolution operator formali$ra dynamical averages
are given by exact formulas, extracted from the spectra ofugen operators.
The key tools ar¢race formulasandspectral determinants

The theory of evaluation of the spectra of evolution opesgtoesented here is
based on the observation that the motion in dynamical systdrfew degrees of
freedom is often organized around a fawndamentatycles. These short cycles
capture the skeletal topology of the motion on a strangadtyrepeller in the
sense that any long orbit can approximately be pieced tegétbm the nearby
periodic orbits of finite length. This notion is made preciseapproximating
orbits by prime cycles, and evaluating the associated twes A curvature
measures the deviation of a longer cycle from its approdondity shorter cycles;
smoothness and the local instability of the flow implies exgrtial (or faster)
fall-off for (almost) all curvatures. Cycle expansiorfieoan dficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the
hyperbolicity assumption, i.e., the assumption of exptiakishrinkage of all
strips of the pinball repeller. By dropping tteg prefactors in {.4), we have
given up on any possibility of recovering the precise disttion of startingx
(which should anyhow be impossible due to the exponent@itir of errors), but
in exchange we gain anffective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansi@ar® {s that the infinite time
behavior of an unstable system is as easy to determine akdhdime behavior.

To keep the exposition simple we have here illustrated tiigyuwdf cycles and
their curvatures by a pinball game, but topics covered ino0SBaok — unstable
flows, Poincaré sections, Smale horseshoes, symboliagaapruning, discrete
symmetries, periodic orbits, averaging over chaotic sstslution operators, dyn-
amical zeta functions, spectral determinants, cycle expas, quantum trace
formulas, zeta functions, and so on to the semiclassicahtmation of helium
— should give the reader some confidence in the broad swaydh#dory. The
formalism should work for any average over any chaotic sethvbhatisfies two
conditions:

1. the weight associated with the observable under coraidaris multiplicative
along the trajectory,

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 24

2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ohtities characterizing
chaotic systems, such as the escape rates, Lyapunov expdnamsport ca@écients
and quantum eigenvalues. A big surprise is that the serasiclal guantum mechanics
of systems classically chaotic is very much like the cladsitechanics of chaotic
systems; both are described by zeta functions and cyclensixpe of the same
form, with the same dependence on the topology of the clasiov.

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 25

But the power of instruction is seldom of muchieacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts.  This text aims to bridge the gap between
the physics and mathematics dynamical systems literatlitee intended audience is
Henri Roux, the perfect physics graduate student with aréi@al bent who does not
believe anything he is told. As a complementary presemtati® recommend Gaspard’s
monograph{] which covers much of the same ground in a highly readablesahdlarly
manner.

As far as the prerequisites are concerned—ChaosBook is mtraduction to nonlinear
dynamics. Nonlinear science requires a one semester lmasse(advanced undergraduate
or first year graduate). A good start is the textbook by Strofa])], an introduction to the
applied mathematician’s visualization of flows, fixed pejmhanifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamicsekon diferential equations
in nonlinear disguise, and its broadly chosen examples amdlyrexercises make it a
favorite with students. It is not strong on chaos. There éxéook of Alligood, Sauer
and Yorke [L1] is preferable: an elegant introduction to maps, chaodp@etoubling,
symbolic dynamics, fractals, dimensions—a good compani@maosBook. Introductions
more comfortable to physicists is the textbook by Ctf][ with the baker's map used
to illustrate many key techniques in analysis of chaotidesys. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. Sprdtand Jackson15]
textbooks are very useful compendia of the '70s and onwdrads’ literature which we,
in the spirit of promises made in settl, tend to pass over in silence.

An introductory course should give students skills in giadilre and numerical analysis
of dynamical systems for short times (trajectories, fixeid{zo bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaoticesyst A good introduction
to numerical experimentation with physically realistis®ms is Tufillaro, Abbott, and
Reilly [16]. Korsch and JodlT7] and Nusse and Yorkel[] also emphasize hands-on
approach to dynamics. With this, and a graduate level-axgds statistical mechanics,
partial diterential equations and quantum mechanics, the stage isrsmty of the one-
semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses.  The courses taught so far (for a listing,
consultChaosBook.orfrourse} start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfferént directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formulets, functions,
cycle expansions, Lyapunov exponents, billiards, trartspmeficients, thermodynamic
formalism, period doubling, renormalization operators.

A graduate level introduction to statistical mechanicsrfithie dynamical point view
is given by Dorfman $3]; the Gaspard monograph][covers the same ground in more
depth. Driebe monographk{] offers a nice introduction to the problem of irreversibility
in dynamics. The role of ‘chaos’ in statistical mechaniagiscally dissected by Bricmont
in his highly readable essécience of Chaos or Chaos in Sciencqd?4].
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Spatiotemporal dynamical systemsPartial diferential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries afiaddaitions, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Luabel Berkooz §8] offer

a delightful discussion of why the Kuramoto-Sivashinskya&tipn deserves study as a
staging ground for a dynamical approach to study of turleden full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace flasnsemiclassical
spectral determinants, billiards, semiclassical helidglffraction, creeping, tunneling,
higher-order: corrections. For further reading on this topic, consultgbantum chaos
part of ChaosBook.org

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbdble. role of unstable periodic
orbits was already fully appreciated by Poincaté, [2(], who noted that hidden in the
apparent chaos is a rigid skeleton, a treeyfles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cydiesld be the key to chaotic
dynamics. Periodic orbits have been at core of much of théemadtical work on the
theory of the classical and quantum dynamical systems @we.s\We refer the reader to
the reprint selection]1] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. The most extensiference is the treatise by
Katok and Hasselblatt’p], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still véligareading, are Smale ],
Bowen [24] and Sinai P€]. Sinai’s paper is prescient andfers a vision and a program
that ties together dynamical systems and statistical rméchalt is written for readers
versed in statistical mechanics. For a dynamical systeipasition, consult Anosov and
Sinai [25]. Markov partitions were introduced by Sinai in ref.7]. The classical text
(though certainly not an easy read) on the subject of dyraméta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formaligifi]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) 8nthle’s theory of hyperbolic
flows are applied to zeta functions and correlation fun&tidrhe status of the theory from
Ruelle’s point of view is compactly summarized in his 1995aPlecturesq9. Further
excellent mathematical references on thermodynamic fiismare Parry and Pollicott’s
monograph $0] with emphasis on the symbolic dynamics aspects of the flismaand
Baladi’s clear and compact reviews of the theory of dynahzieta functions 31, 37.

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poinliags tmodular domains, Selberg
Zeta functions, Riemann hypothesis, Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chatmost no powerful method in

its repertoire survives a transplant to a physical systexnytbu are likely to care about.

Remark 1.6 Sorry, no shmactals! ChaosBook skirts mathematics and empirical practice
of fractal analysis, such as Hausffand fractal dimensions. Addison’s introduction to
fractal dimensions{/] offers a well-motivated entry into this field. While in studi€fs o
probabilistically assembled fractals such a#fiion Limited Aggregates (DLA) better
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measures of ‘complexity’ are lacking, for deterministic®ms there are much better,
physically motivated and experimentally measurable dtiest(escape rates, ftlision
codficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Ratbrains?  If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, tieadine of research in neuronal
dynamics that focuses on possible unstable periodic stde=cribed for example in
ref. [39, 40, 41, 47].
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A guide to exercises

God can #&ord to make mistakes. So can Dadal!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; thlg way to develop

intuition about chaotic dynamics is by computing, and thedes is urged to try
to work through the essential exercises. As not to fragntentext, the exercises
are indicated by text margin boxes such as the one on thisimaagd collected
at the end of each chapter. By the end of a (two-semestersequmu should
have completed at least three small projects: (a) compugeytnng for a 1-
dimensional repeller, (b) compute escape rate for a 3-diskegof pinball, (c)
compute a part of the quantum 3-disk game of pinball, or thieitnespectrum, or
if you are interested in statistical rather than the quantuechanics, compute a
transport cofficient. The essential steps are:

[exercise 18.2]

e Dynamics

1. count prime cycles, exercisel, exercise9.2, exercisel0.1
pinball simulator, exercis@.1, exercisel2.4

pinball stability, exercis8.3, exercisel2.4

pinball periodic orbits, exercisk.5 exercisel2.6

helium integrator, exercise 10, exercisel2.8

2

helium periodic orbits, exercise?.9
e Averaging, numerical

1. pinball escape rate, exercisg.3
e Averaging, periodic orbits

cycle expansions, exerci$é.l, exercisel8.2

pinball escape rate, exercit8.4, exercisel8.5

cycle expansions for averages, exerd@i8el, exercise20.3
cycle expansions for flusion, exercis@4.1

pruning, Markov graphs, exerci48.7
desymmetrization exercid®.1

N o gk DR

intermittency, phase transitions, exerc8e6

The exercises that you should do hawelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worthpablication Solutions to some of the
problems are available o6haosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be dguHlieacknowledged.
Often going through a solution is more instructive than iegdhe chapter that
problem is supposed to illustrate.
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1.1. 3-disk symbolic dynamics.

Exercises

As periodic trajectories
will turn out to be our main tool to breach deep into the
realm of chaos, it pays to start familiarizing oneself with
them now by sketching and counting the few shortest
prime cycles (we return to this in sedt3.4). Show that
the 3-disk pinball has @"! itineraries of lengtm. List
periodic orbits of lengths 2, 3, 4, 5,-. Verify that the
shortest 3-disk prime cycles are 12, 13, 23, 123, 132,
1213, 1232, 1323, 12123,-. Try to sketch them.

pinball trajectories start out parallel, but separated by
1 Angstrom, and the disks are of radiess= 1 cm
and center-to-center separatith = 6 cm. Try to
estimate in how many bounces the separation will grow
to the size of system (assuming that the trajectories
have been picked so they remain trapped for at least
that long). Estimate the WhoRinball Wizards typical
score (number of bounces) in a game without cheating,
by hook or crook (by the end of chapt&8 you should

1.2. Sensitivity to initial conditions. Assume that two
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Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

aim is narrow; we keep the exposition focused on prereggisiv the

applications to be developed in this text. We assume thatebader
is familiar with dynamics on the level of the introductoryxt® mentioned in
remarkl.1, and concentrate here on developing intuition about whanhamical
system can do. It will be a coarse brush sketch—a full detsmnif all possible
behaviors of dynamical systems is beyond human ken. Anyfwag, novice there
is no shortcut through this lengthy detour; a sophisticatageler might prefer to
skip this well-trodden territory and embark upon the joyraechapterl 4.

W fast track:
chapter 14, p. 235

WE START oUT With a recapitulation of the basic notions of dynamics. Our

2.1 Dynamical systems

R
In a dynamical system we observe the world as a function a&.tNle express ou
observations as numbers and record how they change withdiwen suficiently

detailed information and understanding of the underlyiatural laws, we see the

future in the present as in a mirror. The motion of the plangtinst the celestial
firmament provides an example. Against the daily motion efgtars from East
to West, the planets distinguish themselves by moving antbadfixed stars.
Ancients discovered that by knowing a sequence of planettipns—latitudes
and longitudes—its future position could be predicted.

[section 1.3]

For the solar system, tracking the latitude and longitudéercelestial sphere
sufices to completely specify the planet’'s apparent motionpédisible values for
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