Chapter 1

Overture

If I have seen less far than other men it is because | have
stood behind giants.
—Edoardo Specchio

holes large enough to steam a Eurostar train through theme Welearn

about harmonic oscillators and Keplerian ellipses - butreligethe chapter
on chaotic oscillators, the tumbling Hyperion? We have gugtntized hydrogen,
where is the chapter on the classical 3-body problem andriggidgations for
quantization of helium? We have learned that an instantensislution of field-
theoretic equations of motion, but shouldn’t a stronglylimzar field theory have
turbulent solutions? How are we to think about systems wtiengs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehiba are

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you gpeated to
know/learn this material

. indicates that the section is on a cyclist, somewhat advhlevel

)
J indicates that the section requires a hearty stomach antbizlply best
skipped on first reading

W fast track points you where to skip to

” tells you where to go for more depth on a particular topic
E 4 indicates an exercise that might clarify a point in the text

indicates that a figure is still missing—you are urged totfétc
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We start out by making promises—we will right wrongs, no lenghall you stfer
the slings and arrows of outrageous Science of Perplexigralégate a historical
overview of the development of chaotic dynamics to appeAdiand head straight
to the starting line: A pinball game is used to motivate ahditate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shewtle to follow
the thread of the argument without constant excursionsuicses. Hence there are
no literature references in the text proper, all learnedarkmand bibliographical
pointers are relegated to the “Commentary” section at tideoeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
SOITOWS.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrafamgl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is micéystems governed
by simple deterministic laws whose asymptotic dynamicscamplex beyond
belief, systems which are locally unstable (almost) evésng but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detartnitake a
logarithm. It would hardly merit a learned treatise, wenait for the fact that this
determinant that we are to compute is fashioned out of iefininany infinitely
small pieces. The feel is of statistical mechanics, and ithAbw the problem
was solved; in the 1960’s the pieces were counted, and in9f@é'd they were
weighted and assembled in a fashion that in beauty and it dapks along with
thermodynamics, partition functions and path integralsmagst the crown jewels
of theoretical physics.

This book isnota book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shartet dynamically invariant
compact sets (equilibria, periodic orbits, partially hsip#ic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, tredinterweaving of
their global stable and unstable manifolds. These feaaireeobust and accessible
in systems as noisy as slices of rat brains. Poincare, gtédiunderstand deterministic
chaos, already said as much (modulo rat brains). Once fiédgy is understood,

a powerful theory yields the observable consequences afichdynamics, such
as atomic spectra, transport id@ents, gas pressures.

That is what we will focus on in ChaosBook. The book is a selftained
graduate textbook on classical and quantum chaos. Youegsof does not know
this material, so you are on your own. We will teach you how Vealeate a

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 3

determinant, take a logarithm—stilike that. Ideally, this should take 100 pages
or so. Well, we fail-so far we have not found a way to travetge material in
less than a semester, or 200-300 page subset of this textingdbd be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systevesbeen studied for
over 200 years. During this time many have contributed, hadield followed no
single line of development; rather one sees many interwstramds of progress.

In retrospect many triumphs of both classical and quantugsiph were a
stroke of luck: a few integrable problems, such as the haitnaoscillator and
the Kepler problem, though ‘non-generic, have gotten uy Var. The success
has lulled us into a habit of expecting simple solutions topgé equations—an
expectation tempered by our recently acquired ability tmerically scan the state
space of non-integrable dynamical systems. The initiar@sgion might be that
all of our analytic tools have failed us, and that the chasygtems are amenable
only to numerical and statistical investigations. Nevelels, a beautiful theory
of deterministic chaos, of predictive quality comparaldehat of the traditional
perturbation expansions for nearly integrable systemsady exists.

In the traditional approach the integrable motions are wsederoth-order
approximations to physical systems, and weak nonlineardie then accounted
for perturbatively. For strongly nonlinear, non-integeasystems such expansions
fail completely; at asymptotic times the dynamics exhibitgazingly rich structure
which is not at all apparent in the integrable approximatiorlowever, hidden
in this apparent chaos is a rigid skeleton, a self-similae tof cycles(periodic
orbits) of increasing lengths. The insight of the modernadyital systems theory
is that the zeroth-order approximations to the harshly thatynamics should
be very diferent from those for the nearly integrable systems: a goadirsg
approximation here is the stretching and folding of bakéoagh, rather than the
periodic motion of a harmonic oscillator.

So, what s chaos, and what is to be done about it? To get saiiregéor how
and why unstable cycles come about, we start by playing a gdupi@ball. The
reminder of the chapter is a quick tour through the matedeéoed in ChaosBook.
Do not worry if you do not understand every detail at the fiesiding—the intention
is to give you a feeling for the main themes of the book. Dstaill be filled out
later. If you want to get a particular point clarified righwmo@ on the margin [
points at the appropriate section.
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Figure 1.1: A physicist's bare bones game of pinbal

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surpris@yone who has tried
pool, billiards or snooker-the game is about beating ctsmsve start our story
about what chaos is, and what to do about it, with a ganp@rdfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatwhpendulum is
to integrable systems: thinking clearly about what ‘chdnsd game of pinball
is will help us tackle more dicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfioeent of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmesiamong the
pinball machine’s disks, and only high-school level Euetid geometry is needed
to describe its trajectory. A physicist’s pinball game is ttame of pinball strip-
ped to its bare essentials: three equidistantly placedcteftedisks in a plane,
figurel.1 Aphysicist’s pinball is free, frictionless, point-likepin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adittles from random starting
positions and angles; they spend some time bouncing bettheeatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew eveingha deterministic
system would do far into the future. He wrotH,[anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant aeliigence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establishedinle$s just
as certain as that three times three is nine. [...] If, fomeple, one sphere
meets another sphere in free space and if their sizes andptsis and
directions before collision are known, we can then foredeltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how maplyeres
are taken or whether objects are taken other than spheres this one
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CHAPTER 1. OVERTURE 5

23132321

Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time. 2313

3x(Y)

ox(0
Figure 1.3: Unstable trajectories separate with time. x(0) X(t)

sees then that everything proceeds mathematically—thiafadlibly—in the
whole wide world, so that if someone could have #isient insight into
the inner parts of things, and in addition had remembranderaalligence
enough to consider all the circumstances and to take themagtount, he
would be a prophet and would see the future in the presentaminror.

Leibniz chose to illustrate his faith in determinism pregtyswith the type of
physical system that we shall use here as a paradigm of ‘¢ch&tis claim is
wrong in a deep and subtle way: a state of a physical systemesasibe specified
to infinite precision, and by this we do not mean that evehtuhke Heisenberg
uncertainty principle kicks in. In the classical, deteristic dynamics there is no
way to take all the circumstances into account, and a simgjectory cannot be
tracked, only a ball of nearby initial points makes physgstse.

1.3.1 Whatis ‘chaos’?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present staigiinciple fully determined
by its initial conditions, in contrast to a stochastic syste

For a stochastic system the initial conditions determieduture only partially,
due to noise, or other external circumstances beyond ouraiorthe present
state reflects the past initial conditions plus the paricutalization of the noise
encountered along the way.

A deterministic system with gliciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling therdenistic from the
stochastic is the main challenge in many real-life settirfigem stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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In a game of pinball, any two trajectories that start out velose to each
other separate exponentially with time, and in a finite (amgbriactice, a very
small) number of bounces their separatitxt) attains the magnitude df, the
characteristic linear extent of the whole system, figurd This property of
sensitivity to initial conditiongan be quantified as

lox(t)| ~ e"ox(0)|

where 1, the mean rate of separation of trajectories of the systeroalied the
Lyapunov exponent For any finite accuracyx = [6x(0)| of the initial data, the
dynamics is predictable only up to a finitgapunov time

1
Tiyap ) Injox/Ll, (1.12)

despite the deterministic and, for Baron Leibniz, infadlilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&ase could try
to play 1- or 2-disk pinball game, but it would not be much obang; trajectories
would only separate, never to meet again. What is also neisdadking the
coming together again and again of trajectories. Whilellptiae nearby trajectories
separate, the interesting dynamics is confined to a glofiaitg region of the state
space and thus the separated trajectories are necessédiyl back and can re-
approach each other arbitrarily closely, infinitely mamyes. For the case at hand
there are 2topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectorieithw bounces can be
quantified as

N(n) ~ €M

whereh, the growth rate of the number of topologically distincterdories, is
called the'topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deitgstic dynamics

there is no chaos in the everyday sense of the word; evegypinoteeds mathematically—

that is, as Baron Leibniz would have it, infallibly. When aypltist says that a
certain system exhibits ‘chaos, he means that the systeysateterministic laws
of evolution, but that the outcome is highly sensitive to Bmiacertainties in the
specification of the initial state. The word ‘chaos’ has iis ttontext taken on a
narrow technical meaning. If a deterministic system isllgaanstable (positive
Lyapunov exponent) and globally mixing (positive entregigure 1.4-it is said
to bechaotic

While mathematically correct, the definition of chaos assifiee Lyapunov
+ positive entropy’ is useless in practice, as a measurenfghese quantities is
intrinsically asymptotic and beyond reach for systems nfegkin nature. More
powerful is Poincaré’s vision of chaos as the interplayoofl instability (unstable
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Figure 1.4: Dynamics of achaotic dynamical

system is (a) everywhere locally unstable (positive

(Y
\ .
Lyapunov exponent) and (b) globally mixing \ 4 /" N
) (b

(positive entropy). (A. Johansen) (a

periodic orbits) and global mixing (intertwining of thetable and unstable manifolds).

In a chaotic system any open ball of initial conditions, ndterehow small, will
in finite time overlap with any other finite region and in thesxse spread over the
extent of the entire asymptotically accessible state sp&oee this is grasped,
the focus of theory shifts from attempting to predict indival trajectories (which
is impossible) to a description of the geometry of the spdg®ssible outcomes,
and evaluation of averages over this space. How this is guiésimed is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Initéty, the word
refers to irregular behavior of an infinite-dimensional dyrical system described
by deterministic equations of motion—say, a bucket of staslvater described by
the Navier-Stokes equations. But in practice the word tilehce’ tends to refer
to messy dynamics which we understand poorly. As soon as rophenon is
understood better, it is reclaimed and renamed: ‘a routbdo%, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamicef@dimensional
attractors visualized as a succession of nearly periodiaibstable motions. In
the same spirit, we shall think of turbulence in spatialljeexied systems in terms
of recurrent spatiotemporal patterns. Pictorially, dyi@ndrives a given spatially
extended system (clouds, say) through a repertoire of blestmtterns; as we
watch a turbulent system evolve, every so often we catchnapgk of a familiar
pattern:

9@}5

)

= other swirls =

For any finite spatial resolution, a deterministic flow falfapproximately for a
finite time an unstable pattern belonging to a finite alphabatimissible patterns,
and the long term dynamics can be thought of as a walk thrdugkpace of such
patterns. In ChaosBook we recast this image into mathesnatic
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1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical
fractals.

— Richard P. Taylof4, 5]

When should we be mindful of chaos? The solar system is ‘@iaget
we have no trouble keeping track of the annual motions ofgitan The rule
of thumb is this; if the Lyapunov timel(1)-the time by which a state space
region initially comparable in size to the observationatiaacy extends across
the entire accessible state space—is significantly shtirger the observational
time, you need to master the theory that will be develope@.heihat is why
the main successes of the theory are in statistical mechanieantum mechanics,
and questions of long term stability in celestial mechanics

In science popularizations too much has been made of thecingpachaos
theory,” so a number of caveats are already needed at this poi

At present the theory that will be developed here is in pcaciipplicable only
to systems of a low intrinsidimension— the minimum number of coordinates
necessary to capture its essential dynamics. If the systerary turbulent (a
description of its long time dynamics requires a space df mginsic dimension)
we are out of luck. Hence insights that the theoffigrs in elucidating problems of
fully developed turbulence, quantum field theory of stromigriactions and early
cosmology have been modest at best. Even that is a caveatjuétifications.
There are applications—such as spatially extended (noifitggqum) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeseefiom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success wheliegito the very
noisy systems so important in the life sciences and in ec@®oniven though
we are often interested in phenomena taking place on timesscauch longer
than the intrinsic time scale (neuronal inter-burst iréésy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980’s something happened that might be without pardhé is an area of
science where the advent of cheap computation had actuddtyasted from our
collective understanding. The computer pictures and nizaleplots of fractal
science of the 1980’s have overshadowed the deep insightseaf970's, and
these pictures have since migrated into textbooks. By eetidple oversight,
ChaosBook has none, so ‘Untitled 5’ of figuré&will have to do as the illustration
of the power of fractal analysis. Fractal science posit$ testain quantities
(Lyapunov exponents, generalized dimensions, .. .) castie@ed on a computer.
While some of the numbers so obtained are indeed matheithasieasible characterizations
of fractals, they are in no sense observable and measurahiteedength-scales
and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal gégnad nature
is circumstantial 7], in studies of probabilistically assembled fractal aggtes
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Figure 1.5: Katherine Jones-SmithUntitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te=]
the fractal analysis of Pollock’s drip paintings [

we know of nothing better than contemplating such quastitiem deterministic
systems we can douchbetter.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten seat
belts and turn f all electronic devices. But first, a disclaimer: If you uratand
the rest of this chapter on the first reading, you either doneed this book, or
you are delusional. If you do not understand it, it is not liseathe people who
wrote it are smarter than you: the most you can hope for atsthige is to get a
flavor of what lies ahead. If a statement in this chapter rfigsintrigues, fast
forward to a section indicated byzs= on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALIt, afr otherwise
we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical systenr,analysis proceeds
in three stages; I. diagnose, Il. count, lll. measure. Fing determine the
intrinsic dimensiorof the system—the minimum number of coordinates necessary
to capture its essential dynamics. If the system is veryuterti we are, at present,
out of luck. We know only how to deal with the transitional ireg between
regular motions and chaotic dynamics in a few dimensionst iBstill something;
even an infinite-dimensional system such as a burning flaom éan turn out to
have a very few chaotic degrees of freedom. In this regimehietic dynamics
is restricted to a space of low dimension, the number of egleyparameters
is small, and we can proceed to step Il; weuntand classify all possible )

. .. . . . . . [chapter 10]

topologically distinct trajectories of the system into ararchy whose successwéhapm_ 13]
layers require increased precision and patience on theop#re observer. This
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Figure 1.6: Binary labeling of the 3-disk pinball o . .
trajectories; a bounce in which the trajectory returns

to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

we shall do in sectl.4.2 If successful, we can proceed with step Il investigate
theweightsof the diferent pieces of the system.

We commence our analysis of the pinball game with steps klilgnose,

count. We shall return to step Illl-measure—in sgci.
[chapter 18]

1.4.1 Symbolic dynamics

With the game of pinball we are in luck—it is a low dimensiosgktem, free
motion in a plane. The motion of a point particle is such tHatraa collision
with one disk it either continues to another disk or it essapl we label the
three disks by 1, 2 and 3, we can associate every trajectdbyamiitinerary, a
sequence of labels indicating the order in which the disks/mited; for example,
the two trajectories in figuré.2 have itineraries2313, 23132321 respectively.

Such labeling goes by the nansgmbolic dynamics As the particle cannot
collide two times in succession with the same disk, any twtseoutive symbols[smOm 21]
must difer. This is an example g@iruning a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general &idult problem, but with the
game of pinball we are lucky—for well-separated disks tlaeeano further pruning
rules.

[exercise 1.1]

[chapter 11]

The choice of symbols is in no sense unique. For example, escatbounce
we can either proceed to the next disk or return to the previbsk, the above
3-letter alphabet can be replaced by a bin@i} alphabet, figurel.6. A clever
choice of an alphabet will incorporate important featurethe dynamics, such as
its symmetries.

[section 10.5]

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—-what would berangisstrategy?
The simplest thing would be to try to aim the pinball so it boes many times
between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centersyauld stay there
forever. Your game would be just as good if you managed to tg&t keep
bouncing between the three disks forever, or place it on anipgic orbit. The
only rub is that any such orbit isnstable so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear tiiane is interested in
playing well, unstable periodic orbits are important—ttiegm the skeleton onto
which all trajectories trapped for long times cling.
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1 1
Figure 1.9: The 3-disk game of pinball Poincaré \
section, trajectories emanating from the disk 1
with Xo = (S, po) - (@) Strips of initial points
121212313 Mz, Mys which reach disks 2, 3 in one bounce, 23| \131

respectively. (b) Strips of initial points;1, Mia1
M3 and M,z which reach disks 1, 2, 3 in two 121\ |132'

bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are \\

sind
)

Figure 1.7: The 3-disk pinball cycle€232 and
121212313.

obtained by the appropriate relabeling of the strips.

. ) ) i Disk radius : center separation ratio aR1:2.5.
Figure 1.8: (@) A trajectory starting out from disk (Y. Lan) (a)
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper :
with initial conditions that hit further consecutive disk

nested within each other, as in Fig9.

wo
~
—
(=)}
-
!
~
o
no

consists of all points with itinerary = $15S3... %, S = {1,2,3}. The unstable
cycles as a skeleton of chaos are almost visible here: eathpmich contains
a periodic pointS;$;S;- .. 5, with the basic block infinitely repeated. Periodic
1.4.2 Partitioning with periodic orbits points are skeletal in the sense that as we look further atiugfui the strips shrink
but the periodic points stay put forever.

A trajectory is periodic if it returns to its starting positi and momentum. We
shall refer to the set of periodic points that belong to awmiperiodic orbit as a
cycle

We see now why it pays to utilize a symbolic dynamics; it pdes a navigation
chart through chaotic state space. There exists a uniqjectoey for every
admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeledilfyis the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; arer ¢thjectory starting
out as 12.. either eventually escapes or hits the 3rd disk.

Short periodic orbits are easily drawn and enumerated—ampbe is drawn
in figure 1.7-but it is rather hard to perceive the systematics of orbimftheir
configuration space shapes. In mechanics a trajectorylysafiodi uniquely specified
by its position and momentum at a given instant, and no twiindisstate space
trajectories can intersect. Their projections onto aabjtrsubspaces, however,

can and do intersect, in rather unilluminating ways. In tivball example the 1.4.3 Escape rate
problem is that we are looking at the projections of a 4-disiamal state space [example 15.2]
trajectories onto a 2-dimensional subspace, the configarapace. A clearer What is a good physical quantity to compute for the game obglld Such
pictqre of the dynamics is obtained by constructing a setaiéspace Poincaré a system, for which almost any trajectory eventually leaxdite region (the
sections. pinball table) never to return, is said to be open, geller. The repelleescape
) ) . ) . » rate is an eminently measurable quantity. An example of such asurement
Suppo_se that the plnball has just boun(_:&cuu;k_ 1. Depending on its posﬂlgn would be an unstable molecular or nuclear state which candiieapproximated
and outgoing angle, it could pr_oceed o either disk 2. or 3. iNoch h?ppe’.‘s n by a classical potential with the possibility of escape irtaia directions. In an
between the bounces—the_ ball Ju_st travels at constgntnge?bng a straight line— experiment many projectiles are injected into a macroscbtick box’ enclosing
SO we can reduce the 4-d|men5|onal_ﬂow toa 2-d|men5|or_1al gt tak_es the a microscopic non-confining short-range potential, and thean escape rate is
;oordlnates of the pinball from one d'Sk_ edge to another elige. The_ Fra]ectory measured, as in figurel The numerical experiment might consist of injecting
just after the moment Qf.lmpact is defined lay the arc-length position of the the pinball between the disks in some random direction akthghow many
nth bounce alopg the billiard wall, fﬂ% - psingn the_ momentum component times the pinball bounces on the average before it escapesdion between the
parallel to the billiard wall at the point of impact, see figir9. Such section of a disks.
flow is called aPoincaré section In terms of Poincaré sections, the dynamics[‘iiamle 22] [exercise 1.2]
reduced to the set of sMaps R.—s; : (S, Pn) = (S+1, Pova), With s € {1,2,3}, ' For a theorist, a good game of pinball consists in predictingurately the
from the boundary of the diskto the boundary of the next disk [section 8] asymptotic lifetime (or the escape rate) of the pinball. \&l& show how periodic
. . ; ) - L orbit theory accomplishes this for us. Each step will be ? that you can
Next_, we mark in the Poincaré sectl_on those |_n|t|a| condsi W.hICh QO_ not_ follow everilat the cﬁrsory pace of this overview, gnd St t:sq:ﬁs surgrisingly
escape in one bounce. There are two strips of survivorsedsdjectories originating elegant.
from one disk can hit either of the other two disks, or escajtleont further ado.
We label the two stripsVl;2, Mis. Embedded within them there are four strips Consider figurel.9 again. In each bounce the initial conditions get thinned
Mazy, Mazs, Masy, Mugz of initial conditions that survive for two bounces, and out, yielding twice as many thin strips as at the previousnoeu The total area
so forth, see figures.8and1.9. Provided that the disks areffgiently separated, that remains at a given time is the sum of the areas of thesstripthat the fraction

after n bounces the survivors are divided int® @stinct strips: theM;th strip
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CHAPTER 1. OVERTURE 13
of survivors aften bounces, or theurvival probabilityis given by

- Mol = IMy] - Mool . IMiol | Mol | IMual

—_— I; = + + + s
MM 2T TTIME T TIM T TIM
1 (n)
I, = — : 1.2
"= M|Z|M.|, 1.2

wherei is a label of theith strip, |[M| is the initial area, andiM;| is the area of
theith strip of survivors.i = 01,10,11 ... is a label, not a binary number. Since
at each bounce one routinely loses about the same fractitrajettories, one

expects the suml(2) to fall off exponentially withn and tend to the limit [chapter 20]

Th/fn =" e, (1.3)

The quantityy is called theescape ratérom the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution paéieuli
guelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que lafiierence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut. Dailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c'est qu’elles sont, pour ans
dire, la seule bréche par ou nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape ratan be extracted from a highly convergent
exactexpansion by reformulating the suni.) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk otigadlj center-
center separation 6, velocity 1, you answer that the cootistime escape rate

is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological exdg of the strips,
but, as we shall now show, they also determine their size.
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X(t) 0 0X(t) = 3 '5(0)

Figure 1.10: The fundamental matrix* maps an X(O)
infinitesimal displacemerdix at X, into a displacement
I (x0)ox finite timet later. x(0

As atrajectory evolves, it carries along and distorts ifimitesimal neighborhood.
Let

X(t) = f'(xo)

denote the trajectory of an initial poine = x(0). Expandingf!(xo + d%o) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x;(t)
is given by the fundamental matrik

d a%(t)
%) = >, J'(X0)ij6%oj » Jxo)ij = ——=.
; ] ] ] 6X0J

A trajectory of a pinball moving on a flat surface is specifigdtivo position
coordinates and the direction of motion, so in this cdse 3. Evaluation of a
cycle fundamental matrix is a long exercise - here we jusestee result. The
fundamental matrix describes the deformation of an infémitel neighborhood
of x(t) along the flow; its eigenvectors and eigenvalues give tiections and the
corresponding rates of expansion or contraction, figut€ The trajectories that
start out in an infinitesimal neighborhood separate aloegutistable directions
(those whose eigenvalues are greater than unity in mag)ijtapproach each
other along the stable directions (those whose eigenvaluedess than unity
in magnitude), and maintain their distance along the matgiirections (those
whose eigenvalues equal unity in magnitude).

[section 8.2]

In our game of pinball the beam of neighboring trajectorsedafocused along
the unstable eigendirection of the fundamental matix

As the heights of the strips in figure.9 are dfectively constant, we can
concentrate on their thickness. If the heightik, then the area of thigh strip is
i ~ Ll; for a strip of widthl;.

Each stripi in figure 1.9 contains a periodic point. The finer the intervals,
the smaller the variation in flow across them, so the cortiohufrom the strip

of width I; is well-approximated by the contraction around the pedqabint x;
within the interval,

li = a/IAil, (1.4)
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whereA; is the unstable eigenvalue of the fundamental maliix;) evaluated at
the ith periodic point fort = Ty, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). ti@nipagnitude of
this eigenvalue matters, we can disregard its sign. Thegt@ka reflect the
overall size of the system and the particular distributibstarting values ok. As
the asymptotic trajectories are strongly mixed by bouncimgpotically around the
repeller, we expect their distribution to be insensitivestaooth variations in the
distribution of initial points.

[section 14.4]
To proceed with the derivation we need thyperbolicityassumption: for large
n the prefactors; ~ O(1) are overwhelmed by the exponential growthAgf so
we neglect them. If the hyperbolicity assumption is justifieve can replace[Semlom 16.1.1]

M| = Llj in (1.2) by 1/|Ai| and consider the sum

(n)

T =) /Al

where the sum goes over all periodic points of periotlVe now define a generating
function for sums over all periodic orbits of all lengths:

'@ = i . (1.5)
n=1

Recall that for largan the nth level sum {.2) tends to the limif’, — e, so the
escape rate is determined by the smallest= €” for which (1.5) diverges:

zev
1-ze7’

I@ ~ i (ze")" = (1.6)
n=1

This is the property of () that motivated its definition. Next, we devise a formula
for (1.5) expressing the escape rate in terms of periodic orbits:

'@

M
Ny

™
=

+ 2y z + z + z + z
Aol A1l 1Acol  Aoal A0l A4
+—23 +—Z3 +—Z3 +—23 +... 1.7)

[Aood  [Acodl  [Aoid  A1odl

For suticiently smallz this sum is convergent. The escape rate now given by section 16.3]
the leading pole ofX(.6), rather than by a numerical extrapolation of a sequence )
of y, extracted from 1.3). As any finite truncatiom < ngync of (1.7) is a
polynomial inz, convergent for any, finding this pole requires that we know
something about, for anyn, and that might be a tall order.
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We could now proceed to estimate the location of the leadingutarity
of I'(z) from finite truncations of 1.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a sime&immation
that converts this divergence intzaroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalue/r%. A
prime cyclep is a single traversal of the orbit; its label is a non-repeagymbol
string ofn, symbols. There is only one prime cycle for each cyclic peation
class. For examplgp = 0011 = 1001= 1100= 0110 is prime, bud101= 01
is not. By the chain rule for derivatives the stability of ecleyis the same
everywhere along the orbit, so each prime cycle of lemgtbontributesn, terms
to the sum {.7). Hence (.7) can be rewritten as

S F LAY Nptp palld
r@ = anZ (m) =2 e YTy 1.8)
p r=1 p

[exercise 13.5]
[section 4.5]

where the indexp runs through all distincprime cycles. Note that we have
resummed the contribution of the cygleo all times, so truncating the summation
up to givenp is not a finite timen < np approximation, but an asymptoticfinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. Tip#® factors in (L.8) suggest rewriting
the sum as a derivative

@ = —zd%zp: In(1-ty).

Hencel (2) is a logarithmic derivative of the infinite product

Z%

tp = |A_p| . (19)

1@ =] |a-1).
p

This function is called thelynamical zeta functignin analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definitios H#¢(2). This is the
prototype formula of periodic orbit theory. The zero ¢% () is a pole of['(2),
and the problem of estimating the asymptotic escape ratesffniten sums such
as (L.2) is now reduced to a study of the zeros of the dynamical zetatifon
(1.9). The escape rate is related Hy) to a divergence df(z), andI'(2) diverges [

section 20.1
whenever 1£(2) has a zero. .

[section 17.4]
Easy, you say: “Zeros ofl(9) can be read b the formula, a zero
Zp = A
for each term in the product. What's the problem?” Dead wrong
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1.5.3 Cycle expansions

How are formulas such ad.9) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,
such as the Newton method searches for periodic solutioashall assume that
the numerics are under control, and taitshort cycles up to given length have
been found. In our pinball example this can be done by elesmggieometrical
optics. It is very important not to miss any short cycles,hesdalculation is as
accurate as the shortest cycle dropped-including cyclegetothan the shortest
omitted does not improve the accuracy (unless expongntiadiny more cycles
are included). The result of such numerics is a table of tloetsst cycles, their
periods and their stabilities.

[chapter 12]

[section 27.3]

Now expand the infinite product (9), grouping together the terms of the same
total symbol string length

(1-1t0)(1 - t2)(1 — ta0)(1 — taog) - -

= 1-to—1t1 —[tio — tato] — [(ta00 — tacto) + (tro1 — taots)]

~[(t1000 - tot100) + (t1110— tatr10)

+(tr001 — tatoor — troato + taotots)] — . .. (1.10)

1z

The virtue of the expansion is that the sum of all terms of #aestotal length
n (grouped in brackets above) is a number that is expongnsatialler than a
typical term in the sum, for geometrical reasons we explaithé next section.

[chapter 18]

[section 18.1]

The calculation is now straightforward. We substitute adiset of the eigenvalues
and lengths of the shortest prime cycles into the cycle esipar{L.10), and obtain
a polynomial approximation to/Z. We then varyz in (1.9) and determine the
escape ratg by finding the smallest = €” for which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you fimdl out that the
convergence is very impressive: only three input numbeéist(o fixed points,
1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significagits
We have omitted an infinity of unstable cycles; so why does@pmating the

) . . section 18.2.2
dynamics by a finite number of the shortest cycle eigenvakak so well? fsecton :

The convergence of cycle expansions of dynamical zetaifurgis a consequence
of the smoothness and analyticity of the underlying flow. uititely, one can
understand the convergence in terms of the geometricairpisketched in figure.11;
the key observation is that the long orbits atedowedy sequences of shorter
orbits.

Atypical termin (L.10) is a diference of along cyclgb} minus its shadowing
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Figure 1.11:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

approximation by shorter cyclé¢a} and{b}

A,
tab — tath = tap(1 — talp/tap) = tab(l - ‘ﬁ‘) , (1.11)
al\b

wherea andb are symbol sequences of the two shorter cycles. If all ogigs
weighted equallyt, = Z%), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in starhbinations almost
cancel.

This can be understood in the context of the pinball gamells®. Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diskigwh
the second corresponds to bouncing successively aroutitted, tracing out an
equilateral triangle. The cyciel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to dish@so on, so its
itinerary is2321. In terms of the bounce types shown in figli@ the trajectory is
alternating between 0 and 1. The incoming and outgoing anglen it executes
these bounces are very close to the corresponding anglésafut 1 cycles. Also
the distances traversed between bounces are similar sth¢h2icycle expanding
eigenvalueAp; is close in magnitude to the product of the 1-cycle eigerelu
AoA1.

To understand this on a more general level, try to visualieepartition of
a chaotic dynamical system’s state space in terms of cydtghberhoods as a
tessellation (a tiling) of the dynamical system, with snioibdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a paiégpoint, and the scale
of the ‘tile’ determined by the linearization of the flow aralithe periodic point,
figure1.11

The orbits that follow the same symbolic dynamics, suctabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential dgrowtseparation with
time. If the weights associated with the orbits are multigive along the flow
(for example, by the chain rule for products of derivatives)l the flow is smooth,
the term in parenthesis il (L1) falls off exponentially with the cycle length, and

therefore the curvature expansions are expected to beylighergent. [chapter 21]
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1.6 Evolution

The above derivation of the dynamical zeta function fornfatathe escape rate
has one shortcoming; it estimates the fraction of surviaws function of the
number of pinball bounces, but the physically interestingrity is the escape
rate measured in units of continuous time. For continuaus flows, the escape
rate (L.2) is generalized as follows. Define a finite state space regibsuch
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figufielis gone forever. Start with a uniform
distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

I A S

Jydx

()

The integral oveix starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still itM at timet. The kernel of this integral

Ly, %) = s(y- 11(9) (1.12)

is the Dirac delta function, as for a deterministic flow th&ahpoint x maps into a
unigue pointy at timet. For discrete timef"(x) is thenth iterate of the mag. For
continuous flowsf!(x) is the trajectory of the initial poink, and it is appropriate
to express the finite time kernglt in terms of a generator of infinitesimal time
translations

= g
[section 14.6]

very much in the way the quantum evolution is generated byddmailtonianH,
the generator of infinitesimal time quantum transformation

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as évelution operatofor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially Withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattestpéfeour computations
will be carried out in then — o limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond beltéfs distribution is
still generated by a simple deterministic law, and with sduek and insight, our
labeling of possible motions will reflect this simplicityf the rule that gets us
from one level of the classification hierarchy to the nextsioet depend strongly
on the level, the resulting hierarchy is approximately-sétfilar. We now turn
such approximate self-similarity to our advantage, byingtit into an operation,
the action of the evolution operator, whose iteration eesdtie self-similarity.
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Figure 1.12: The trace of an evolution operator is ""13&”5}2*““5 i.,
concentrated in tubes around prime cycles, of leng f -
T, and thickness A [ for the rth repetition of the =220
prime cyclep. prives Tepsk Y

1.6.1 Trace formula

In physics, when we do not understand something, we give
ita name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators chamegesything. So
far our formulation has been heuristic, but in the evolutiperator formalism
the escape rate and any other dynamical average are giveraby fermulas,
extracted from the spectra of evolution operators. The &elgtaretrace formulas
andspectral determinants

The trace of an operator is given by the sum of its eigenvalliég explicit
expression .12 for £1(x,y) enables us to evaluate the trace. Idengifwith x
and integratex over the whole state space. The result is an expression fras

a sum over neighborhoods of prime cycfeand their repetitions [section 16.2]

. & St —rTp)
tret= Zsz‘deu Mr)" (1.13)

This formula has a simple geometrical interpretation skeddn figurel.12 After
the rth return to a Poincaré section, the initial tubé, has been stretched out
along the expanding eigendirections, with the overlap \lith initial volume
given by ¥/ |det(l - M{)) — 1/|Apl, the same weight we obtained heuristically in
sect.1.5.1

The ‘spiky’ sum (.13 is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hade & the smooth eigenvalue
sum tre™ = ¥ e>t, while the right-hand side equals zero everywhere except fo
the set = rT,. A Laplace transform smooths the sum over Dirac delta fonsti
in cycle periods and yields thteace formulafor the eigenspectrums, s, - - - of
the classical evolution operator:

[chapter 16]
o 1
dteStr £ = tr =
0, £ s—-A
0 1 O, @ BA-sTy)
DI DN v e (119
Ls-s |det1 M5)
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The beauty of trace formulas lies in the fact that everyttongthe right-hand-
side—prime cycles, their periodsT,, and the stability eigenvalues ®,—is an
invariant property of the flow, independent of any coordéngttoice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdeeoBppropriate
determinant. One way to evaluate determinants is to expa in terms of
traces, using the identities

[exercise 4.1]
d d 1
—Indet(s—A) =tr —In(s-A) =tr —, 1.15
as E-A) =g ns-A)=tro— (1.15)
and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed )
[chapter 17]
1 e STpr
det(s— A) = exp ZZ— . (1.16)
" |det(1 - mp)
The Yr factor is due to thesintegration, leading to the replacemdipt— Tp/rTp
in the periodic orbit expansiori (14).
[section 17.5]

The motivation for recasting the eigenvalue problem in toisn is sketched
in figure 1.13 exponentiation improves analyticity and trades in a djeece
of the trace sum for a zero of the spectral determinant. We haw retraced
the heuristic derivation of the divergent sufn@) and the dynamical zeta func-
tion (1.9), but this time with no approximations: formuld.(6) is exact The
computation of the zeros of det{ A) proceeds very much like the computations
of sect.1.5.3

1.7 From chaos to statistical mechanics

Under heaven, all is chaos.
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of dynamics of individual trajectories \ogletion operators
which propagate densities feels like a bit of mathematicaddoo. Actually,
something very radical has taken place. Consider a chaotic 8uch as the
stirring of red and white paint by some deterministic maehlhwe were able to
track individual trajectories, the fluid would forever rema striated combination
of pure white and pure red; there would be no pink. What is mbwee reversed
the stirring, we would return to the perfect whiitd separation. However, that
cannot be—in a very few turns of the stirring stick the thieks of the layers goes
from centimeters to Angstroms, and the result is irrewtyspink.
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Figure 1.13: Spectral determinant is preferable to th B ‘( T :
trace as it vanishes smoothly at the leading eigenvalt - e LI
while the trace formula diverges. A

Understanding the distinction between evolution of indiial trajectories and
the evolution of the densities of trajectories is key to ustinding statistical
mechanics—this is the conceptual basis of the second lareofibdynamics, and
the origin of irreversibility of the arrow of time for detemistic systems with
time-reversible equations of motion: reversibility isadtgble for distributions
whose measure in the space of density functions goes exjilheto zero with
time.

By going to a description in terms of the asymptotic time atioh oper-
ators we give up tracking individual trajectories for lonignés, by trading it in
for a very dfective description of the asymptotic trajectory densitighis will
enable us, for example, to give exact formulas for transpoeficients such as
the difusion constants withowtny probabilistic assumptions (in contrast to th

|chapter 24]
stosszahlansataf Boltzmann).

A century ago it seemed reasonable to assume that stdtiméchanics applies
only to systems with very many degrees of freedom. More itds¢he realization
that much of statistical mechanics follows from chaoticayics, and already at
the level of a few degrees of freedom the evolution of degsits irreversible.
Furthermore, the theory that we shall develop here gezegatiotions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and tranép us into regions
hitherto inaccessible with the tools of equilibrium stétal mechanics.

The concepts of equilibrium statistical mechanics do help however, to
understand the ways in which the simple-minded periodidt dnbory falters. A
non-hyperbolicity of the dynamics manifests itself in powav correlations and

[chapter 23]
even ‘phase transitions.’

1.8 Whatis notin ChaosBook

This book dfers a breach into a domain hitherto reputed unreachablemaido
traditionally traversed only by mathematical physicistd enathematicians. What
distinguishes it from mathematics is the insistence on egaiplity and numerical
convergence of methodgfered. A rigorous proof, the end of the story as far
as a mathematician is concerned, might state that in a gatting for times in
excess of 18 years, turbulent dynamics settles onto an attractor of ke less
than 600. Such a theorem is of a little use to an honest, harliwg plumber,
especially if her hands-on experience is that within thensplaeven the most
careful simulation the dynamics seems to have settled armms(ent?) attractor
of dimension less than 3. If rigor, magic, fractals or bramgour thing, read
remarkl.4and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Résum é

This text is an exposition of the best of all possible theoofdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, naterahow small,
will spread over the entire accessible state space. Hercth#ory focuses on
describing the geometry of the space of possible outcomées\aluating averages
over this space, rather than attempting the impossibleigg@rediction of individual
trajectories. The dynamics of densities of trajectorieddscribed in terms of
evolution operators. In the evolution operator formali$ra dynamical averages
are given by exact formulas, extracted from the spectra oluéen operators.
The key tools ar¢race formulasandspectral determinants

The theory of evaluation of the spectra of evolution opespoesented here is
based on the observation that the motion in dynamical systérfew degrees of
freedom is often organized around a feimdamentatycles. These short cycles
capture the skeletal topology of the motion on a strangeatyrepeller in the
sense that any long orbit can approximately be pieced tegétbm the nearby
periodic orbits of finite length. This notion is made preciseapproximating
orbits by prime cycles, and evaluating the associated twies A curvature
measures the deviation of a longer cycle from its approxondty shorter cycles;
smoothness and the local instability of the flow implies exgial (or faster)
fall-off for (almost) all curvatures. Cycle expansiorfieoan dficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the
hyperbolicity assumption, i.e., the assumption of exptiakishrinkage of all
strips of the pinball repeller. By dropping tt& prefactors in {.4), we have
given up on any possibility of recovering the precise distiion of startingx
(which should anyhow be impossible due to the exponent@i/tir of errors), but
in exchange we gain arffective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansi@r® {s that the infinite time
behavior of an unstable system is as easy to determine akdheime behavior.

To keep the exposition simple we have here illustrated tifig/udf cycles and
their curvatures by a pinball game, but topics covered inoSBaok — unstable
flows, Poincaré sections, Smale horseshoes, symbolioyigeapruning, discrete
symmetries, periodic orbits, averaging over chaotic sstslution operators, dyn-
amical zeta functions, spectral determinants, cycle esipas, quantum trace
formulas, zeta functions, and so on to the semiclassicahtpagion of helium
— should give the reader some confidence in the broad swayedh#ory. The
formalism should work for any average over any chaotic seéthvhatisfies two
conditions:

1. the weight associated with the observable under coraidaris multiplicative
along the trajectory,
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2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ohtities characterizing
chaotic systems, such as the escape rates, Lyapunov expan@nsport caécients
and quantum eigenvalues. A big surprise is that the semssicial quantum mechanics
of systems classically chaotic is very much like the clagsitechanics of chaotic
systems; both are described by zeta functions and cyclensiques of the same
form, with the same dependence on the topology of the cllssov.
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But the power of instruction is seldom of mucfiieacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. ~ This text aims to bridge the gap between
the physics and mathematics dynamical systems literatliree intended audience is
Henri Roux, the perfect physics graduate student with aréieal bent who does not
believe anything he is told. As a complementary presentati® recommend Gaspard’s
monograph§] which covers much of the same ground in a highly readablesahdlarly
manner.

As far as the prerequisites are concerned—ChaosBook isiimttraduction to nonlinear
dynamics. Nonlinear science requires a one semester lmasga(advanced undergraduate
or first year graduate). A good start is the textbook by Stiofja], an introduction to the
applied mathematician’s visualization of flows, fixed psjmhanifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamic®eklon diterential equations
in nonlinear disguise, and its broadly chosen examples aayrexercises make it a
favorite with students. It is not strong on chaos. There éx¢bbok of Alligood, Sauer
and Yorke [L1] is preferable: an elegant introduction to maps, chaospgeatoubling,
symbolic dynamics, fractals, dimensions—a good compani@haosBook. Introductions
more comfortable to physicists is the textbook by Off][ with the baker’s map used
to illustrate many key techniques in analysis of chaotidesys. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. Sprdtand Jacksonl[5]
textbooks are very useful compendia of the '70s and onwdrads’ literature which we,
in the spirit of promises made in settl, tend to pass over in silence.

An introductory course should give students skills in cfagilre and numerical analysis
of dynamical systems for short times (trajectories, fixeid{zo bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaoticesyst A good introduction
to numerical experimentation with physically realistis®ms is Tufillaro, Abbott, and
Reilly [16]. Korsch and JodI]7] and Nusse and Yorkel[] also emphasize hands-on
approach to dynamics. With this, and a graduate level-axeds statistical mechanics,
partial diferential equations and quantum mechanics, the stage isrsaty of the one-
semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses.  The courses taught so far (for a listing,
consultChaosBook.orgourse} start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfierént directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formuleis, inctions,
cycle expansions, Lyapunov exponents, billiards, trartspugficients, thermodynamic
formalism, period doubling, renormalization operators.

A graduate level introduction to statistical mechanicsrifriie dynamical point view
is given by Dorfman §3]; the Gaspard monograph][covers the same ground in more
depth. Driebe monograph{] offers a nice introduction to the problem of irreversibility
in dynamics. The role of ‘chaos’ in statistical mechaniagitically dissected by Bricmont
in his highly readable essédgcience of Chaos or Chaos in Sciencg?5).
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Spatiotemporal dynamical systemsPartial diterential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries auddaitions, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lwiahel Berkooz §¢] offer

a delightful discussion of why the Kuramoto-Sivashinskya&ipn deserves study as a
staging ground for a dynamical approach to study of turtezden full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace flasnsemiclassical
spectral determinants, billiards, semiclassical helidfiffraction, creeping, tunneling,
higher-order: corrections. For further reading on this topic, consultghantum chaos
part ofChaosBook.org

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbdbile. role of unstable periodic
orbits was already fully appreciated by Poincaté, [2(], who noted that hidden in the
apparent chaos is a rigid skeleton, a treeyfles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cydiesld be the key to chaotic
dynamics. Periodic orbits have been at core of much of thdemaatical work on the
theory of the classical and quantum dynamical systems @ves.sWe refer the reader to
the reprint selection[1] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. The most extensference is the treatise by
Katok and Hasselblatt’}], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valigareading, are Smale§,
Bowen [24] and Sinai P€]. Sinai’s paper is prescient andfers a vision and a program
that ties together dynamical systems and statistical nmchalt is written for readers
versed in statistical mechanics. For a dynamical systemasiton, consult Anosov and
Sinai [25]. Markov partitions were introduced by Sinai in ref.7]. The classical text
(though certainly not an easy read) on the subject of dyremeéta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formaligifi]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) &nthle’s theory of hyperbolic
flows are applied to zeta functions and correlation functidrhe status of the theory from
Ruelle’s point of view is compactly summarized in his 1995aPlectures{9. Further
excellent mathematical references on thermodynamic fismare Parry and Pollicott’s
monograph $0] with emphasis on the symbolic dynamics aspects of the ftismaand
Baladi’s clear and compact reviews of the theory of dynahzieta functions§1, 37].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poinliags tmodular domains, Selberg
Zeta functions, Riemann hypothesis, Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chatmost no powerful method in

its repertoire survives a transplant to a physical systexnhytbu are likely to care about.

Remark 1.6 Sorry, no shmactals! ChaosBook skirts mathematics and empirical practice
of fractal analysis, such as Hausffaand fractal dimensions. Addison’s introduction to
fractal dimensionsd7/] offers a well-motivated entry into this field. While in studiefs o
probabilistically assembled fractals such aff@ion Limited Aggregates (DLA) better
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measures of ‘complexity’ are lacking, for deterministis®ms there are much better,
physically motivated and experimentally measurable dtiest(escape rates, felision
codficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Ratbrains?  If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, tigadine of research in neuronal
dynamics that focuses on possible unstable periodic stdesribed for example in
ref. [39, 40, 41, 42).
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A guide to exercises

God can #ord to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; tilg way to develop

intuition about chaotic dynamics is by computing, and tredes is urged to try
to work through the essential exercises. As not to fragntentext, the exercises
are indicated by text margin boxes such as the one on thisimaagd collected
at the end of each chapter. By the end of a (two-semesterseguu should
have completed at least three small projects: (a) compudeytiing for a 1-
dimensional repeller, (b) compute escape rate for a 3-diskegof pinball, (c)
compute a part of the quantum 3-disk game of pinball, or thietnespectrum, or
if you are interested in statistical rather than the quantoechanics, compute a
transport cofficient. The essential steps are:

[exercise 18.2]

e Dynamics

1. count prime cycles, exercidel, exercised.2, exercisel0.1
. pinball simulator, exercisg. 1, exercisel2.4

. pinball stability, exercis8.3, exercisel2.4

. pinball periodic orbits, exercisk?.5 exercisel2.6

. helium integrator, exercis2 10, exercisel2.8

. helium periodic orbits, exercise?.9

o U A WDN

e Averaging, numerical
1. pinball escape rate, exercisg.3
e Averaging, periodic orbits

. cycle expansions, exerci&8.1, exercisel8.2

. pinball escape rate, exercis@.4, exercisel8.5

. cycle expansions for averages, exerdi8el, exercise20.3
. cycle expansions for filusion, exercis@4.1

. pruning, Markov graphs, exerci8.7

. desymmetrization exercid®.1

~N o g b~ W NP

. intermittency, phase transitions, exerci§e6

The exercises that you should do hawvelerlined titles . The rest§maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worthpablication Solutions to some of the
problems are available ofhaosBook . org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be duilieacknowledged.
Often going through a solution is more instructive than iegdhe chapter that
problem is supposed to illustrate.
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EXERCISES 29
Exercises
1.1. 3-disk symbolic dynamics. As periodic trajectories pinball trajectories start out parallel, but separated by

1.2.

will turn out to be our main tool to breach deep into the
realm of chaos, it pays to start familiarizing oneself with
them now by sketching and counting the few shortest
prime cycles (we return to this in sedt3.4. Show that
the 3-disk pinball has 2" itineraries of lengtm. List
periodic orbits of lengths 2, 3, 4, 5,-. Verify that the
shortest 3-disk prime cycles are 12, 13, 23, 123, 132,
1213,1232,1323,12123,-. Try to sketch them.

Sensitivity to initial conditions. Assume that two
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Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

—T.D. Lee

(R. Mainieri, P. Cvitanovic and E.A. Spiegel)

WE sTART oUT With a recapitulation of the basic notions of dynamics. Our

aim is narrow; we keep the exposition focused on preregsidid the

applications to be developed in this text. We assume thatehder
is familiar with dynamics on the level of the introductoryxt® mentioned in
remark1.1, and concentrate here on developing intuition about whanamtical
system can do. It will be a coarse brush sketch—a full desenipf all possible
behaviors of dynamical systems is beyond human ken. Anyfeag, novice there
is no shortcut through this lengthy detour; a sophisticataxeler might prefer to
skip this well-trodden territory and embark upon the joyraechapterl4.

fast track:
@ chapter 14, p. 235

2.1 Dynamical systems o .

R
In a dynamical system we observe the world as a function &.tie express ou
observations as numbers and record how they change withdimen sdficiently

detailed information and understanding of the underlyiagiral laws, we see the

future in the present as in a mirror. The motion of the plaagtsnst the celestial
firmament provides an example. Against the daily motion efdtars from East
to West, the planets distinguish themselves by moving antbedixed stars.
Ancients discovered that by knowing a sequence of planeistipns—latitudes
and longitudes—its future position could be predicted.

[section 1.3]

For the solar system, tracking the latitude and longitudeercelestial sphere
suffices to completely specify the planet’'s apparent motionpédisible values for
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