
Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

—Edoardo Specchio

R classic theoretical physics textbooks leaves a sense that there are
holes large enough to steam a Eurostar train through them. Here we learn
about harmonic oscillators and Keplerian ellipses - but where is the chapter

on chaotic oscillators, the tumbling Hyperion? We have justquantized hydrogen,
where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton isa solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems wherethings fall apart;
the center cannot hold; every trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a cyclist, somewhat advanced level

indicates that the section requires a hearty stomach and is probably best
skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

indicates an exercise that might clarify a point in the text

indicates that a figure is still missing–you are urged to fetch it
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CHAPTER 1. OVERTURE 2

We start out by making promises–we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a historical
overview of the development of chaotic dynamics to appendixA, and head straight
to the starting line: A pinball game is used to motivate and illustrate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
sorrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating(and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics arecomplex beyond
belief, systems which are locally unstable (almost) everywhere but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were itnot for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and thatis how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were
weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book isnot a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, andthe interweaving of
their global stable and unstable manifolds. These featuresare robust and accessible
in systems as noisy as slices of rat brains. Poincaré, the first to understand deterministic
chaos, already said as much (modulo rat brains). Once this topology is understood,
a powerful theory yields the observable consequences of chaotic dynamics, such
as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
this material, so you are on your own. We will teach you how to evaluate a

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 3

determinant, take a logarithm–stuff like that. Ideally, this should take 100 pages
or so. Well, we fail–so far we have not found a way to traverse this material in
less than a semester, or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did notstart with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwovenstrands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,’ have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaoticsystems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are usedas zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibitsamazingly rich structure
which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree ofcycles(periodic
orbits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should
be very different from those for the nearly integrable systems: a good starting
approximation here is the stretching and folding of baker’sdough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a gameof pinball. The
reminder of the chapter is a quick tour through the material covered in ChaosBook.
Do not worry if you do not understand every detail at the first reading–the intention
is to give you a feeling for the main themes of the book. Details will be filled out
later. If you want to get a particular point clarified right now, on the margin

[section 1.4]
points at the appropriate section.
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Figure 1.1: A physicist’s bare bones game of pinball.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise toanyone who has tried
pool, billiards or snooker–the game is about beating chaos–so we start our story
about what chaos is, and what to do about it, with a game ofpinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure1.1. A physicist’s pinball is free, frictionless, point-like,spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at thedisks from random starting
positions and angles; they spend some time bouncing betweenthe disks and then
escape.

At the beginning of the 18th century Baron Gottfried WilhelmLeibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [1], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretelland calculate
how they will rebound and what course they will take after theimpact. Very
simple laws are followed which also apply, no matter how manyspheres
are taken or whether objects are taken other than spheres. From this one
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CHAPTER 1. OVERTURE 5

Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time.
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Figure 1.3: Unstable trajectories separate with time.

  x(0)δ

  x(t)δ
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sees then that everything proceeds mathematically–that is, infallibly–in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as ina mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of ‘chaos.’ His claim is
wrong in a deep and subtle way: a state of a physical system canneverbe specified
to infinite precision, and by this we do not mean that eventually the Heisenberg
uncertainty principle kicks in. In the classical, deterministic dynamics there is no
way to take all the circumstances into account, and a single trajectory cannot be
tracked, only a ball of nearby initial points makes physicalsense.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present state isin principle fully determined
by its initial conditions, in contrast to a stochastic system.

For a stochastic system the initial conditions determine the future only partially,
due to noise, or other external circumstances beyond our control: the present
state reflects the past initial conditions plus the particular realization of the noise
encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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In a game of pinball, any two trajectories that start out veryclose to each
other separate exponentially with time, and in a finite (and in practice, a very
small) number of bounces their separationδx(t) attains the magnitude ofL, the
characteristic linear extent of the whole system, figure1.2. This property of
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx(0)|

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracyδx = |δx(0)| of the initial data, the

[section 15.3]
dynamics is predictable only up to a finiteLyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajectories
would only separate, never to meet again. What is also neededis mixing, the
coming together again and again of trajectories. While locally the nearby trajectories
separate, the interesting dynamics is confined to a globallyfinite region of the state
space and thus the separated trajectories are necessarily folded back and can re-
approach each other arbitrarily closely, infinitely many times. For the case at hand
there are 2n topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectories with n bounces can be
quantified as

[section 13.1]

N(n) ≈ ehn

whereh, the growth rate of the number of topologically distinct trajectories, is
called the“topological entropy” (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynamics
there is no chaos in the everyday sense of the word; everything proceeds mathematically–
that is, as Baron Leibniz would have it, infallibly. When a physicist says that a
certain system exhibits ‘chaos,’ he means that the system obeys deterministic laws
of evolution, but that the outcome is highly sensitive to small uncertainties in the
specification of the initial state. The word ‘chaos’ has in this context taken on a
narrow technical meaning. If a deterministic system is locally unstable (positive
Lyapunov exponent) and globally mixing (positive entropy)–figure1.4–it is said
to bechaotic.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unstable
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CHAPTER 1. OVERTURE 7

Figure 1.4: Dynamics of achaotic dynamical
system is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing
(positive entropy). (A. Johansen) (a) (b)

periodic orbits) and global mixing (intertwining of their stable and unstable manifolds).
In a chaotic system any open ball of initial conditions, no matter how small, will
in finite time overlap with any other finite region and in this sense spread over the
extent of the entire asymptotically accessible state space. Once this is grasped,
the focus of theory shifts from attempting to predict individual trajectories (which
is impossible) to a description of the geometry of the space of possible outcomes,
and evaluation of averages over this space. How this is accomplished is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Intuitively, the word
refers to irregular behavior of an infinite-dimensional dynamical system described
by deterministic equations of motion–say, a bucket of sloshing water described by
the Navier-Stokes equations. But in practice the word ‘turbulence’ tends to refer
to messy dynamics which we understand poorly. As soon as a phenomenon is
understood better, it is reclaimed and renamed: ‘a route to chaos’, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimensional
attractors visualized as a succession of nearly periodic but unstable motions. In
the same spirit, we shall think of turbulence in spatially extended systems in terms
of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given spatially
extended system (clouds, say) through a repertoire of unstable patterns; as we
watch a turbulent system evolve, every so often we catch a glimpse of a familiar
pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabetof admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.
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1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical
fractals.

— Richard P. Taylor[4, 5]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet
we have no trouble keeping track of the annual motions of planets. The rule
of thumb is this; if the Lyapunov time (1.1)–the time by which a state space
region initially comparable in size to the observational accuracy extends across
the entire accessible state space–is significantly shorterthan the observational
time, you need to master the theory that will be developed here. That is why
the main successes of the theory are in statistical mechanics, quantum mechanics,
and questions of long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,’ so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsicdimension– the minimum number of coordinates
necessary to capture its essential dynamics. If the system is very turbulent (a
description of its long time dynamics requires a space of high intrinsic dimension)
we are out of luck. Hence insights that the theory offers in elucidating problems of
fully developed turbulence, quantum field theory of strong interactions and early
cosmology have been modest at best. Even that is a caveat withqualifications.
There are applications–such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area of
science where the advent of cheap computation had actually subtracted from our
collective understanding. The computer pictures and numerical plots of fractal
science of the 1980’s have overshadowed the deep insights ofthe 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5’ of figure1.5will have to do as the illustration
of the power of fractal analysis. Fractal science posits that certain quantities
(Lyapunov exponents, generalized dimensions, . . . ) can be estimated on a computer.
While some of the numbers so obtained are indeed mathematically sensible characterizations
of fractals, they are in no sense observable and measurable on the length-scales
and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial [2], in studies of probabilistically assembled fractal aggregates
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CHAPTER 1. OVERTURE 9

Figure 1.5: Katherine Jones-Smith, ‘Untitled 5,’ the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [3].

we know of nothing better than contemplating such quantities. In deterministic
systems we can domuchbetter.

1.4 A game of pinball

Formulas hamper the understanding.

—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat
belts and turn off all electronic devices. But first, a disclaimer: If you understand
the rest of this chapter on the first reading, you either do notneed this book, or
you are delusional. If you do not understand it, it is not because the people who
wrote it are smarter than you: the most you can hope for at thisstage is to get a
flavor of what lies ahead. If a statement in this chapter mystifies/intrigues, fast
forward to a section indicated by on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALL ofit, or otherwise
we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis proceeds
in three stages; I. diagnose, II. count, III. measure. First, we determine the
intrinsic dimensionof the system–the minimum number of coordinates necessary
to capture its essential dynamics. If the system is very turbulent we are, at present,
out of luck. We know only how to deal with the transitional regime between
regular motions and chaotic dynamics in a few dimensions. That is still something;
even an infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime thechaotic dynamics
is restricted to a space of low dimension, the number of relevant parameters
is small, and we can proceed to step II; wecount and classify all possible

[chapter 10]

[chapter 13]
topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the partof the observer. This
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Figure 1.6: Binary labeling of the 3-disk pinball
trajectories; a bounce in which the trajectory returns
to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

we shall do in sect.1.4.2. If successful, we can proceed with step III: investigate
theweightsof the different pieces of the system.

We commence our analysis of the pinball game with steps I, II:diagnose,
count. We shall return to step III–measure–in sect.1.5.

[chapter 18]

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensionalsystem, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a
sequence of labels indicating the order in which the disks are visited; for example,
the two trajectories in figure1.2have itineraries2313 , 23132321 respectively.

Such labeling goes by the namesymbolic dynamics. As the particle cannot
[exercise 1.1]

[section 2.1]
collide two times in succession with the same disk, any two consecutive symbols
must differ. This is an example ofpruning, a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general a difficult problem, but with the
game of pinball we are lucky–for well-separated disks thereare no further pruning
rules.

[chapter 11]

The choice of symbols is in no sense unique. For example, as ateach bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary{0, 1} alphabet, figure1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries.

[section 10.5]

Suppose you wanted to play a good game of pinball, that is, getthe pinball
to bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it startsout in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there
forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit isunstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear thatif one is interested in
playing well, unstable periodic orbits are important–theyform theskeleton onto
which all trajectories trapped for long times cling.
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CHAPTER 1. OVERTURE 11

Figure 1.7: The 3-disk pinball cycles1232 and

121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig.1.9.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall refer to the set of periodic points that belong to a given periodic orbit as a
cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn
in figure 1.7–but it is rather hard to perceive the systematics of orbits from their
configuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Notmuch happens in
between the bounces–the ball just travels at constant velocity along a straight line–
so we can reduce the 4-dimensional flow to a 2-dimensional mapP that takes the
coordinates of the pinball from one disk edge to another diskedge. The trajectory
just after the moment of impact is defined bysn, the arc-length position of the
nth bounce along the billiard wall, andpn = psinφn the momentum component
parallel to the billiard wall at the point of impact, see figure1.9. Such section of a
flow is called aPoincaré section. In terms of Poincaré sections, the dynamics is

[example 3.2]
reduced to the set of sixmaps Psk←sj : (sn, pn) 7→ (sn+1, pn+1), with s ∈ {1, 2, 3},
from the boundary of the diskj to the boundary of the next diskk.

[section 8]

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories originating
from one disk can hit either of the other two disks, or escape without further ado.
We label the two stripsM12,M13. Embedded within them there are four strips
M121,M123,M131,M132 of initial conditions that survive for two bounces, and
so forth, see figures1.8and1.9. Provided that the disks are sufficiently separated,
after n bounces the survivors are divided into 2n distinct strips: theMi th strip
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (s0, p0) . (a) Strips of initial points
M12, M13 which reach disks 2, 3 in one bounce,
respectively. (b) Strips of initial pointsM121,M131

M132 andM123 which reach disks 1, 2, 3 in two
bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are
obtained by the appropriate relabeling of the strips.
Disk radius : center separation ratio a:R= 1:2.5.
(Y. Lan) (a)
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consists of all points with itineraryi = s1s2s3 . . . sn, s = {1, 2, 3}. The unstable
cycles as a skeleton of chaos are almost visible here: each such patch contains
a periodic points1s2s3 . . . sn with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a navigation
chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12. . . either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
[example 15.2]

What is a good physical quantity to compute for the game of pinball? Such
a system, for which almost any trajectory eventually leavesa finite region (the
pinball table) never to return, is said to be open, or arepeller. The repellerescape
rate is an eminently measurable quantity. An example of such a measurement
would be an unstable molecular or nuclear state which can be well approximated
by a classical potential with the possibility of escape in certain directions. In an
experiment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

[exercise 1.2]

For a theorist, a good game of pinball consists in predictingaccurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
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of survivors aftern bounces, or thesurvival probabilityis given by

Γ̂1 =
|M0|

|M|
+
|M1|

|M|
, Γ̂2 =

|M00|

|M|
+
|M10|

|M|
+
|M01|

|M|
+
|M11|

|M|
,

Γ̂n =
1
|M|

(n)
∑

i

|Mi | , (1.2)

where i is a label of theith strip, |M| is the initial area, and|Mi | is the area of
the ith strip of survivors.i = 01, 10, 11, . . . is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction oftrajectories, one
expects the sum (1.2) to fall off exponentially withn and tend to the limit

[chapter 20]

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantityγ is called theescape ratefrom the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut. D’ailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c’est qu’elles sont, pour ansi
dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape rateγ can be extracted from a highly convergent
exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughlyγ = 0.4103384077693464893384613078192. . ., you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size.
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Figure 1.10: The fundamental matrixJt maps an
infinitesimal displacementδx at x0 into a displacement
Jt(x0)δx finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

As a trajectory evolves, it carries along and distorts its infinitesimal neighborhood.
Let

x(t) = f t(x0)

denote the trajectory of an initial pointx0 = x(0). Expandingf t(x0 + δx0) to
linear order, the evolution of the distance to a neighboringtrajectoryxi(t) + δxi(t)
is given by the fundamental matrixJ:

δxi(t) =
d

∑

j=1

Jt(x0)i j δx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

.

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this cased = 3. Evaluation of a
cycle fundamental matrix is a long exercise - here we just state the result. The

[section 8.2]
fundamental matrix describes the deformation of an infinitesimal neighborhood
of x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, figure1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvaluesare less than unity
in magnitude), and maintain their distance along the marginal directions (those
whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigendirection of the fundamental matrixM.

As the heights of the strips in figure1.9 are effectively constant, we can
concentrate on their thickness. If the height is≈ L, then the area of theith strip is
Mi ≈ Ll i for a strip of widthl i .

Each stripi in figure1.9 contains a periodic pointxi . The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width l i is well-approximated by the contraction around the periodic point xi

within the interval,

l i = ai/|Λi | , (1.4)
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whereΛi is the unstable eigenvalue of the fundamental matrixJt(xi) evaluated at
the ith periodic point fort = Tp, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Onlythe magnitude of
this eigenvalue matters, we can disregard its sign. The prefactorsai reflect the
overall size of the system and the particular distribution of starting values ofx. As
the asymptotic trajectories are strongly mixed by bouncingchaotically around the
repeller, we expect their distribution to be insensitive tosmooth variations in the
distribution of initial points.

[section 14.4]

To proceed with the derivation we need thehyperbolicityassumption: for large
n the prefactorsai ≈ O(1) are overwhelmed by the exponential growth ofΛi, so
we neglect them. If the hyperbolicity assumption is justified, we can replace

[section 16.1.1]
|Mi | ≈ Ll i in (1.2) by 1/|Λi | and consider the sum

Γn =

(n)
∑

i

1/|Λi | ,

where the sum goes over all periodic points of periodn. We now define a generating
function for sums over all periodic orbits of all lengths:

Γ(z) =
∞
∑

n=1

Γnzn . (1.5)

Recall that for largen thenth level sum (1.2) tends to the limitΓn → e−nγ, so the
escape rateγ is determined by the smallestz= eγ for which (1.5) diverges:

Γ(z) ≈
∞
∑

n=1

(ze−γ)n
=

ze−γ

1− ze−γ
. (1.6)

This is the property ofΓ(z) that motivated its definition. Next, we devise a formula
for (1.5) expressing the escape rate in terms of periodic orbits:

Γ(z) =
∞
∑

n=1

zn
(n)
∑

i

|Λi |
−1

=
z
|Λ0|
+

z
|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.7)

For sufficiently smallz this sum is convergent. The escape rateγ is now given by
[section 16.3]

the leading pole of (1.6), rather than by a numerical extrapolation of a sequence
of γn extracted from (1.3). As any finite truncationn < ntrunc of (1.7) is a
polynomial in z, convergent for anyz, finding this pole requires that we know
something aboutΓn for anyn, and that might be a tall order.
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We could now proceed to estimate the location of the leading singularity
of Γ(z) from finite truncations of (1.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simpleresummation
that converts this divergence into azeroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces aprime cycle r times, its expanding eigenvalue isΛr
p. A

prime cyclep is a single traversal of the orbit; its label is a non-repeating symbol
string ofnp symbols. There is only one prime cycle for each cyclic permutation
class. For example,p = 0011= 1001= 1100= 0110 is prime, but0101= 01
is not. By the chain rule for derivatives the stability of a cycle is the same

[exercise 13.5]

[section 4.5]
everywhere along the orbit, so each prime cycle of lengthnp contributesnp terms
to the sum (1.7). Hence (1.7) can be rewritten as

Γ(z) =
∑

p

np

∞
∑

r=1

(

znp

|Λp|

)r

=
∑

p

nptp

1− tp
, tp =

znp

|Λp|
(1.8)

where the indexp runs through all distinctprime cycles. Note that we have
resummed the contribution of the cyclep to all times, so truncating the summation
up to givenp is nota finite timen ≤ np approximation, but an asymptotic,infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. Thenpznp factors in (1.8) suggest rewriting
the sum as a derivative

Γ(z) = −z
d
dz

∑

p

ln(1− tp) .

HenceΓ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏

p

(1− tp) , tp =
znp

|Λp|
. (1.9)

This function is called thedynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole ofΓ(z),
and the problem of estimating the asymptotic escape rates from finiten sums such
as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.9). The escape rate is related by (1.6) to a divergence ofΓ(z), andΓ(z) diverges

[section 20.1]
whenever 1/ζ(z) has a zero.

[section 17.4]

Easy, you say: “Zeros of (1.9) can be read off the formula, a zero

zp = |Λp|
1/np

for each term in the product. What’s the problem?” Dead wrong!
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1.5.3 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and thatall short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical

[chapter 12]
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped–including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result of such numerics is a table of the shortest cycles, their
periods and their stabilities.

[section 27.3]

Now expand the infinite product (1.9), grouping together the terms of the same
total symbol string length

1/ζ = (1− t0)(1− t1)(1− t10)(1− t100) · · ·

= 1− t0 − t1 − [t10 − t1t0] − [(t100− t10t0) + (t101− t10t1)]

−[(t1000− t0t100) + (t1110− t1t110)

+(t1001− t1t001− t101t0 + t10t0t1)] − . . . (1.10)

The virtue of the expansion is that the sum of all terms of the same total length
[chapter 18]

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

[section 18.1]

The calculation is now straightforward. We substitute a finite set of the eigenvalues
and lengths of the shortest prime cycles into the cycle expansion (1.10), and obtain
a polynomial approximation to 1/ζ. We then varyz in (1.9) and determine the
escape rateγ by finding the smallestz= eγ for which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you willfind out that the
convergence is very impressive: only three input numbers (the two fixed points0,
1 and the 2-cycle10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the

[section 18.2.2]
dynamics by a finite number of the shortest cycle eigenvalueswork so well?

The convergence of cycle expansions of dynamical zeta functions is a consequence
of the smoothness and analyticity of the underlying flow. Intuitively, one can
understand the convergence in terms of the geometrical picture sketched in figure1.11;
the key observation is that the long orbits areshadowedby sequences of shorter
orbits.

A typical term in (1.10) is a difference of a long cycle{ab}minus its shadowing
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Figure 1.11: Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods.
Indicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

approximation by shorter cycles{a} and{b}

tab− tatb = tab(1− tatb/tab) = tab

(

1−
∣

∣

∣

∣

∣

Λab

ΛaΛb

∣

∣

∣

∣

∣

)

, (1.11)

wherea andb are symbol sequences of the two shorter cycles. If all orbitsare
weighted equally (tp = znp), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in suchcombinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits0, 1 and01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around allthree, tracing out an
equilateral triangle. The cycle01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2and so on, so its
itinerary is2321. In terms of the bounce types shown in figure1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes
these bounces are very close to the corresponding angles for0 and 1 cycles. Also
the distances traversed between bounces are similar so thatthe 2-cycle expanding
eigenvalueΛ01 is close in magnitude to the product of the 1-cycle eigenvalues
Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
figure1.11.

The orbits that follow the same symbolic dynamics, such as{ab} and a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairshave to
start out exponentially close to beat the exponential growth in separation with
time. If the weights associated with the orbits are multiplicative along the flow
(for example, by the chain rule for products of derivatives)and the flow is smooth,
the term in parenthesis in (1.11) falls off exponentially with the cycle length, and
therefore the curvature expansions are expected to be highly convergent.

[chapter 21]
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1.6 Evolution

The above derivation of the dynamical zeta function formulafor the escape rate
has one shortcoming; it estimates the fraction of survivorsas a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space regionM such
that a trajectory that exitsM never reenters. For example, any pinball that falls
of the edge of a pinball table in figure1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initialx whose trajectories remain
withinM at timet is expected to decay exponentially

Γ(t) =

∫

M
dxdyδ(y − f t(x))

∫

M
dx

→ e−γt .

The integral overx starts a trajectory at everyx ∈ M. The integral overy tests
whether this trajectory is still inM at timet. The kernel of this integral

Lt(y, x) = δ
(

y− f t(x)
)

(1.12)

is the Dirac delta function, as for a deterministic flow the initial point xmaps into a
unique pointy at timet. For discrete time,f n(x) is thenth iterate of the mapf . For
continuous flows,f t(x) is the trajectory of the initial pointx, and it is appropriate
to express the finite time kernelLt in terms of a generator of infinitesimal time
translations

Lt = etA ,

[section 14.6]

very much in the way the quantum evolution is generated by theHamiltonianH,
the generator of infinitesimal time quantum transformations.

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as theevolution operatorfor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially withthe cycle length
(in the case at hand, as 2n). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our computations
will be carried out in then→ ∞ limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond belief,this distribution is
still generated by a simple deterministic law, and with someluck and insight, our
labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

intro - 13jun2008.tex

CHAPTER 1. OVERTURE 20

Figure 1.12: The trace of an evolution operator is
concentrated in tubes around prime cycles, of length
Tp and thickness 1/|Λp|

r for the rth repetition of the
prime cyclep.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changeseverything. So
far our formulation has been heuristic, but in the evolutionoperator formalism
the escape rate and any other dynamical average are given by exact formulas,
extracted from the spectra of evolution operators. The key tools aretrace formulas
andspectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.12) for Lt(x, y) enables us to evaluate the trace. Identifyy with x
and integratex over the whole state space. The result is an expression for trLt as
a sum over neighborhoods of prime cyclesp and their repetitions

[section 16.2]

trLt =
∑

p

Tp

∞
∑

r=1

δ(t − rTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (1.13)

This formula has a simple geometrical interpretation sketched in figure1.12. After
the rth return to a Poincaré section, the initial tubeMp has been stretched out
along the expanding eigendirections, with the overlap withthe initial volume

given by 1/
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

→ 1/|Λp|, the same weight we obtained heuristically in
sect.1.5.1.

The ‘spiky’ sum (1.13) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigenvalue
sum treAt =

∑

esαt, while the right-hand side equals zero everywhere except for
the sett = rTp. A Laplace transform smooths the sum over Dirac delta functions
in cycle periods and yields thetrace formulafor the eigenspectrums0, s1, · · · of
the classical evolution operator:

[chapter 16]

∫ ∞

0+
dt e−st trLt = tr

1
s−A

=

∞
∑

α=0

1
s− sα

=
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (1.14)
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The beauty of trace formulas lies in the fact that everythingon the right-hand-
side–prime cyclesp, their periodsTp and the stability eigenvalues ofMp–is an
invariant property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros ofthe appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

[exercise 4.1]

d
ds

ln det (s−A) = tr
d
ds

ln(s− A) = tr
1

s−A
, (1.15)

and integrating overs. In this way thespectral determinantof an evolution oper-
ator becomes related to the traces that we have just computed:

[chapter 17]

det (s−A) = exp





















−
∑

p

∞
∑

r=1

1
r

e−sTpr
∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣





















. (1.16)

The 1/r factor is due to thes integration, leading to the replacementTp→ Tp/rTp

in the periodic orbit expansion (1.14).
[section 17.5]

The motivation for recasting the eigenvalue problem in thisform is sketched
in figure 1.13; exponentiation improves analyticity and trades in a divergence
of the trace sum for a zero of the spectral determinant. We have now retraced
the heuristic derivation of the divergent sum (1.6) and the dynamical zeta func-
tion (1.9), but this time with no approximations: formula (1.16) is exact. The
computation of the zeros of det (s−A) proceeds very much like the computations
of sect.1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos.
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of dynamics of individual trajectories by evolution operators
which propagate densities feels like a bit of mathematical voodoo. Actually,
something very radical has taken place. Consider a chaotic flow, such as the
stirring of red and white paint by some deterministic machine. If we were able to
track individual trajectories, the fluid would forever remain a striated combination
of pure white and pure red; there would be no pink. What is more, if we reversed
the stirring, we would return to the perfect white/red separation. However, that
cannot be–in a very few turns of the stirring stick the thickness of the layers goes
from centimeters to Ångströms, and the result is irreversibly pink.
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Figure 1.13: Spectral determinant is preferable to the
trace as it vanishes smoothly at the leading eigenvalue,
while the trace formula diverges.

Understanding the distinction between evolution of individual trajectories and
the evolution of the densities of trajectories is key to understanding statistical
mechanics–this is the conceptual basis of the second law of thermodynamics, and
the origin of irreversibility of the arrow of time for deterministic systems with
time-reversible equations of motion: reversibility is attainable for distributions
whose measure in the space of density functions goes exponentially to zero with
time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, by trading it in
for a very effective description of the asymptotic trajectory densities. This will
enable us, for example, to give exact formulas for transportcoefficients such as
the diffusion constants withoutany probabilistic assumptions (in contrast to the

[chapter 24]
stosszahlansatzof Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics applies
only to systems with very many degrees of freedom. More recent is the realization
that much of statistical mechanics follows from chaotic dynamics, and already at
the level of a few degrees of freedom the evolution of densities is irreversible.
Furthermore, the theory that we shall develop here generalizes notions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and transports us into regions
hitherto inaccessible with the tools of equilibrium statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and

[chapter 23]
even ‘phase transitions.’

1.8 What is not in ChaosBook

This book offers a breach into a domain hitherto reputed unreachable, a domain
traditionally traversed only by mathematical physicists and mathematicians. What
distinguishes it from mathematics is the insistence on computability and numerical
convergence of methods offered. A rigorous proof, the end of the story as far
as a mathematician is concerned, might state that in a given setting, for times in
excess of 1032 years, turbulent dynamics settles onto an attractor of dimension less
than 600. Such a theorem is of a little use to an honest, hard-working plumber,
especially if her hands-on experience is that within the span of even the most
careful simulation the dynamics seems to have settled on a (transient?) attractor
of dimension less than 3. If rigor, magic, fractals or brainsis your thing, read
remark1.4and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Résum é

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating averages
over this space, rather than attempting the impossible: precise prediction of individual
trajectories. The dynamics of densities of trajectories isdescribed in terms of
evolution operators. In the evolution operator formalism the dynamical averages
are given by exact formulas, extracted from the spectra of evolution operators.
The key tools aretrace formulasandspectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a fewfundamentalcycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby
periodic orbits of finite length. This notion is made preciseby approximating
orbits by prime cycles, and evaluating the associated curvatures. A curvature
measures the deviation of a longer cycle from its approximation by shorter cycles;
smoothness and the local instability of the flow implies exponential (or faster)
fall-off for (almost) all curvatures. Cycle expansions offer an efficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, i.e., the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping theai prefactors in (1.4), we have
given up on any possibility of recovering the precise distribution of startingx
(which should anyhow be impossible due to the exponential growth of errors), but
in exchange we gain an effective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansions (1.9) is that the infinite time
behavior of an unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles and
their curvatures by a pinball game, but topics covered in ChaosBook – unstable
flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning, discrete
symmetries, periodic orbits, averaging over chaotic sets,evolution operators, dyn-
amical zeta functions, spectral determinants, cycle expansions, quantum trace
formulas, zeta functions, and so on to the semiclassical quantization of helium
– should give the reader some confidence in the broad sway of the theory. The
formalism should work for any average over any chaotic set which satisfies two
conditions:

1. the weight associated with the observable under consideration is multiplicative
along the trajectory,
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2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coefficients
and quantum eigenvalues. A big surprise is that the semi-classical quantum mechanics
of systems classically chaotic is very much like the classical mechanics of chaotic
systems; both are described by zeta functions and cycle expansions of the same
form, with the same dependence on the topology of the classical flow.
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But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. This text aims to bridge the gap between
the physics and mathematics dynamical systems literature.The intended audience is
Henri Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presentation we recommend Gaspard’s
monograph [9] which covers much of the same ground in a highly readable andscholarly
manner.

As far as the prerequisites are concerned–ChaosBook is not an introduction to nonlinear
dynamics. Nonlinear science requires a one semester basic course (advanced undergraduate
or first year graduate). A good start is the textbook by Strogatz [10], an introduction to the
applied mathematician’s visualization of flows, fixed points, manifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamics–a book on differential equations
in nonlinear disguise, and its broadly chosen examples and many exercises make it a
favorite with students. It is not strong on chaos. There the textbook of Alligood, Sauer
and Yorke [11] is preferable: an elegant introduction to maps, chaos, period doubling,
symbolic dynamics, fractals, dimensions–a good companionto ChaosBook. Introductions
more comfortable to physicists is the textbook by Ott [13], with the baker’s map used
to illustrate many key techniques in analysis of chaotic systems. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. Sprott [14] and Jackson [15]
textbooks are very useful compendia of the ’70s and onward ‘chaos’ literature which we,
in the spirit of promises made in sect.1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and numerical analysis
of dynamical systems for short times (trajectories, fixed points, bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaotic systems. A good introduction
to numerical experimentation with physically realistic systems is Tufillaro, Abbott, and
Reilly [16]. Korsch and Jodl [17] and Nusse and Yorke [18] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statistical mechanics,
partial differential equations and quantum mechanics, the stage is set for any of the one-
semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consultChaosBook.org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formulas, zeta functions,
cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermodynamic
formalism, period doubling, renormalization operators.

A graduate level introduction to statistical mechanics from the dynamical point view
is given by Dorfman [33]; the Gaspard monograph [9] covers the same ground in more
depth. Driebe monograph [34] offers a nice introduction to the problem of irreversibility
in dynamics. The role of ‘chaos’ in statistical mechanics iscritically dissected by Bricmont
in his highly readable essay“Science of Chaos or Chaos in Science?”[35].
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Spatiotemporal dynamical systems.Partial differential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries and bifurcations, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [38] offer
a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as a
staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace formulas, semiclassical
spectral determinants, billiards, semiclassical helium,diffraction, creeping, tunneling,
higher-order~ corrections. For further reading on this topic, consult thequantum chaos
part ofChaosBook.org.

Remark 1.3 Periodic orbit theory. This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook.The role of unstable periodic
orbits was already fully appreciated by Poincaré [19, 20], who noted that hidden in the
apparent chaos is a rigid skeleton, a tree ofcycles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the mathematical work on the
theory of the classical and quantum dynamical systems ever since. We refer the reader to
the reprint selection [21] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. The most extensive reference is the treatise by
Katok and Hasselblatt [22], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [23],
Bowen [24] and Sinai [26]. Sinai’s paper is prescient and offers a vision and a program
that ties together dynamical systems and statistical mechanics. It is written for readers
versed in statistical mechanics. For a dynamical systems exposition, consult Anosov and
Sinai [25]. Markov partitions were introduced by Sinai in ref. [27]. The classical text
(though certainly not an easy read) on the subject of dynamical zeta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formalism[28]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) andSmale’s theory of hyperbolic
flows are applied to zeta functions and correlation functions. The status of the theory from
Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [29]. Further
excellent mathematical references on thermodynamic formalism are Parry and Pollicott’s
monograph [30] with emphasis on the symbolic dynamics aspects of the formalism, and
Baladi’s clear and compact reviews of the theory of dynamical zeta functions [31, 32].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poincaré tilings, modular domains, Selberg
Zeta functions, Riemann hypothesis,. . .Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chaos, almost no powerful method in
its repertoire survives a transplant to a physical system that you are likely to care about.

Remark 1.6 Sorry, no shmactals! ChaosBook skirts mathematics and empirical practice
of fractal analysis, such as Hausdorff and fractal dimensions. Addison’s introduction to
fractal dimensions [37] offers a well-motivated entry into this field. While in studies of
probabilistically assembled fractals such as Diffusion Limited Aggregates (DLA) better
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measures of ‘complexity’ are lacking, for deterministic systems there are much better,
physically motivated and experimentally measurable quantities (escape rates, diffusion
coefficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, thereis a line of research in neuronal
dynamics that focuses on possible unstable periodic states, described for example in
ref. [39, 40, 41, 42].
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A guide to exercises

God can afford to make mistakes. So can Dada!

—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. As not to fragment the text, the exercises
are indicated by text margin boxes such as the one on this margin, and collected

[exercise 18.2]
at the end of each chapter. By the end of a (two-semester) course you should
have completed at least three small projects: (a) compute everything for a 1-
dimensional repeller, (b) compute escape rate for a 3-disk game of pinball, (c)
compute a part of the quantum 3-disk game of pinball, or the helium spectrum, or
if you are interested in statistical rather than the quantummechanics, compute a
transport coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise1.1, exercise9.2, exercise10.1

2. pinball simulator, exercise8.1, exercise12.4

3. pinball stability, exercise9.3, exercise12.4

4. pinball periodic orbits, exercise12.5, exercise12.6

5. helium integrator, exercise2.10, exercise12.8

6. helium periodic orbits, exercise12.9

• Averaging, numerical

1. pinball escape rate, exercise15.3

• Averaging, periodic orbits

1. cycle expansions, exercise18.1, exercise18.2

2. pinball escape rate, exercise18.4, exercise18.5

3. cycle expansions for averages, exercise18.1, exercise20.3

4. cycle expansions for diffusion, exercise24.1

5. pruning, Markov graphs, exercise13.7

6. desymmetrization exercise19.1

7. intermittency, phase transitions, exercise23.6

The exercises that you should do haveunderlined titles . The rest (smaller type )
are optional. Difficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth apublication. Solutions to some of the
problems are available onChaosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be gratefully acknowledged.
Often going through a solution is more instructive than reading the chapter that
problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics. As periodic trajectories
will turn out to be our main tool to breach deep into the
realm of chaos, it pays to start familiarizing oneself with
them now by sketching and counting the few shortest
prime cycles (we return to this in sect.13.4). Show that
the 3-disk pinball has 3·2n−1 itineraries of lengthn. List
periodic orbits of lengths 2, 3, 4, 5,· · ·. Verify that the
shortest 3-disk prime cycles are 12, 13, 23, 123, 132,
1213, 1232, 1323, 12123,· · ·. Try to sketch them.

1.2. Sensitivity to initial conditions. Assume that two

pinball trajectories start out parallel, but separated by
1 Ångström, and the disks are of radiusa = 1 cm
and center-to-center separationR = 6 cm. Try to
estimate in how many bounces the separation will grow
to the size of system (assuming that the trajectories
have been picked so they remain trapped for at least
that long). Estimate the Who’sPinball Wizard’s typical
score (number of bounces) in a game without cheating,
by hook or crook (by the end of chapter18 you should
be in position to make very accurate estimates).
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Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

W   with a recapitulation of the basic notions of dynamics. Our
aim is narrow; we keep the exposition focused on prerequisites to the
applications to be developed in this text. We assume that thereader

is familiar with dynamics on the level of the introductory texts mentioned in
remark1.1, and concentrate here on developing intuition about what a dynamical
system can do. It will be a coarse brush sketch–a full description of all possible
behaviors of dynamical systems is beyond human ken. Anyway,for a novice there
is no shortcut through this lengthy detour; a sophisticatedtraveler might prefer to
skip this well-trodden territory and embark upon the journey at chapter14.

fast track:

chapter 14, p. 235

2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We express our
observations as numbers and record how they change with time; given sufficiently
detailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planetsagainst the celestial

[section 1.3]
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving amongthe fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions–latitudes
and longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude inthe celestial sphere
suffices to completely specify the planet’s apparent motion. Allpossible values for
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