
Chapter 23

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

I    of chaotic dynamics developed so far we assumed that the evolution
operators have discrete spectra{z0, z1, z2, . . .} given by the zeros of

1/ζ(z) = (· · ·)
∏

k

(1− z/zk) .

The assumption was based on the tacit premise that the dynamics is everywhere
exponentially unstable. Real life is nothing like that - state spaces are generically
infinitely interwoven patterns of stable and unstable behaviors. The stable (in

the case of Hamiltonian flows, integrable) orbits do not communicate with the
ergodic components of the phase space, and can be treated by classical methods.
In general, one is able to treat the dynamics near stable orbits as well as chaotic
components of the phase space dynamics well within a periodic orbit approach.
Problems occur at the borderline between chaos and regular dynamics where
marginally stable orbits and manifolds present difficulties and still unresolved
challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message
will be that spectra of evolution operators are no longer discrete, dynamical zeta
functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1− z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.
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CHAPTER 23. INTERMITTENCY 387

Figure 23.1: Typical phase space for an area-
preserving map with mixed phase space dynamics;
here the standard map fork = 1.2 .

23.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitionsfrom regular behaviors
to behaviors where long time intervals of regular behavior (“laminar phases”) are
interrupted by fast irregular bursts. The closer the parameter is to the onset of
such bursts, the longer are the intervals of regular behavior. The distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calledintermittency, and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginally stable state space regions.
Complete hyperbolicity assumed in (16.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamics insmooth potentials,
billiards with smooth walls, the infinite horizon Lorentz gas, etc.) one encounters
mixed state spaces with islands of stability coexisting with hyperbolic regions,
see figure23.1. Wherever stable islands are interspersed with chaotic regions,
trajectories which come close to the stable islands can stay‘glued’ for arbitrarily
long times. These intervals of regular motion are interrupted by irregular bursts
as the trajectory is re-injected into the chaotic part of thephase space. How the
trajectories are precisely ‘glued’ to the marginally stable region is often hard to
describe. What coarsely looks like a border of an island willunder magnification
dissolve into infinities of island chains of decreasing sizes, broken tori and bifurcating
orbits, as illustrated in figure23.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (5.5), or (in studies of the onset of intermittency) to the proximity of a
nearly marginal complex or unstable orbits. In Hamiltoniansystems intermittency
goes hand in hand with the existence of (marginally stable) KAM tori. In more
general settings, the existence of marginal or nearly marginal orbits is due to
incomplete intersections of stable and unstable manifoldsin a Smale horseshoe
type dynamics (see figure13.2). Following the stretching and folding of the
invariant manifolds in time one will inevitably find state space points at which
the stable and unstable manifolds are almost or exactly tangential to each other,
implying non-exponential separation of nearby points in state space or, in other
words, marginal stability. Under small parameter perturbations such neighborhoods
undergo tangent bifurcations - a stable/unstable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pruning which we shall
encounter in chapter11, and the intermittency discussed here are two sides of the
same coin.

[section 11.5]
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CHAPTER 23. INTERMITTENCY 388

Figure 23.2: A complete binary repeller with a
marginal fixed point.
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Figure 23.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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How to deal with the full complexity of a typical Hamiltoniansystem with
mixed phase space is a very difficult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considering rather simple
examples. Here we shall restrict our considerations to 1-dimensional maps which
in the neighborhood of a single marginally stable fixed pointat x=0 take the form

x 7→ f (x) = x+O(x1+s) , (23.1)

and are expanding everywhere else. Such a map may allow for escape, like the
map shown in figure23.2or the dynamics may be bounded, like the Farey map
(18.31) 163,164c153,154

x 7→ f (x) =

{

x/(1− x) x ∈ [0, 1/2[
(1− x)/x x∈ [1/2, 1]

introduced in sect.18.5.

Figure23.3compares a trajectory of the tent map (10.6) side by side with a
trajectory of the Farey map. In a stark contrast to the uniformly chaotic trajectory
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CHAPTER 23. INTERMITTENCY 389

of the tent map, the Farey map trajectory alternates intermittently between slow
regular motion close to the marginally stable fixed point, and chaotic bursts.

[section 18.5.3]

The presence of marginal stability has striking dynamical consequences: correlation
decay may exhibit long range power law asymptotic behavior and diffusion processes
can assume anomalous character. Escape from a repeller of the form figure23.2
may be algebraic rather than exponential. In long time explorations of the dynamics
intermittency manifests itself by enhancement of natural measure in the proximity
of marginally stable cycles.

The questions we shall address here are: how does marginal stability affect
zeta functions or spectral determinants? And, can we deducepower law decays of
correlations from cycle expansions?

In example21.5we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the
simple fact that the cycle weight 1/|1 − Λr

p| in the trace (16.3) or the spectral
determinant (17.3) diverges for marginal orbits with|Λp| = 1 tells us that we have
to treat these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-expansions
in a systematic manner. To get to know the difficulties lying ahead, we will
start in sect.23.2with a piecewise linear map, with the asymptotics (23.1). We
will construct a dynamical zeta function in the usual way without worrying too
much about its justification and show that it has a branch cut singularity. We
will calculate the rate of escape from our piecewise linear map and find that it
is characterized by decay, rather than exponential decay, apower law. We will
show that dynamical zeta functions in the presence of marginal stability can still
be written in terms of periodic orbits, exactly as in chapters 15 and 20, with
one exception: the marginally stable orbits have to be explicitly excluded. This
innocent looking step has far reaching consequences; it forces us to change the
symbolic dynamics from a finite to an infinite alphabet, and entails a reorganization
of the order of summations in cycle expansions, sect.23.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated marginally
stable fixed points and cycles. In sect.23.3, we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maps tailored to intermittency.
The knowledge of the type of singularity one encounters enables us to develop the
efficient resummation method presented in sect.23.3.1.

Finally, in sect.23.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and provides valuable information
about more complicated systems, such as billiards.

23.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting dynamics,
it is also at the root of many sorrows such as slow convergenceof cycle expansions.
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CHAPTER 23. INTERMITTENCY 390

Figure 23.4: A piecewise linear intermittent map
of (23.2) type: more specifically, the map piecewise
linear over intervals (23.8) of the toy example studied
below,a = .5, b = .6, s= 1.0. x
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In order to get to know the kind of problems which arise when studying dynamic-
al zeta functions in the presence of marginal stability we will consider an artfully
concocted piecewise linear model first. From there we will move on to the more
general case of smooth intermittant maps, sect.23.3.

23.2.1 A toy map

The Bernoulli shift map (21.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now construct a likewise
piecewise linear model, an intermittent map stripped down to its bare essentials.

Consider a mapx 7→ f (x) on the unit intervalM = [0, 1] with two monotone
branches

f (x) =

{

f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1] . (23.2)

The two branches are assumed complete, that isf0(M0) = f1(M1) =M. The map
allows escape ifa < b and is bounded ifa = b (see figure23.2and figure23.4).
We take the right branch to be expanding and linear:

f1(x) =
1

1− b
(x− b) .

Next, we will construct the left branch in a way, which will allow us to
model the intermittent behavior (23.1) near the origin. We chose a monotonically
decreasing sequence of pointsqn in [0, a] with q1 = a andqn → 0 asn → ∞.
This sequence defines a partition of the left intervalM0 into an infinite number of
connected intervalsMn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =

∞⋃

n=2

Mn. (23.3)

The mapf0(x) is now specified by the following requirements
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CHAPTER 23. INTERMITTENCY 391

• f0(x) is continuous.

• f0(x) is linear on the intervalsMn for n ≥ 2.

• f0(qn) = qn−1, that isMn = f −n+1
0 ([a, 1]) .

This fixes the map for any given sequence{qn}. The last condition ensures the
existence of a simple Markov partition. The slopes of the various linear segments
are

f ′0(x) = f0(qn−1)− f0(qn)
qn−1−qn

=
|Mn−1|
|Mn| for x ∈ Mn, n ≥ 3

f ′0(x) = f0(q1)− f0(q2)
q1−q2

= 1−a
|M2| for x ∈ M2

f ′0(x) = 1
1−b =

|M|
|M1| for x ∈ M1

(23.4)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a key role
for intermittent maps of the form (23.1). An orbit 10n enters the intervalsM1 →
Mn+1 → Mn → . . . → M2 successively and the family approaches the marginal
stable fixed point atx = 0 for n → ∞. The stability of a cycle 10n for n ≥ 1 is
given by the chain rule (4.50),

Λ10n = f ′0(xn+1) f ′0(xn) . . . f ′0(x2) f ′1(x1) =
1

|Mn+1|
1− a
1− b

, (23.5)

with xi ∈ Mi.

The properties of the map (23.2) are completely determined by the sequence
{qn}. By choosingqn = 2−n, for example, we recover the uniformly hyperbolic
Bernoulli shift map (21.6). An intermittent map of the form (23.3) having the
asymptotic behavior (23.1) can be constructed by choosing an algebraically decaying
sequence{qn} behaving asymptotically like

qn ∼
1

n1/s
, (23.6)

wheres is the intermittency exponent in (23.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (23.7)

As can be seen from (23.5), the stability eigenvalues of periodic orbit families
approaching the marginal fixed point, such as the 10n family increase in turn only
algebraically with the cycle length.
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CHAPTER 23. INTERMITTENCY 392

It may now seem natural to construct an intermittent toy map in terms of a
partition |Mn| = 1/n1+1/s, that is, a partition which follows (23.7) exactly. Such
a choice leads to a dynamical zeta function which can be written in terms of so-
called Jonquière functions (or polylogarithms) which arise naturally also in the
context of the Farey map (18.31), and the anomalous diffusion of sect.24.3.
We will, however, not go along this route here; instead, we will engage in a bit

[remark 24.8]
of reverse engineering and construct a less obvious partition which will simplify
the algebra considerably later without loosing any of the key features typical for
intermittent systems. We fix the intermittent toy map by specifying the intervals
Mn in terms of Gamma functions according to

|Mn| = C
Γ(n+m− 1/s− 1)

Γ(n+m)
for n ≥ 2, (23.8)

wherem= [1/s] denotes the integer part of 1/sandC is a normalization constant
fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a





∞∑

n=m+1

Γ(n− 1/s)
Γ(n+ 1)





−1

. (23.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1+ 1/12z+ . . .) ,

we verify that the intervals decay asymptotically liken−(1+1/s), as required by the
condition (23.7).

Next, let us write down the dynamical zeta function of the toymap in terms
of its periodic orbits, that is

1/ζ(z) =
∏

p

(

1− znp

|Λp|

)

One may be tempted to expand the dynamical zeta function in terms of the binary
symbolic dynamics of the map; we saw, however, in sect.18.5 that such cycle
expansion converges extremely slowly. The shadowing mechanism between orbits
and pseudo-orbits fails for orbits of the form 10n with stabilities given by (23.5),
due to the marginal stability of the fixed point0. It is therefore advantageous to
choose as the fundamental cycles the family of orbits with code 10n or, equivalently,
switch from the finite (binary) alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervalsMn exactly
ontoMn−1, all periodic orbits entering the left branch at least twiceare canceled

inter - 12sep2003.tex



CHAPTER 23. INTERMITTENCY 393

exactly by pseudo cycles, and the cycle expanded dynamical zeta function depends
only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏

p,0

(

1− znp

|Λp|

)

= 1−
∞∑

n=1

zn

|Λ10n−1|

= 1− (1− b)z− C1− b
1− a

∞∑

n=2

Γ(n+m− 1/s− 1)
Γ(n+m)

zn . (23.10)

The fundamental term (18.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent for|z| ≥ 1. We will see that this
behavior is due to a branch cut of 1/ζ starting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing termsin (23.10). Note also
that we omitted the fixed point0 in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta functionin more detail in
sect.23.2.4.

23.2.2 Branch cuts

Starting from the dynamical zeta function (23.10), we first have to worry about
finding an analytical continuation of the sum for|z| ≥ 1. We do, however, get this
part for free here due to the particular choice of interval lengths made in (23.8).
The sum over ratios of Gamma functions in (23.10) can be evaluated analytically
by using the following identities valid for 1/s = α > 0 (the famed binomial
theorem in disguise),

• α non-integer

(1− z)α =
∞∑

n=0

Γ(n− α)
Γ(−α)Γ(n+ 1)

zn (23.11)

• α integer

(1− z)α log(1− z) =
α∑

n=1

(−1)ncnzn (23.12)

+ (−1)α+1α!
∞∑

n=α+1

(n− α − 1)!
n!

zn

with

cn =

(

α

n

) n−1∑

k=0

1
α − k

.

In order to simplify the notation, we restrict the intermittency parameter to the
range 1≤ 1/s< 2 with [1/s] = m= 1. All what follows can easily be generalized
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to arbitrarys> 0 using equations (23.11) and (23.12). The infinite sum in (23.10)
can now be evaluated with the help of (23.11) or (23.12), that is,

∞∑

n=2

Γ(n− 1/s)
Γ(n+ 1)

zn =

{

Γ(−1
s)

[

(1− z)1/s − 1+ 1
sz

]

for 1 < 1/s< 2;
(1− z) log(1− z) + z for s= 1 .

The normalization constantC in (23.8) can be evaluated explicitly using (23.9)
and the dynamical zeta function can be given in closed form. We obtain for 1<
1/s< 2

1/ζ(z) = 1− (1− b)z− a
1/s− 1

1− b
1− a

(

(1− z)1/s − 1+
1
s
z

)

. (23.13)

and fors= 1,

1/ζ(z) = 1− (1− b)z− a
1− b
1− a

(
(1− z) log(1− z) + z

)
. (23.14)

It now becomes clear why the particular choice of intervalsMn made in the
last section is useful; by summing over the infinite family ofperiodic orbits 0n1
explicitly, we have found the desired analytical continuation for the dynamical
zeta function for|z| ≥ 1. The function has a branch cut starting at the branch
point z = 1 and running along the positive real axis. That means, the dynamical
zeta function takes on different values when approaching the positive real axis for
Re z> 1 from above and below. The dynamical zeta function for general s > 0
takes on the form

1/ζ(z) = 1− (1− b)z− a
gs(1)

1− b
1− a

1

zm−1

(

(1− z)1/s − gs(z)
)

(23.15)

for non-integerswith m= [1/s] and

1/ζ(z) = 1− (1−b)z− a
gm(1)

1− b
1− a

1
zm−1

(
(1− z)m log(1− z) − gm(z)

)
(23.16)

for 1/s = m integer andgs(z) are polynomials of orderm = [1/s] which can
be deduced from (23.11) or (23.12). We thus find algebraic branch cuts for non
integer intermittency exponents 1/s and logarithmic branch cuts for 1/s integer.
We will see in sect.23.3that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamical zeta functions due
to intermittency. So, how do we calculate averages or escaperates of the dynamics
of the map from a dynamical zeta function with branch cuts? Wetake ‘a learning
by doing’ approach and calculate the escape from our toy map for a < b.
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Figure 23.5: The survival probability Γn

calculated by contour integration; integrating
(23.17) inside the domain of convergence|z| <
1 (shaded area) of 1/ζ(z) in periodic orbit
representation yields (16.26). A deformation of
the contourγ−r (dashed line) to a larger circleγ−R
gives contributions from the poles and zeros (x)
of 1/ζ(z) between the two circles. These are the
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23.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors aftern time steps,
is the integral representation (17.19)

Γn =
1

2πi

∮

γ−r

z−n
(

d
dz

logζ−1(z)

)

dz, (23.17)

where the contour encircles the origin in the clockwise direction. If the contour
lies inside the unit circle|z| = 1, we may expand the logarithmic derivative of
ζ−1(z) as a convergent sum over all periodic orbits. Integrals andsums can be
interchanged, the integrals can be solved term by term, and the formula (16.26) is
recovered. For hyperbolic maps, cycle expansion methods orother techniques
may provide an analytic extension of the dynamical zeta function beyond the
leading zero; we may therefore deform the original contour into a larger circle
with radiusR which encircles both poles and zeros ofζ−1(z), see figure23.5(a).
Residue calculus turns this into a sum over the zeroszα and poleszβ of the dyn-
amical zeta function, that is

Γn =

zeros∑

|zα |<R

1
zn
α

−
poles
∑

|zβ |<R

1
zn
β

+
1

2πi

∮

γ−R

dz z−n d
dz

logζ−1, (23.18)

where the last term gives a contribution from a large circleγ−R. We thus find
exponential decay ofΓn dominated by the leading zero or pole ofζ−1(z).

Things change considerably in the intermittent case. The point z = 1 is a
branch cut singularity and there exists no Taylor series expansion ofζ−1 around
z= 1. Second, the path deformation that led us to (23.18) requires more care, as it
must not cross the branch cut. When expanding the contour to large|z| values, we
have to deform it along the branch Re (z)≥ 1, Im (z)= 0 encircling the branch cut
in anti-clockwise direction, see figure23.5(b). We will denote the detour around
the cut asγcut. We may write symbolically

∮

γr

=

zeros∑

−
poles
∑

+

∮

γR

+

∮

γcut
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where the sums include only the zeros and the poles in the areaenclosed by the
contours. The asymptotics is controlled by the zero, pole orcut closest to the
origin.

Let us now go back to our intermittent toy map. The asymptotics of the
survival probability of the map is here governed by the behavior of the integrand
d
dz logζ−1 in (23.17) at the branch pointz = 1. We restrict ourselves again to the
case 1< 1/s< 2 first and write the dynamical zeta function (23.13) in the form

1/ζ(z) = a0 + a1(1− z) + b0(1− z)1/s ≡ G(1− z)

and

a0 =
b− a
1− a

, b0 =
a

1− 1/s
1− b
1− a

.

Settingu = 1− z, we need to evaluate

1
2πi

∮

γcut

(1− u)−n d
du

logG(u)du (23.19)

whereγcut goes around the cut (i.e., the negativeu axis). Expanding the integrand
d
du logG(u) = G′(u)/G(u) in powers ofu andu1/s at u = 0, one obtains

d
du

logG(u) =
a1

a0
+

1
s

b0

a0
u1/s−1 +O(u) . (23.20)

The integrals along the cut may be evaluated using the general formula

1
2πi

∮

γcut

uα(1− u)−ndu=
Γ(n− α − 1)
Γ(n)Γ(−α)

∼ 1

nα+1
(1+O(1/n)) (23.21)

which can be obtained by deforming the contour back to a loop around the point
u = 1, now in positive (anti-clockwise) direction. The contourintegral then picks
up the (n−1)st term in the Taylor expansion of the functionuα atu = 1, cf. (23.11).
For the continuous time case the corresponding formula is

1
2πi

∮

γcut

zαeztdz=
1
Γ(−α)

1
tα+1

. (23.22)

Plugging (23.20) into (23.19) and using (23.21) we get the asymptotic result

Γn ∼
b0

a0

1
s

1
Γ(1− 1/s)

1

n1/s
=

a
s− 1

1− b
b− a

1
Γ(1− 1/s)

1

n1/s
. (23.23)
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Figure 23.6: The asymptotic escape from an
intermittent repeller is a power law. Normally it is
preceded by an exponential, which can be related to
zeros close to the cut but beyond the branch point
z= 1, as in figure23.5(b). 0 200 400 600 800 1000
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We see that, asymptotically, the escape from an intermittent repeller is described
by power law decay rather than the exponential decay we are familiar with for
hyperbolic maps; a numerical simulation of the power-law escape from an intermittent
repeller is shown in figure23.6.

For general non-integer 1/s> 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1 − z andA(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansions ofA(u) andB(u) are

a0 =
b− a
1− a

, b0 =
a

gs(1)
1− b
1− a

,

see (23.15). Expanding d
du logG(u) aroundu = 0, one again obtains leading order

contributions according to (23.20) and the general result follows immediately
using (23.21), that is,

Γn ∼
a

sgs(1)
1− b
b− a

1
Γ(1− 1/s)

1

n1/s
. (23.24)

Applying the same arguments for integer intermittency exponents 1/s = m, one
obtains

Γn ∼ (−1)m+1 a
sgm(1)

1− b
b− a

m!
nm . (23.25)

So far, we have considered the survival probability for a repeller, that is we
assumeda < b. The formulas (23.24) and (23.25) do obviously not apply for the
casea = b, that is, for the bounded map. The coefficient a0 = (b − a)/(1 − a)
in the series representation ofG(u) is zero, and the expansion of the logarithmic
derivative ofG(u) (23.20) is no longer valid. We get instead

d
du

logG(u) =






1
u

(

1+O(u1/s−1)
)

s< 1
1
u

(
1
s +O(u1−1/s)

)

s> 1
,
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assuming non-integer 1/sfor convenience. One obtains for the survival probability.

Γn ∼
{

1+O(n1−1/s) s< 1
1/s+O(n1/s−1) s> 1

.

For s > 1, this is what we expect. There is no escape, so the survival probability
is equal to 1, which we get as an asymptotic result here. The result for s > 1 is
somewhat more worrying. It says thatΓn defined as sum over the instabilities of
the periodic orbits as in (20.12) does not tend to unity for largen. However, the
cases> 1 is in many senses anomalous. For instance, the invariant density cannot
be normalized. It is therefore not reasonable to expect thatperiodic orbit theories
will work without complications.

23.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous section,
we had the nice property that interval lengths did exactly coincide with the inverse
of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γn given by (1.2),
(20.2), that is the fraction of state spaceM survivingn iterations of the map,

Γn =
1
|M|

(n)∑

i

|Mi | .

by a sum over periodic orbits of the form (16.26). The only orbit to worry about is
the marginal fixed point0 itself which we excluded from the zeta function (23.10).

For smooth intermittent maps, things are less clear and the fact that we had to
prune the marginal fixed point is a warning sign that intervalestimates by periodic
orbit stabilities might go horribly wrong. The derivation of the survival probability
in terms of cycle stabilities in chapter20did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittent maps. We therefore have
to carefully reconsider this derivation in order to show that periodic orbit formulas
are actually valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of says
branches defined on intervalsMs and we assume that the map maps each interval
Ms ontoM, that is f (Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see figure23.2).

The generating partition is composed of the domainsMs. The nth level
partition C(n) = {Mi} can be constructed iteratively. Herei’s are wordsi =
s2s2 . . . sn of lengthn, and the intervalsMi are constructed recursively

Ms j = f −1
s (M j) , (23.26)
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wheres j is the concatenation of letters with word j of lengthn j < n.

In what follows we will concentrate on the survival probability Γn, postponing
other quantities of interest, such as averages, to later considerations. In establishing
the equivalence of the survival probability and the periodic orbit formula for the
escape rate for hyperbolic systems we have assumed that the map is expanding,
with a minimal expansion rate| f ′(x)| ≥ Λmin > 1. This enabled us to bound
the size of every survivor stripMi by (20.6), the stabilityΛi of the periodic orbiti
within theMi, and bound the survival probability by the periodic orbit sum (20.7).

The bound (20.6)

C1
1
|Λi |

<
|Mi |
|M| < C2

1
|Λi |

relies on hyperbolicity, and is thus indeed violated for intermittent systems. The
problem is that now there is no lower bound on the expansion rate, the minimal
expansion rate isΛmin = 1. The survivor stripM0n which includes the marginal
fixed point is thus completely overestimated by 1/|Λ0n| = 1 which is constant for
all n.

[exercise 17.7]

However, bounding survival probability strip by strip is not what is required
for establishing the bound (20.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average size of intervalsalong a periodic
orbit can be bounded close to the stability of the periodic orbit for all but the
intervalM0n. The weaker bound applies to averaging over each prime cyclep
separately

C1
1
|Λp|

<
1
np

∑

i∈p

|Mi |
|M| < C2

1
|Λp|

, (23.27)

where the wordi represents a code of the periodic orbitp and all its cyclic
permutations. It can be shown that one can find positive constantsC1,C2 independent
of p. Summing over all periodic orbits leads then again to (20.7).

To study averages of multiplicative weights we follow sect.15.1and introduce
a state space observablea(x) and the integrated quantity

An(x) =
n−1∑

k=0

a( f k(x)).

This leads us to introduce the generating function (15.10)

〈eβ An(x)〉,
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Figure 23.7: Markov graph corresponding to the

alphabet{0k−11;0 , k ≥ 1} 0 0 00 0

0

1

where〈.〉 denote some averaging over the distribution of initial points, which we
choose to be uniform (rather than thea priori unknown invariant density). Again,
all we have to show is, that constantsC1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑

i∈p

1
|M|

∫

MQ

eβAn(x)dx< C2
eβAp

|Λp|
, (23.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫

M
eβA(x,n)dx< C2Γn(β), (23.29)

with

Γn(β) =
n∑

p

eβAp

|Λp|
. (23.30)

and a dynamical zeta function can be derived. In the intermittent case one can
expect that the bound (23.28) holds using an averaging argument similar to the
one discussed in (23.27). This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natural alphabet to use
is not {0, 1} but rather the infinite alphabet{0k−11, 0 ; k ≥ 1}. The symbol 0
occurs unaccompanied by any 1’s only in the0 marginal fixed point which is
disconnected from the rest of the Markov graph see figure23.7.

[chapter 11]

What happens if we remove a single prime cycle from a dynamical zeta func-
tion? In the hyperbolic case such a removal introduces a polein the 1/ζ and
slows down the convergence of cycle expansions. The heuristic interpretation
of such a pole is that for a subshift of finite type removal of a single prime
cycle leads to unbalancing of cancellations within the infinity of of shadowing
pairs. Nevertheless, removal of a single prime cycle is an exponentially small
perturbation of the trace sums, and the asymptotics of the associated trace formulas
is unaffected.

[chapter 21]

In the intermittent case, the fixed point0 does not provide any shadowing ,
and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,
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is meaningless. It seems therefore sensible to take out the factor (1− t0) = 1− z
from the product representation of the dynamical zeta function (17.15), that is, to
consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1− z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the nice
properties we know from the hyperbolic case, that is, we can find a cycle expansion
with - in the toy model case - vanishing curvature contributions and we can
calculate dynamical properties like escape after having understood, how to handle
the branch cut. But you might still be worried about leaving out the extra factor
1−zall together. It turns out, that this is not only a matter of convenience, omitting
the marginal0 cycle is a dire necessity. The cycle weightΛn

0 = 1 overestimates
the corresponding interval length ofM0n in the partition of the phase spaceM by
an increasing amount thus leading to wrong results when calculating escape. By
leaving out the0 cycle (and thus also theM0n contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determinant (17.3), given
in product form as

det (1− zL) =
∏

p

∞∏

m=0

(

1− znp

|Λp|Λm
p

)

,

for intermittent maps the marginal stable cycle has to be excluded. It introduces
an (unphysical) essential singularity atz= 1 due the presence of a factor (1− z)∞

stemming from the0 cycle.

23.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piecewise linearity
of the map led to exact cancellations of the curvature contributions leaving only
the fundamental terms. There are still infinitely many orbits included in the
fundamental term, but the cycle weights were chosen in such away that the zeta
function could be written in closed form. For a smooth intermittent map this all
will not be the case in general; still, we will argue that we have already seen
almost all the fundamentally new features due to intermittency. What remains are
technicalities - not necessarily easy to handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques work
for general 1-dimensional maps with a single isolated marginal fixed point. To
keep the notation simple, we will consider two-branch maps with a complete
binary symbolic dynamics as for example the Farey map, figure23.3, or the
repeller depicted in figure23.2. We again assume that the behavior near the fixed
point is given by (23.1). This implies that the stability of a family of periodic
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Table 23.1: Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11= 12, 0101 = 012, . . .) and their cyclic
repeats (110= 101, 1110= 1101, . . .) are accounted for by cancelations and combination
factors in the cycle expansion (23.31).

∞ – alphabet binary alphabet
n= 1 n= 2 n= 3 n= 4 n= 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

orbits approaching the marginally stable orbit, as for example the family 10n, will
increase only algebraically, that is we find again for largen

1
Λ10n

∼ 1

n1+1/s
,

wheresdenotes the intermittency exponent.

When considering zeta functions or trace formulas, we againhave to take
out the marginal orbit0; periodic orbit contributions of the formt0n1 are now
unbalanced and we arrive at a cycle expansion in terms of infinitely many fundamental
terms as for our toy map. This corresponds to moving from our binary symbolic
dynamics to an infinite symbolic dynamics by making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also table23.3. The topological length of the orbit is thus no longer determined
by the iterations of our two-branch map, but by the number of times the cycle
goes from the right to the left branch. Equivalently, one maydefine a new map,
for which all the iterations on the left branch are done in onestep. Such a map is
called aninduced mapand the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map.

[exercise 11.1]

For generic intermittent maps, curvature contributions inthe cycle expanded
zeta function will not vanish exactly. The most natural way to organize the cycle
expansion is to collect orbits and pseudo orbits of the same topological length

inter - 12sep2003.tex



CHAPTER 23. INTERMITTENCY 403

with respect to the infinite alphabet. Denoting cycle weights in the new alphabet
astnm... = t10n−110m−1..., one obtains

ζ−1 =
∏

p,0

(

1− tp

)

= 1−
∞∑

n=1

ce (23.31)

= 1−
∞∑

n=1

tn −
∞∑

m=1

∞∑

n=1

1
2

(tmn− tmtn)

−
∞∑

k=1

∞∑

m=1

∞∑

n=1

(
1
3

tkmn−
1
2

tkmtn +
1
6

tktmtn) −
∞∑

l=1

∞∑

k=1

∞∑

m=1

∞∑

n=1

. . . .

The first sum is the fundamental term, which we have already seen in the toy
model, (23.10). The curvature termscn in the expansion are nowe-fold infinite
sums where the prefactors take care of double counting of prime periodic orbits.

Let us consider the fundamental term first. For generic intermittent maps, we
can not expect to obtain an analytic expression for the infinite sum of the form

f (z) =
∞∑

n=0

hnzn. (23.32)

with algebraically decreasing coefficients

hn ∼
1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the power
series diverges forz > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expected. By carefully subtracting
the asymptotic behavior with the help of (23.11) or (23.12), one can in general
construct an analytic continuation off (z) aroundz= 1 of the form

f (z) ∼ A(z) + (1− z)α−1B(z) α < N (23.33)

f (z) ∼ A(z) + (1− z)α−1 ln(1− z) α ∈ N ,

whereA(z) andB(z) are functions analytic in a disc aroundz = 1. We thus again
find that the zeta function (23.31) has a branch cut along the real axis Re z≥ 1.
From here on we can switch to auto-pilot and derive algebraicescape, decay of
correlation and all the rest. We find in particular that the asymptotic behavior
derived in (23.24) and (23.25) is a general result, that is, the survival probability
is given asymptotically by

Γn ∼ C
1

n1/s
(23.34)
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for all 1-dimensional maps of the form (23.1). We have to work a bit harder if
we want more detailed information like the prefactorC, exponential precursors
given by zeros or poles of the dynamical zeta function or higher order corrections.
This information is buried in the functionsA(z) andB(z) or more generally in the
analytically continued zeta function. To get this analyticcontinuation, one may
follow either of the two different strategies which we will sketch next.

23.3.1 Resummation

One way to get information about the zeta function near the branch cut is to
derive the leading coefficients in the Taylor series of the functionsA(z) andB(z)
in (23.33) at z = 1. This can be done in principle, if the coefficientshn in sums
like (23.32) are known (as for our toy model). One then considers a resummation
of the form

∞∑

j=0

h jz
j =

∞∑

j=0

a j(1− z) j + (1− z)α−1
∞∑

j=0

b j(1− z) j , (23.35)

and the coefficientsa j andb j are obtained in terms of theh j ’s by expanding (1−z) j

and (1− z) j+α−1 on the right hand side aroundz = 0 using (23.11) and equating
the coefficients.

In practical calculations one often has only a finite number of coefficients
h j , 0 ≤ j ≤ N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resummation scheme for the
computation of the coefficientsa j andb j in (23.35). We replace the infinite sums
in (23.35) by finite sums of increasing degreesna andnb, and require that

na∑

i=0

ai(1− z)i + (1− z)α−1
nb∑

i=0

bi(1− z)i =

N∑

i=0

hiz
i +O(zN+1) . (23.36)

One proceeds again by expanding the right hand side aroundz = 0, skipping all
powerszN+1 and higher, and then equating coefficients. It is natural to require that
|nb + α − 1− na| < 1, so that the maximal powers of the two sums in (23.36) are
adjacent. If one choosesna + nb + 2 = N + 1, then, for each cutoff lengthN, the
integersna and nb are uniquely determined from a linear system of equations.
The price we pay is that the so obtained coefficients depend on the cutoff N.
One can now study convergence of the coefficientsa j , and b j , with respect to
increasing values ofN, or various quantities derived froma j andb j . Note that
the leading coefficientsa0 andb0 determine the prefactorC in (23.34), cf. (23.23).
The resummed expression can also be used to compute zeros, inside or outside the
radius of convergence of the cycle expansion

∑
h jzj .

The scheme outlined in this section tacitly assumes that a representation of
form (23.33) holds in a disc of radius 1 aroundz = 1. Convergence is improved
further if additional information about the asymptotics ofsums like (23.32) is used
to improve the ansatz (23.35).
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23.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation of sums
of the form (23.32) without explicitly relying on an ansatz (23.35). The main
idea is to rewrite the sum (23.32) as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuationof each integral by
contour deformation. In order to do so, we need to know then dependence of
the coefficientshn ≡ h(n) explicitly for all n. If the coefficients are not known
analytically, one may proceed by approximating the largen behavior in the form

h(n) = n−α(C1 +C2n−1 + . . .) , n , 0 ,

and determine the constantsCi numerically from periodic orbit data. By using the
Poisson resummation identity

∞∑

n=−∞
δ(x− n) =

∞∑

m=−∞
exp(2πimx) , (23.37)

we may write the sum as (23.32)

f (z) =
1
2

h(0)+
∞∑

m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (23.38)

The continuous variablex corresponds to the discrete summation indexn and it
is convenient to writez = r exp(iσ) from now on. The integrals are still not
convergent forr > 0, but an analytical continuation can be found by considering
the contour integral, where the contour goes out along the real axis, makes a
quarter circle to either the positive or negative imaginaryaxis and goes back to
zero. By letting the radius of the circle go to infinity, we essentially rotate the
line of integration from the real onto the imaginary axis. For the m = 0 term in
(23.38), we transformx→ ix and the integral takes on the form

∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) r ixe−xσ.

The integrand is now exponentially decreasing for allr > 0 andσ , 0 or 2π. The
last condition reminds us again of the existence of a branch cut at Re z≥ 1. By
the same technique, we find the analytic continuation for allthe other integrals in
(23.38). The real axis is then rotated according tox → sign(m)ix where sign(m)
refers to the sign ofm.

∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ) .
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Changing summation and integration, we can carry out the sumover |m| explicitly
and one finally obtains the compact expression

f (z) =
1
2

h(0)+ i
∫ ∞

0
dx h(ix) r ixe−xσ (23.39)

+ i
∫ ∞

0
dx

e−2πx

1− e−2πx

[

h(ix)r ixe−xσ − h(−ix)r−ixexσ
]

.

The transformation from the original sum to the two integrals in (23.39) is exact
for r ≤ 1, and provides an analytic continuation forr > 0. The expression (23.39)
is especially useful for an efficient numerical calculations of a dynamical zeta
function for |z| > 1, which is essential when searching for its zeros and poles.

23.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (23.31), and
showed how to deal with such power series with algebraicallydecreasing coefficients.
The fundamental term determines the main structure of the zeta function in terms
of the leading order branch cut. Corrections to both the zeros and poles of the
dynamical zeta function as well as the leading and subleading order terms in
expansions like (23.33) are contained in the curvature terms in (23.31). The first
curvature correction is the 2-cycle sum

∞∑

m=1

∞∑

n=1

1
2

(tmn− tmtn) ,

with algebraically decaying coefficients which again diverge for|z| > 1. The
analytically continued curvature terms have as usual branch cuts along the positive
real z axis. Our ability to calculate the higher order curvature terms depends on
how much we know about the cycle weightstmn. The form of the cycle stability
(23.5) suggests thattmn decrease asymptotically as

tmn ∼
1

(nm)1+1/s
(23.40)

for 2-cycles, and in general forn-cycles as

tm1m2...mn ∼
1

(m1m2 . . .mn)1+1/s
.

If we happen to know the cycle weightstm1m2...mn analytically, we may proceed as
in sect.23.3.2, transform the multiple sums into multiple integrals and rotate the
integration contours.

We have reached the edge of what has been accomplished so far in computing
and what is worth the dynamical zeta functions from periodicorbit data. In the
next section, we describe a probabilistic method applicable to intermittent maps
which does not rely on periodic orbits.
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23.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting inwhich
to investigate dynamical implications of marginal fixed points. We now take an
altogether different track and describe how probabilistic methods may be employed
in order to write down approximate dynamical zeta functionsfor intermittent
systems.

We will discuss the method in a very general setting, for a flowin arbitrary
dimension. The key idea is to introduce a surface of sectionP such that all
trajectories traversing this section will have spent some time both near the marginal
stable fixed point andin the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timeτ(x), or the time of flight of a trajectory starting in
x to the next return to the surface of sectionP. The period of a periodic orbitp
intersecting theP sectionnp times is

Tp =

np−1
∑

k=0

τ( f k(xp)),

where f (x) is the Poincaré map, andxp ∈ P is a cycle point. The dynamical zeta
function (17.15)

1/ζ(z, s, β) =
∏

p

(

1− znpeβAp−sTp

|Λp|

)

, Ap =

np−1
∑

k=0

a( f k(xp)), (23.41)

[chapter 15]

associated with the observablea(x) captures the dynamics of both the flowandthe
Poincaré map. The dynamical zeta function for the flow is obtained as 1/ζ(s, β) =
1/ζ(1, s, β), and the dynamical zeta function for the discrete time Poincaré map is
1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will beprobabilistic. We assume that the chaotic
interludes render the consecutivereturn (or recurrence) times T(xi ), T(xi+1) and
observablesa(xi), a(xi+1) effectively uncorrelated. Consider the quantityeβA(x0,n)−sT(x0,n)

averaged over the surface of sectionP. With the above probabilistic assumption
the largen behavior is

〈eβA(x0,n)−sT(x0,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n

,

whereρ(x) is the invariant density of the Poincaré map. This type of behavior is
equivalent to there being only one zeroz0(s, β) =

∫

eβa(x)−sτ(x)ρ(x)dxof 1/ζ(z, s, β)
in the z-β plane. In the language of Ruelle-Pollicott resonances thismeans that
there is an infinite gap to the first resonance. This in turn implies that 1/ζ(z, s, β)
may be written as

[remark 15.1]
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1/ζ(z, s, β) = z−
∫

P
eβa(x)−sτ(x)ρ(x)dx , (23.42)

where we have neglected a possible analytic and non-zero prefactor. The dynam-
ical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1−
∫

P
eβa(x)ρ(x)e−sτ(x)dx . (23.43)

Normally, the best one can hope for is a finite gap to the leading resonance of
the Poincaré map. with the above dynamical zeta function only approximatively
valid. As it is derived from an approximation due to Baladi, Eckmann, and Ruelle,
we shall refer to it as the BER zeta function 1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫

P
δ(τ − τ(x))ρ(x)dx (23.44)

[exercise 24.6]

The BER zeta function atβ = 0 is then given in terms of the Laplace transform of
this distribution

1/ζBER(s) = 1−
∫ ∞

0
ψ(τ)e−sτdτ.

[exercise 23.5]

Example 23.1 Return times for the Bernoulli map. For the Bernoulli shift map
(21.6)

x 7→ f (x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (16.9))

1/ζBER(z) = 1−
∞∑

n=1

ψnzn = 1−
∞∑

n=1

zn

2n

=
1− z

1− z/2
= ζ−1(z)/(1− z/Λ0) . (23.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point 0
pruned.
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Example 23.2 Return times for the model of sect. 23.2.1. For the toy model of
sect. 23.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1− b)/(1− a), for n ≥ 2, leading to a
BER zeta function

1/ζBER(z) = 1− z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (23.10).

It may seem surprising that the BER approximation produces exact results in
the two examples above. The reason for this peculiarity is that both these systems
are piecewise linear and have complete Markov partitions. As long as the map
is piecewise linear and complete, and the probabilistic approximation is exactly
fulfilled, the cycle expansion curvature terms vanish. The BER zeta function and
the fundamental part of a cycle expansion discussed in sect.18.1.1are indeed
intricately related, but not identical in general. In particular, note that the BER zeta
function obeys the flow conservation sum rule (20.11) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cycles changes the analytic
structure of dynamical zeta functions and the rules for constructing cycle expansions.
The marginal orbits have to be omitted, and the cycle expansions now need to
include families of infinitely many longer and longer unstable orbits which accumulate
toward the marginally stable cycles. Correlations for suchnon-hyperbolic systems
may decay algebraically with the decay rates controlled by the branch cuts of
dynamical zeta functions. Compared to pure hyperbolic systems, the physical
consequences are drastic: exponential decays are replacedby slow power-law
decays, and transport properties, such as the diffusion may become anomalous.

Commentary

Remark 23.1 What about the evolution operator formalism? The main virtue of evolution
operators was their semigroup property (15.25). This was natural for hyperbolic systems
where instabilities grow exponentially, and evolution operators capture this behavior due
to their multiplicative nature. Whether the evolution operator formalism is a good way
to capture the slow, power law instabilities of intermittent dynamics is less clear. The
approach taken here leads us to a formulation in terms ofdynamical zeta functionsrather
than spectral determinants, circumventing evolution operators altogether. It is not known
if the spectral determinants formulation would yield any benefits when applied to intermittent
chaos. Some results on spectral determinants and intermittency can be found in [2]. A
useful mathematical technique to deal with isolated marginally stable fixed point is that
of inducing, that is, replacing the intermittent map by a completely hyperbolic map with
infinite alphabet and redefining the discrete time; we have used this method implicitly
by changing from a finite to an infinite alphabet. We refer to refs. [3, 20] for detailed
discussions of this technique, as well as applications to 1-dimensional maps.
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Remark 23.2 Intermittency. Intermittency was discovered by Manneville and Pomeau [1]
in their study of the Lorentz system. They demonstrated thatin neighborhoodof parameter
valuerc = 166.07 the mean duration of the periodic motion scales as (r − rc)1/2. In ref. [5]
they explained this phenomenon in terms of a 1-dimensional map (such as (23.1)) near
tangent bifurcation, and classified possible types of intermittency.

Piecewise linear models like the one considered here have been studied by Gaspard
and Wang [6]. The escape problem has here been treated following ref. [7], resummations
following ref. [8]. The proof of the bound (23.27) can be found in P. Dahlqvist’s notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map (18.31) has been studied widely in the context of intermittent dynamics,
for example in refs. [16, 17, 3, 18, 19, 14, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey map (18.31) and the related Gauss shift map (14.46)
have been studied by Mayer [16]. He relates the continued fraction transformation to the
Riemann zeta function, and constructs a Hilbert space on which the evolution operator is
self-adjoint, and its eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [24] for “Axiom A” hyperbolic systems.

Remark 23.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller’s monograph [9] is a highly recommended
introduction to these methods.

Remark 23.4 Probabilistic methods, BER zeta functions. Probabilistic description
of intermittent chaos was introduced by Geisal and Thomae [10]. The BER approximation
studied here is inspired by Baladi, Eckmann and Ruelle [14], with further developments
in refs. [13, 15].
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Exercises

23.1. Integral representation of Jonquière functions.
Check the integral representation

J(z, α) =
z
Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
for α > 0 .(23.46)

Note how the denominator is connected to Bose-
Einstein distribution. ComputeJ(x+ iǫ) − J(x− iǫ) for
a realx > 1.

23.2. Power law correction to a power law. Expand
(23.20) further and derive the leading power law
correction to (23.23).

23.3. Power-law fall off. In cycle expansions the stabilities
of orbits do not always behave in a geometric fashion.
Consider the mapf

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves asf → xasx→ 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [0, 1/2) and 1 to the points that land
on (1/2, 1]. Show that the stability of orbits that spend
a long time on the 0 side goes asn2. In particular, show
that

Λ 00···0
︸︷︷︸

n

1 ∼ n2

23.4. Power law fall-off of stability eigenvalues in the
stadium billiard ∗∗. From the cycle expansions point
of view, the most important consequence of the shear in
Jn for long sequences of rotation bouncesnk in (8.13)
is that theΛn grows only as a power law in number of
bounces:

Λn ∝ n2
k . (23.47)

Check.

23.5. Probabilistic zeta function for maps. Derive the
probabilistic zeta function for a map with recurrence
distributionψn.

23.6. Accelerated diffusion. Consider a maph, such that
ĥ = f̂ , but now running branches are turner into standing
branches and vice versa, so that 1, 2, 3, 4 are standing
while 0 leads to both positive and negative jumps. Build
the corresponding dynamical zeta function and show
that

σ2(t) ∼






t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

23.7. Anomalous diffusion (hyperbolic maps).
Anomalous diffusive properties are associated to
deviations from linearity of the variance of the phase
variable we are looking at: this means the the diffusion
constant (15.13) either vanishes or diverges. We briefly
illustrate in this exercise how the local local properties
of a map are crucial to account for anomalous behavior
even for hyperbolic systems.

Consider a class of piecewise linear maps, relevant to
the problem of the onset of diffusion, defined by

fǫ (x) =






Λx for x ∈
[

0, x+1
]

a− Λǫ,γ|x− x+| for x ∈
[

x+1 , x
+
2

]

1− Λ′(x− x+2 ) for x ∈
[

x+2 , x
−
1

]

1− a+ Λǫ,γ|x− x−| for x ∈
[

x−1 , x
−
2

]

1+ Λ(x− 1) for x ∈
[

x−2 , 1
]

(23.48)

whereΛ = (1/3 − ǫ1/γ)−1, Λ′ = (1/3 − 2ǫ1/γ), Λǫ,γ =
ǫ1−1/γ, a = 1+ǫ, x+ = 1/3, x+1 = x+−ǫ1/γ, x+2 = x++ǫ1/γ,
and the usual symmetry properties (24.11) are satisfied.

Thus this class of maps is characterized by two escaping
windows (through which the diffusion process may
take place) of size 2ǫ1/γ: the exponentγ mimicks the
order of the maximum for a continuous map, while
piecewise linearity, besides making curvatures vanish
and leading to finite cycle expansions, prevents the
appearance of stable cycles. The symbolic dynamics
is easily described once we consider a sequence of
parameter values{ǫm}, whereǫm = Λ−(m+1): we then
partition the unit interval though the sequence of points
0, x+1 , x

+, x+2 , x
−
1 , x

−, x−2 , 1 and label the corresponding
sub–intervals 1, sa, sb, 2, db, da, 3: symbolic dynamics is
described by an unrestricted grammar over the following
set of symbols

{1, 2, 3, s# · 1i , d# · 3k} # = a, b i, k = m,m+ 1,m+

exerInter - 6jun2003.tex
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This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1− 2z

Λ
− z
Λ′
− 4 cosh(α)ǫ1/γ−1

m
zm+1

Λm

(

1− z
Λ

)−1

from which, by (24.8) we get

D =
2ǫ1/γ−1

m Λ−m(1− 1/Λ)−1

1− 2
Λ
− 1
Λ′ − 4ǫ1/γ−1

m

(
m+1

Λm(1−1/Λ) +
1

Λm+1(1−1/Λ)2

) (23.49)

The main interest in this expression is that it allows
exploring howD vanishes in theǫ 7→ 0 (m 7→ ∞)

limit: as a matter of fact, from (23.49) we get the
asymptotic behaviorD ∼ ǫ1/γ, which shows how the
onset of diffusion is governed by the order of the map at
its maximum.

Remark 23.5 Onset of diffusion for continuous maps.
The zoology of behavior for continuous maps at the
onset of diffusion is described in refs. [12, 13, 25]: our
treatment for piecewise linear maps was introduced in
ref. [26].
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