Chapter 23

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlgvist, G. Tanner and P. Cvitanovic)

N THE THEORY Of chaotic dynamics developed so far we assumed that thetevol
operators have discrete spedizg z1, 2, . . .} given by the zeros of

1@ =) [a-z2).
k

The assumption was based on the tacit premise that the dgm&@verywhere
exponentially unstable. Real life is nothing like that {stspaces are generically
infinitely interwoven patterns of stable and unstable bihav The stable (in

the case of Hamiltonian flows, integrable) orbits do not camitate with the
ergodic components of the phase space, and can be treatéasbical methods.
In general, one is able to treat the dynamics near stablésabiwell as chaotic
components of the phase space dynamics well within a perimrdit approach.
Problems occur at the borderline between chaos and regulemidcs where
marginally stable orbits and manifolds presenfidilties and still unresolved
challenges.

We shall use the simplest example of such behavior - integnay in 1-
dimensional maps - to illustratdfects of marginal stability. The main message
will be that spectra of evolution operators are no longecréie, dynamical zeta
functions exhibit branch cuts of the form

/0@ =(-)+1-2C),

and correlations decay no longer exponentially, but as ptaves.
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CHAPTER 23. INTERMITTENCY 387

Figure 23.1: Typical phase space for an area-
preserving map with mixed phase space dynamic:
here the standard map fei= 1.2 .

23.1 Intermittency everywhere

In many fluid dynamics experiments one observes transifronsregular behaviors
to behaviors where long time intervals of regular behavilaniinar phases”) are
interrupted by fast irregular bursts. The closer the patams to the onset of
such bursts, the longer are the intervals of regular behaViee distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calleidtermittency and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginallyiststiate space regions.
Complete hyperbolicity assumed itg.5 is the exception rather than the rule,
and for almost any dynamical system of interest (dynamicgrinoth potentials,
billiards with smooth walls, the infinite horizon Lorentzgg&tc.) one encounters
mixed state spaces with islands of stability coexistinghwiyperbolic regions,
see figure23.1  Wherever stable islands are interspersed with chaotioneg
trajectories which come close to the stable islands can‘ghagd’ for arbitrarily
long times. These intervals of regular motion are inteedpdby irregular bursts
as the trajectory is re-injected into the chaotic part ofihase space. How the
trajectories are precisely ‘glued’ to the marginally stal#gion is often hard to
describe. What coarsely looks like a border of an island wviler magnification
dissolve into infinities of island chains of decreasing sizeoken tori and bifurcating
orbits, as illustrated in figurg3.1

Intermittency is due to the existence of fixed points andeydf marginal
stability (6.5), or (in studies of the onset of intermittency) to the proynof a
nearly marginal complex or unstable orbits. In Hamiltorggietems intermittency
goes hand in hand with the existence of (marginally stabl&MKori. In more
general settings, the existence of marginal or nearly malgirbits is due to
incomplete intersections of stable and unstable manifwids Smale horseshoe
type dynamics (see figur&3.2). Following the stretching and folding of the
invariant manifolds in time one will inevitably find stateagge points at which
the stable and unstable manifolds are almost or exactletdiad to each other,
implying non-exponential separation of nearby points atesspace or, in other
words, marginal stability. Under small parameter perttioog such neighborhoods
undergo tangent bifurcations - a stahlestable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pnutmich we shall
encounter in chapterl, and the intermittency discussed here are two sides of the
same coin.

11.5
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How to deal with the full complexity of a typical Hamiltoniasystem with
mixed phase space is a veryffdiult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by consmge rather simple
examples. Here we shall restrict our considerations taviedsional maps which
in the neighborhood of a single marginally stable fixed paint=0 take the form

X f(X) = x+ O(XH*S), (23.1)

and are expanding everywhere else. Such a map may allowdapeslike the
map shown in figur&3.2 or the dynamics may be bounded, like the Farey map
(18.31) 163,164c153,154

x/(L-x) xe€]0,1/2]

X+ f(X) :{ (1-x)/x xe[1/2,1]

introduced in sectl8.5

Figure23.3compares a trajectory of the tent md (6 side by side with a
trajectory of the Farey map. In a stark contrast to the unmifgichaotic trajectory
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CHAPTER 23. INTERMITTENCY 389

of the tent map, the Farey map trajectory alternates intently between slow

regular motion close to the marginally stable fixed poing ahaotic bursts. _
[section 18.5.3]

The presence of marginal stability has striking dynamioakequences: correlation
decay may exhibit long range power law asymptotic behavidrdifusion processes
can assume anomalous character. Escape from a repeller fufrth figure23.2
may be algebraic rather than exponential. In long time eggilons of the dynamics
intermittency manifests itself by enhancement of naturgdsure in the proximity
of marginally stable cycles.

The questions we shall address here are: how does margahditgtaffect
zeta functions or spectral determinants? And, can we dguueer law decays of
correlations from cycle expansions?

In example21.5we saw that marginal stability violates one of the condidion
which ensure that the spectral determinant is an entiretibmc Already the
simple fact that the cycle weight/[1 — AL| in the trace {6.3 or the spectral
determinant17.3 diverges for marginal orbits witi\ p| = 1 tells us that we have
to treat these orbits with care.

In the following we will incorporate marginal stability dtb into cycle-expansions
in a systematic manner. To get to know théfidulties lying ahead, we will
start in sect23.2with a piecewise linear map, with the asymptoties.(). We
will construct a dynamical zeta function in the usual wayhwiit worrying too
much about its justification and show that it has a branch ingusarity. We
will calculate the rate of escape from our piecewise lineaprand find that it
is characterized by decay, rather than exponential decpgwar law. We will
show that dynamical zeta functions in the presence of malrgiability can still
be written in terms of periodic orbits, exactly as in chaptes and 20, with
one exception: the marginally stable orbits have to be eitlgliexcluded. This
innocent looking step has far reaching consequences;aés$ous to change the
symbolic dynamics from a finite to an infinite alphabet, anhésa reorganization
of the order of summations in cycle expansions, s&R.4

Branch cuts are typical also for smooth intermittent mayih isblated marginally
stable fixed points and cycles. In se28.3 we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maféal to intermittency.
The knowledge of the type of singularity one encounters lesals to develop the
efficient resummation method presented in sg8t3.1

Finally, in sect23.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and providgaable information
about more complicated systems, such as billiards.

23.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertfiinteresting dynamics,
itis also at the root of many sorrows such as slow convergehcycle expansions.
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Figure 23.4: A piecewise linear intermittent map 021 /g :
of (23.2 type: more specifically, the map piecewise .f-q4 b
linear over intervals43.8 of the toy example studied 0 0'2 0'4 6 ols
below,a=.5,b = .6,s=1.0. ' Cox

In order to get to know the kind of problems which arise whemlging dynamic-
al zeta functions in the presence of marginal stability Wik sginsider an artfully
concocted piecewise linear model first. From there we wilenon to the more
general case of smooth intermittant maps, s&gt3

23.2.1 Atoy map

The Bernoulli shift mapZ1.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now conost a likewise
piecewise linear model, an intermittent map stripped dawitstbare essentials.

Consider a map — f(x) on the unit intervalM = [0, 1] with two monotone
branches

fo(X) for xe Mo =[0,4a]
19 ={ f00 for xe My = [b.1] - (23.2)

The two branches are assumed complete, thig{.1elo) = f1(M1) = M. The map
allows escape i&i < b and is bounded i& = b (see figure23.2and figure23.4).
We take the right branch to be expanding and linear:

(9 = 72 £(x- b).

Next, we will construct the left branch in a way, which willl@k us to
model the intermittent behavio28.1) near the origin. We chose a monotonically
decreasing sequence of poimgsin [0, a] with g; = aandg, — 0 asn — .
This sequence defines a partition of the left interVd into an infinite number of
connected intervaldf,, n > 2 with

My=lthtna]  and Mo =| M. (23.3)

The mapfp(X) is now specified by the following requirements
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CHAPTER 23. INTERMITTENCY 391

e fp(X) is continuous.
e fo(X) is linear on the intervald i, for n > 2.
o fo(th) = Gh-1, that isM, = f5™(a,1]).
This fixes the map for any given sequericg}. The last condition ensures the

existence of a simple Markov partition. The slopes of théouer linear segments
are

fo) = Dbl - Ml for xe My, n23

’ fi —f _
fgog = Lple - %3 for x € My (23.4)
fo(x) = = = Bt forxeM

with |[Mp| = gn-1 — gn for n > 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code™lays a key role
for intermittent maps of the forn2@.1). An orbit 10" enters the intervald1; —
Mnr1 = Mn — ... > My successively and the family approaches the marginal
stable fixed point ak = 0 forn — oo. The stability of a cycle 10for n > 1 is
given by the chain rule4(50),

1 1-a

IMnial1-b° (23.5)

A1on = fo(Xne1) fo(%n) - . To(x2) F1(Xxa) =

with X € M;.

The properties of the ma28.2 are completely determined by the sequence
{an}. By choosingg, = 27", for example, we recover the uniformly hyperbolic
Bernoulli shift map 21.6). An intermittent map of the form2@.3 having the
asymptotic behavioi23.1) can be constructed by choosing an algebraically decaying
sequenceqs} behaving asymptotically like

1
On ~ s’ (23.6)

wheresis the intermittency exponent i28.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-laat,ish

1

IMnl ~ s (23.7)

As can be seen from28.5, the stability eigenvalues of periodic orbit families
approaching the marginal fixed point, such as tHefafily increase in turn only
algebraically with the cycle length.
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CHAPTER 23. INTERMITTENCY 392

It may now seem natural to construct an intermittent toy nmaperms of a
partition | M, = 1/n'*/S that is, a partition which follows23.7) exactly. Such
a choice leads to a dynamical zeta function which can beenritt terms of so-
called Jonquiére functions (or polylogarithms) whichsarhaturally also in the
context of the Farey mapl8.31), and the anomalous filision of sect24.3
We will, however, not go along this route here; instead, wk @vigage in a bit
of reverse engineering and construct a less obvious partithich will simplify
the algebra considerably later without loosing any of the features typical for
intermittent systems. We fix the intermittent toy map by #iyety the intervals
M in terms of Gamma functions according to

[remark 24.8]

I'h+m-1/s-1)

Mol =C [(n+m)

for n>2, (23.8)

wherem = [1/9] denotes the integer part of4andC is a normalization constant
fixed by the conditior); ", IMn| = g1 = &, that is,

(23.9)

Using Stirling’s formula for the Gamma function
I ~e?ZY°\Vor(1+1/122+..),

we verify that the intervals decay asymptotically lixé'*1/9 as required by the
condition @3.7).

Next, let us write down the dynamical zeta function of the tagp in terms
of its periodic orbits, that is

(@ =] (1 - ;n—r)')

p

One may be tempted to expand the dynamical zeta functiomrirstef the binary
symbolic dynamics of the map; we saw, however, in s&8t5 that such cycle
expansion converges extremely slowly. The shadowing nmestmebetween orbits
and pseudo-orbits fails for orbits of the form™wWith stabilities given by 23.5),
due to the marginal stability of the fixed poit It is therefore advantageous to
choose as the fundamental cycles the family of orbits wittectd or, equivalently,
switch from the finite (binary) alphabet to an infinite alpbgagiven by

10t = n.

Due to the piecewise-linear form of the map which maps imterd 1, exactly
onto M-1, all periodic orbits entering the left branch at least twace canceled
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CHAPTER 23. INTERMITTENCY 393

exactly by pseudo cycles, and the cycle expanded dynamatafunction depends
only on the fundamental series1D, 10Q,.. .:

0@ = [[[i-22)=
<@ 1;!,( ) Z|Alm y
- 1-(1-b)z- ci bzr(“m Ys=Dp (2310

~ I'(n+ m)

The fundamental terml@.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent [for> 1. We will see that this
behavior is due to a branch cut ofZlstarting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing tem(83.10. Note also
that we omitted the fixed poird in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta functiormore detail in
sect.23.2.4

23.2.2 Branch cuts

Starting from the dynamical zeta functioB3(10, we first have to worry about
finding an analytical continuation of the sum far> 1. We do, however, get this
part for free here due to the particular choice of intervabtés made in43.9).
The sum over ratios of Gamma functions #8(10 can be evaluated analytically
by using the following identities valid for/5 = a« > 0 (the famed binomial
theorem in disguise),

e « non-integer

N I'(n-a)
(1-2 Zr( a)F(n+l)Zn (23.11)
e « integer
1-2%log(l-2 = Zal(—l)”cnz“ (23.12)
n=1
+ ( 1)a+l ! Z (n a — 1)'
n=a+1
with
"Tln a—-k’

In order to simplify the notation, we restrict the interraiity parameter to the
range 1< 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
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CHAPTER 23. INTERMITTENCY 394

to arbitrarys > 0 using equations2@.11) and 3.129. The infinite sum inZ3.10
can now be evaluated with the help @3(11) or (23.12, that is,

Zr(n 1/9) {F(—l)[(l Ys—1+ 17| for 1<1/s<2;
r'n+1) Q-2log(1-2)+2z for s=1.

The normalization constan in (23.8) can be evaluated explicitly usin@3.9
and the dynamical zeta function can be given in closed forra.ottain for 1<
1/s< 2

1) =1- (1-b)z— 1/:‘ 11 Z((l AMS 1+ %z) (23.13)
and fors=1,
1-b
1//2=1-(1-b)z- am (1-2log(l-2 +2. (23.14)

It now becomes clear why the particular choice of intervadg made in the
last section is useful; by summing over the infinite familypefiodic orbits 01
explicitly, we have found the desired analytical contimuatfor the dynamical
zeta function forlz > 1. The function has a branch cut starting at the branch
pointz = 1 and running along the positive real axis. That means, thamjcal
zeta function takes on flierent values when approaching the positive real axis for
Rez> 1 from above and below. The dynamical zeta function for garers 0
takes on the form

a 1-b

1/4(2) =1- (1— b)Z— gs(l)l—F

- ((1-2"° - g2) (23.15)

for non-integerswith m=[1/s] and

a 1-b 1

1/5(2) = l—(l—b)Z— gm(l)mﬁ

((1-2™Mlog(1-2) - gm(2)) (23.16)

for 1/s = minteger andgs(2) are polynomials of ordem = [1/5] which can

be deduced from23.11) or (23.12. We thus find algebraic branch cuts for non
integer intermittency exponentgdand logarithmic branch cuts for/ 4 integer.
We will see in sect23.3that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamici& fenctions due
to intermittency. So, how do we calculate averages or eseaes of the dynamics
of the map from a dynamical zeta function with branch cuts?ake ‘a learning
by doing’ approach and calculate the escape from our toy wrag £ b.
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CHAPTER 23. INTERMITTENCY 395

Figure 23.5: The survival probability T,
calculated by contour integration; integrating
(23.17 inside the domain of convergend® <
1 (shaded area) of /&(2) in periodic orbit
representation yieldsl6.29. A deformation of

the contoury; (dashed line) to a larger cirche

gives contributions from the poles and zeros (x)
of 1/£(2) between the two circles. These are the
only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise,
given by the contouy,: running along the branch

cut (b). (@)

(b)
23.2.3 Escape rate

Our starting point for the calculation of the fraction of @uors aftern time steps,
is the integral representatiohq.19

1 q(d 1
I'h= o Sér Z (d—zlogg (z)) dz, (23.17)

where the contour encircles the origin in the clockwisediom. If the contour
lies inside the unit circléz = 1, we may expand the logarithmic derivative of
¢ Y(2) as a convergent sum over all periodic orbits. Integrals sumds can be
interchanged, the integrals can be solved term by term,letbtmula (6.2 is
recovered. For hyperbolic maps, cycle expansion methodghar techniques
may provide an analytic extension of the dynamical zetatfancbeyond the
leading zero; we may therefore deform the original contoto & larger circle
with radiusR which encircles both poles and zeros/ot(2), see figure23.5(a).
Residue calculus turns this into a sum over the zegaand polesz; of the dyn-
amical zeta function, that is

n= o 2 20 dz , |
R z Sk 22 27 - dz

where the last term gives a contribution from a large cingle We thus find
exponential decay df, dominated by the leading zero or pole/of(2).

Things change considerably in the intermittent case. Thetmo= 1 is a
branch cut singularity and there exists no Taylor seriesuesion ofZ ! around
z=1. Second, the path deformation that led u2®.18 requires more care, as it
must not cross the branch cut. When expanding the contoarde|} values, we
have to deform it along the branch Re &)1, Im (z) = 0 encircling the branch cut
in anti-clockwise direction, see figu&3.5(b). We will denote the detour around
the cut agyqy. We may write symbolically

zeros poles
b=2-2+P+¢
Yr TR Yeut
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CHAPTER 23. INTERMITTENCY 396

where the sums include only the zeros and the poles in theeaidased by the
contours. The asymptotics is controlled by the zero, poleubrclosest to the
origin.

Let us now go back to our intermittent toy map. The asymptot€ the
survival probability of the map is here governed by the balranf the integrand

diz logs~tin (23.17) at the branch poirt = 1. We restrict ourselves again to the
case 1< 1/s < 2 first and write the dynamical zeta functiaz3(13 in the form

12 =ag+a(l-2) +by(1-2Y5=G(1-2)

and

b-a _a 1-b
l1-a T 1-1/sl1-a

Settingu = 1 - z, we need to evaluate

1

d
— 1-u)"—logG(u)d 23.19
7w §_@-0 g loac(ay (2319)

whereygy: goes around the cut (i.e., the negativaxis). Expanding the integrand
& logG(u) = G'(u)/G(u) in powers ofu andu®s atu = 0, one obtains

a0 logG(u) = 2% + saou + O(u). (23.20)

The integrals along the cut may be evaluated using the gefoemaula

% 56 u*(1-u)™"du= Fﬁ?n;r‘z__ai) ~ = al+ -(1+ O(1/n)) (23.21)

Yeut

which can be obtained by deforming the contour back to a lsopra the point
u =1, now in positive (anti-clockwise) direction. The contantegral then picks
up the f—1)st term in the Taylor expansion of the functighatu = 1, cf. (23.11).
For the continuous time case the corresponding formula is

1 1 1
— Z2eldz= ) 23.22
27i Sécut z ['(—a) tetl ( )

Plugging £3.20 into (23.19 and using 23.21) we get the asymptotic result

by 1 1 1 a 1-b 1 1
o~z - _ — . 23.23
apsI'A-1/9nt/s s—1b-arl(l-1/s)nl/s ( )
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CHAPTER 23. INTERMITTENCY 397

Figure 23.6: The asymptotic escape from ar 10°
intermittent repeller is a power law. Normally it is
preceded by an exponential, which can be related
zeros close to the cut but beyond the branch poi ,,
7= 1’ as in flgur6235(b) 0 200 400 n 600 800 1000

Wikaas
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B Y L

e
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We see that, asymptotically, the escape from an internitegpeller is described

by power law decay rather than the exponential decay we andida with for
hyperbolic maps; a numerical simulation of the power-lagage from an intermittent
repeller is shown in figurg3.6

For general non-integer/% > 0, we write
1/£(2) = A(U) + ()Y*B(u) = G(u)

with u = 1 — zand A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansion&(of andB(u) are

b-a _a 1-b
—-a Cgs(D1-a

see £3.15. Expanding% log G(u) aroundu = 0, one again obtains leading order
contributions according t02@8.20Q and the general result follows immediately
using 3.2)), that is,

. a 1-b 1 1
" sg(l)b-ar(l-1/s)nl/s’

(23.24)

Applying the same arguments for integer intermittency egmis ¥s = m, one
obtains

a 1-bm!

oyl 4 =M
o~ (=1) sgn(l)b—anm’

(23.25)

So far, we have considered the survival probability for sehep, that is we
assumedh < b. The formulas 23.24) and ¢3.25 do obviously not apply for the
casea = b, that is, for the bounded map. The @bgentag = (b — a)/(1 — a)
in the series representation G{u) is zero, and the expansion of the logarithmic
derivative ofG(u) (23.20 is no longer valid. We get instead

(1+0Ws?h) s<1

(% + O(ul‘l/s)) s>1"

d
au logG(u) = {

ClkrcCl-
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CHAPTER 23. INTERMITTENCY 398

assuming non-integer/ &for convenience. One obtains for the survival probability.

- 1+0(ntYs) s<1
: 1/s+0o(nYs 1) s>1 -

For s > 1, this is what we expect. There is no escape, so the survighbpility

is equal to 1, which we get as an asymptotic result here. Thdtriors > 1 is
somewhat more worrying. It says thHat defined as sum over the instabilities of
the periodic orbits as in20.12 does not tend to unity for large However, the
cases > 1is in many senses anomalous. For instance, the invariasttgeannot
be normalized. It is therefore not reasonable to expectpiabdic orbit theories
will work without complications.

23.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructdaeiptevious section,
we had the nice property that interval lengths did exactiga@de with the inverse
of the stability of periodic orbits of the system, that is

Ml = 1/|A10™ .

There is thus no problem in replacing the survival probgblli, given by (L.2),
(20.2), that is the fraction of state spadd survivingn iterations of the map,

1o
o= > M.
"M 2 IMil

by a sum over periodic orbits of the forrh@.26. The only orbit to worry about is
the marginal fixed poind itself which we excluded from the zeta functid8(10).

For smooth intermittent maps, things are less clear andattidliat we had to
prune the marginal fixed point is a warning sign that inteesimates by periodic
orbit stabilities might go horribly wrong. The derivatioftbe survival probability
in terms of cycle stabilities in chapt2d did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittentaps. We therefore have
to carefully reconsider this derivation in order to showt fheriodic orbit formulas
are actually valid for intermittent systems in the first glac

We will for simplicity consider maps, which have a finite nuentof says
branches defined on intervadds and we assume that the map maps each interval
M onto M, that is f(Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see fi@3&).

The generating partition is composed of the domakis. The nth level
partition C™ = {M;} can be constructed iteratively. Hei's are wordsi =
$S ... S of lengthn, and the intervalg\t; are constructed recursively

Msj = 1M;), (23.26)
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CHAPTER 23. INTERMITTENCY 399

wheres j is the concatenation of lettarwith word j of lengthn; < n.

In what follows we will concentrate on the survival probékil,, postponing
other quantities of interest, such as averages, to latsidemtions. In establishing
the equivalence of the survival probability and the pedaatibit formula for the
escape rate for hyperbolic systems we have assumed thatajhésrexpanding,
with a minimal expansion ratgf’(x)] > Amin > 1. This enabled us to bound
the size of every survivor stripf; by (20.6), the stabilityA; of the periodic orbit
within the M;, and bound the survival probability by the periodic orbitrs{20.7).

The bound 20.6)

i<W_i|<Ci
N RN

relies on hyperbolicity, and is thus indeed violated foeimittent systems. The
problem is that now there is no lower bound on the expansite the minimal

expansion rate i&min = 1. The survivor stripMg» which includes the marginal
fixed point is thus completely overestimated byAlyn| = 1 which is constant for

all n. .
[exercise 17.7]

However, bounding survival probability strip by strip istrwehat is required
for establishing the bound®(.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average sizepfaisalong a periodic
orbit can be bounded close to the stability of the periodic orhitaib but the
interval My. The weaker bound applies to averaging over each prime gycle
separately

11y IMI 2

Ci— < —, 23.27
TApl T g £ IM T T (2327)

where the word represents a code of the periodic orpitand all its cyclic
permutations. It can be shown that one can find positive aott,, C, independent
of p. Summing over all periodic orbits leads then again2o. ().

To study averages of multiplicative weights we follow sdé&t.1and introduce
a state space observalaiE) and the integrated quantity

A'X) = > a(fk(x)).
0

>
=

=~
I

This leads us to introduce the generating functibb. {0

(AN,
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O

Figure 23.7: Markov graph corresponding to the
alphabet0<11;0, k> 1} OK‘@‘@ P00 > - -

where(.) denote some averaging over the distribution of initial pgimvhich we
choose to be uniform (rather than thg@riori unknown invariant density). Again,
all we have to show is, that constaitsg, C» exist, such that

A 1 1 n A
el 2N 2 [ A Wdx< 0,2 (23.28)
IApl  Np tep IM| Ma |Apl

is valid for all p. After performing the above average one gets

clrn(ﬂ)<i f AN dx < Coln(B), (23.29)
M Im
with
n egAp
@)=Y —. 23.30
B =275y (23.30)

and a dynamical zeta function can be derived. In the intéentitcase one can
expect that the bound8.28 holds using an averaging argument similar to the
one discussed in2@.27. This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natytzdlzét to use
is not {0, 1} but rather the infinite alphabg®*11,0; k > 1}. The symbol 0
occurs unaccompanied by any 1's only in femarginal fixed point which is
disconnected from the rest of the Markov graph see figar& ]
[chapter 11]
What happens if we remove a single prime cycle from a dyndméta func-
tion? In the hyperbolic case such a removal introduces a ipotee 1/ and
slows down the convergence of cycle expansions. The hieuiigerpretation
of such a pole is that for a subshift of finite type removal ofirrgle prime
cycle leads to unbalancing of cancellations within the ibfilof of shadowing
pairs. Nevertheless, removal of a single prime cycle is goeentially small
perturbation of the trace sums, and the asymptotics of $wraged trace formulas

is undfected. [chapter 21]

In the intermittent case, the fixed poi@itdoes not provide any shadowing ,
and a statement such as

A1,0k+1 ~ Al-OkAOa
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is meaningless. It seems therefore sensible to take ouatterf(1-tg) = 1—z
from the product representation of the dynamical zeta fandfL7.19, that is, to
consider a pruned dynamical zeta functigidider(2) defined by

1/{(2) = (1 - 21/{inter(2) -

We saw in the last sections, that the zeta functigfind(2) has all the nice
properties we know from the hyperbolic case, that is, we cahdicycle expansion
with - in the toy model case - vanishing curvature contriimoi and we can
calculate dynamical properties like escape after havirprstood, how to handle
the branch cut. But you might still be worried about leaving the extra factor
1-zall together. It turns out, that this is not only a matter afvenience, omitting
the marginal cycle is a dire necessity. The cycle weighf} = 1 overestimates
the corresponding interval length Mgn in the partition of the phase spadé by
an increasing amount thus leading to wrong results whemnledicg escape. By
leaving out thed cycle (and thus also th&ly contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determina7.3, given
in product form as

det (1- z£) =Dﬂ( |Ap|A”‘) :

m=0

for intermittent maps the marginal stable cycle has to béueed. It introduces
an (unphysical) essential singularityzat 1 due the presence of a factor{k)~
stemming from thé® cycle.

23.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piwe linearity

of the map led to exact cancellations of the curvature dmuminns leaving only
the fundamental terms. There are still infinitely many ahitcluded in the
fundamental term, but the cycle weights were chosen in sweayahat the zeta
function could be written in closed form. For a smooth intiétemt map this all

will not be the case in general; still, we will argue that werdnalready seen
almost all the fundamentally new features due to intermitge What remains are
technicalities - not necessarily easy to handle, but ngthery surprise any more.

In the following we will sketch, how to make cycle expansienhniques work
for general 1-dimensional maps with a single isolated nmaidfiixed point. To
keep the notation simple, we will consider two-branch majith & complete
binary symbolic dynamics as for example the Farey map, fi@ix&€ or the
repeller depicted in figurg3.2 We again assume that the behavior near the fixed
point is given by £3.1). This implies that the stability of a family of periodic
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Table 23.1: Infinite alphabet versus the original binary alphabet fer shortest periodic
orbit families. Repetitions of prime cycles (1 12,0101 = 01%,...) and their cyclic
repeats (116 101, 1110= 1101,...) are accounted for by cancelations and combination
factors in the cycle expansio&3.37).

oo — alphabet binary alphabet
n=1 n=2 n=3 n=4 n=>5
1-cycles n 1 10 100 1000 10000
2-cycles mn
In 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000

3n 1001 10010 100100 1001000 10010000

4n 10001 100010 1000100 10001000 100010000
3-cycles kmn

11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

orbits approaching the marginally stable orbit, as for gxenthe family 10, will
increase only algebraically, that is we find again for lamge

1 1
A nl+l/s ?

wheres denotes the intermittency exponent.

When considering zeta functions or trace formulas, we abaire to take
out the marginal orbiD; periodic orbit contributions of the forry; are now
unbalanced and we arrive at a cycle expansion in terms oft&lfirmany fundamental
terms as for our toy map. This corresponds to moving from auarly symbolic
dynamics to an infinite symbolic dynamics by making the idimattion

107 5 n 107110™ 5 i 107110™ 110t - nmk . .

see also tablg3.3 The topological length of the orbit is thus no longer defead

by the iterations of our two-branch map, but by the numbeiiroés$ the cycle

goes from the right to the left branch. Equivalently, one rdafine a new map,

for which all the iterations on the left branch are done in step. Such a map is

called aninduced magnd the topological length of orbits in the infinite alphabet

corresponds to the iterations of this induced map. .

[exercise 11.1]

For generic intermittent maps, curvature contributionshim cycle expanded

zeta function will not vanish exactly. The most natural waytganize the cycle

expansion is to collect orbits and pseudo orbits of the sapelagical length
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with respect to the infinite alphabet. Denoting cycle wesghtthe new alphabet
astym.. = tygr11gm1_, ONE Obtains

o= []-t)= 1—5109 (23.31)
p£0 n=1
= l_Zt” ZZ %(tmn—tmtn)
n=1 m=1n=1
- ZZZ %tkmn =tkmln + = tktmtn) ZZZZ )
k=1 m=1n=1 I=1 k=1 m=1 n=1

The first sum is the fundamental term, which we have already s the toy
model, £3.10. The curvature terms, in the expansion are noetfold infinite
sums where the prefactors take care of double counting wfepperiodic orbits.

Let us consider the fundamental term first. For generic mmitéent maps, we
can not expect to obtain an analytic expression for the tefsuim of the form

i@ =) h" (23.32)
n=0
with algebraically decreasing ceients

1
hn~@ with a >0

To evaluate the sum, we face the same problem as for our toy thegpower
series diverges for > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expecteda@fully subtracting
the asymptotic behavior with the help &3 11) or (23.12, one can in general
construct an analytic continuation 6§z) aroundz = 1 of the form

f@ ~ A@+(1-2"'B@ a¢N (23.33)
f@ ~ A@+1-2"tIn1-2 aeN,

whereA(z) andB(2) are functions analytic in a disc arourd= 1. We thus again
find that the zeta functior2@.31) has a branch cut along the real axis Re 4.
From here on we can switch to auto-pilot and derive algelea@ape, decay of
correlation and all the rest. We find in particular that thgngstotic behavior
derived in £3.29 and @3.25 is a general result, that is, the survival probability
is given asymptotically by

In~Coe (23.34)
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for all 1-dimensional maps of the forn23.1). We have to work a bit harder if
we want more detailed information like the prefac@rexponential precursors
given by zeros or poles of the dynamical zeta function ordiginder corrections.
This information is buried in the functiorn®(z) andB(2) or more generally in the
analytically continued zeta function. To get this analygantinuation, one may
follow either of the two diterent strategies which we will sketch next.

23.3.1 Resummation

One way to get information about the zeta function near ttendir cut is to
derive the leading cdkcients in the Taylor series of the functioA$z) and B(2)

in (23.33 atz = 1. This can be done in principle, if the déeientsh,, in sums
like (23.32 are known (as for our toy model). One then considers a reatimm
of the form

D ohiZd =Y a@-2+1-2"" ) bi-2), (23.35)
j=0 j=0 j=0
and the cofficientsa; andb; are obtained in terms of thg’s by expanding (t2)!

and (1- 2)/**~1 on the right hand side arourm= 0 using £3.11) and equating
the codficients.

In practical calculations one often has only a finite numbfecagfficients
hj, 0 < j < N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resuwation scheme for the
computation of the cdicientsa; andb; in (23.395. We replace the infinite sums
in (23.35 by finite sums of increasing degremsandn,, and require that

Na Np N
Z a(l-2 +(1-2"1 Z bi(l-2) = Z hZz + OZV*Y) . (23.36)
i=0 i=0 i=0

One proceeds again by expanding the right hand side arpun@, skipping all
powersZV+! and higher, and then equating @dgents. It is natural to require that
Ny + @ — 1 — ng| < 1, so that the maximal powers of the two sums48.89 are
adjacent. If one chooses + np + 2 = N + 1, then, for each cufblengthN, the
integersn, and n, are uniquely determined from a linear system of equations.
The price we pay is that the so obtained fio&ents depend on the cufoN.
One can now study convergence of the fio@ntsa;, and b, with respect to
increasing values o, or various quantities derived froay andb;. Note that
the leading caofficientsag andbg determine the prefact@ in (23.39), cf. (23.23.
The resummed expression can also be used to compute zeside, @n outside the
radius of convergence of the cycle expans}oh ij.

The scheme outlined in this section tacitly assumes thapeesentation of
form (23.33 holds in a disc of radius 1 arourzd= 1. Convergence is improved
further if additional information about the asymptoticssams like £3.32) is used
to improve the ansat28.35.
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23.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytictoaration of sums
of the form @3.32 without explicitly relying on an ansat28.35. The main
idea is to rewrite the sun28.32 as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuatioeach integral by
contour deformation. In order to do so, we need to knowrtltependence of
the codficientsh, = h(n) explicitly for all n. If the codficients are not known
analytically, one may proceed by approximating the lardgpehavior in the form

h(n) =n™(Cy +Cont +..)), n#0,

and determine the constar@snumerically from periodic orbit data. By using the
Poisson resummation identity

[o0) [ee)

Z S(x—n) = Z exp(2rimy) (23.37)

Nn=—o0 M=—00

we may write the sum a28.32

f(2) = %h(0)+ i fo mdxé”imxh(x)zx. (23.38)

The continuous variabl& corresponds to the discrete summation indeand it

is convenient to writez = r exp(o) from now on. The integrals are still not
convergent for > 0, but an analytical continuation can be found by considgerin
the contour integral, where the contour goes out along the aes, makes a
quarter circle to either the positive or negative imaginaxis and goes back to
zero. By letting the radius of the circle go to infinity, we essgally rotate the
line of integration from the real onto the imaginary axis.r BFmm = 0 term in
(23.38, we transformx — ix and the integral takes on the form

foo dx h(x) r* e =i foo dx h(ix) r*e™.
0 0

The integrand is now exponentially decreasing for all0 ando- # 0 or 2r. The
last condition reminds us again of the existence of a brantlatcRe z> 1. By
the same technique, we find the analytic continuation fathallother integrals in
(23.38. The real axis is then rotated accordingxte~ signm)ix where signin)
refers to the sign afn.

f dx e2MXh(x) e = +i f dx h(ix) X g @im=),
0 0
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Changing summation and integration, we can carry out theaarim| explicitly
and one finally obtains the compact expression

fo = %h(0)+ifowdxr(ix)rixe‘x‘f (23.39)

e @ 2rx . .
+ i f X [h(ix)r™*e™ — h(-ix)re*].
0 —

The transformation from the original sum to the two integiial (23.39 is exact
for r < 1, and provides an analytic continuation far 0. The expressior2@.39

is especially useful for anfigcient numerical calculations of a dynamical zeta
function for|z > 1, which is essential when searching for its zeros and poles.

23.3.3 Curvature contributions

So far, we have discussed only the fundamental tgifh, t, in (23.31), and
showed how to deal with such power series with algebraickbreasing cdécients.
The fundamental term determines the main structure of ttaefaaction in terms
of the leading order branch cut. Corrections to both thesaral poles of the
dynamical zeta function as well as the leading and sublgadider terms in
expansions like43.33 are contained in the curvature terms #8(31). The first
curvature correction is the 2-cycle sum

7D 2t tolo).

m=1n=1

with algebraically decaying cdécients which again diverge fdg > 1. The
analytically continued curvature terms have as usual lbrants along the positive
real z axis. Our ability to calculate the higher order curvatument® depends on
how much we know about the cycle weigltts. The form of the cycle stability
(23.5 suggests that,, decrease asymptotically as

1

- (23.40)

tmn

for 2-cycles, and in general forcycles as

1
(M. my)+t/s’

tmlmz...rm ~

If we happen to know the cycle weightg m,..m, analytically, we may proceed as
in sect.23.3.2 transform the multiple sums into multiple integrals antate the
integration contours.

We have reached the edge of what has been accomplished s@fanputing
and what is worth the dynamical zeta functions from periaatiait data. In the
next section, we describe a probabilistic method appleablintermittent maps
which does not rely on periodic orbits.
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23.4 BER zeta functions

,
J So far we have focused on 1-d models as the simplest settindpich
to investigate dynamical implications of marginal fixedmiei We now take an
altogether dierent track and describe how probabilistic methods may heared
in order to write down approximate dynamical zeta functidms intermittent
systems.

We will discuss the method in a very general setting, for a flowrbitrary
dimension. The key idea is to introduce a surface of seckosuch that all
trajectories traversing this section will have spent sdme both near the marginal
stable fixed point anth the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timer(x), or the time of flight of a trajectory starting in
x to the next return to the surface of secti®n The period of a periodic orbip
intersecting theP sectionn, times is

np-1

Tp= ) 7(f0xp)),

k=0

wheref(x) is the Poincaré map, ang € # is a cycle point. The dynamical zeta
function (L7.19

AoebPp-sTp np-1
1/{(z sp) = l_[ (1— T) . Ap= Z a(f*(xp)). (23.41)
p k=0

[chapter 15]
associated with the observalalg) captures the dynamics of both the flawdthe
Poincaré map. The dynamical zeta function for the flow isinletd as 1/(s,8) =
1/£(1, s, B8), and the dynamical zeta function for the discrete time i@ map is

1/¢(z B) = 1/£(z 0, p).

Our basic assumption will bprobabilistic. ~ We assume that the chaotic
interludes render the consecutireturn (or recurrence times T(x;), T(X+1) and
observables(x;), a(xi,1) effectively uncorrelated. Consider the quangt{o-n-sT0o.n
averaged over the surface of sectfBn With the above probabilistic assumption
the largen behavior is

n
(PAON-STOON)y ( fp eBa(X)_STp(X)dX) ,

wherep(X) is the invariant density of the Poincaré map. This typeeifdvior is
equivalent to there being only one zaxgs, 8) = [ €#-5Mp(x)dxof 1/¢(z s,8)
in the z-B plane. In the language of Ruelle-Pollicott resonancesrtigans that
there is an infinite gap to the first resonance. This in turrligspghat 1/(z s, 8)

may be written as [remark 15.1]
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¢z s5) = 2 f 20509 5 ) x| (23.42)
P

where we have neglected a possible analytic and non-zefacpre The dynam-
ical zeta function of the flow is now

1¢(sp) = oL sp) = 1 f 2 p(x)e SV dx . (23.43)
P

Normally, the best one can hope for is a finite gap to the lepd#sonance of
the Poincaré map. with the above dynamical zeta functidy approximatively
valid. As itis derived from an approximation due to BaladikBhann, and Ruelle,
we shall refer to it as the BER zeta functiofyger(s, 8) in what follows.

A central role is played by the probability distribution eturn times

Y(r) = Lé(‘r —1(X))p(X)dx (23.44)

[exercise 24.6]
The BER zeta function & = 0 is then given in terms of the Laplace transform of
this distribution

1/Zaer(S) = 1 fo y(r)e .

[exercise 23.5]

Example 23.1 Return times for the Bernoulli map. For the Bernoulli shift map
(21.6)

X f(X) =2xmod 1,

one easily derives the distribution of return times

The BER zeta function becomes (by the discrete Laplace transform (16.9))

= = 2
Yiper@ = 1-) ' =1-) =
=1 n=1
— 1- _ 1 _
= 155 = {H@IA-7A0), (23.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point O
pruned.
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Example 23.2 Return times for the model of sect. 23.2.1.  For the toy model of
sect. 23.2.1 one gets Y1 = M|, and yn = IMi|(1 - b)/(1 - a), forn > 2, leading to a
BER zeta function

1/¢peR(@) = 1= 2Mil = ) IMAI2,
n=2
which again coincides with the exact result, (23.10).

It may seem surprising that the BER approximation produgastaesults in
the two examples above. The reason for this peculiarityastibth these systems
are piecewise linear and have complete Markov partitions.lofig as the map
is piecewise linear and complete, and the probabilistic@pmation is exactly
fulfilled, the cycle expansion curvature terms vanish. TEd&Bzeta function and
the fundamental part of a cycle expansion discussed in $8ct.1are indeed
intricately related, but not identical in general. In pautar, note that the BER zeta
function obeys the flow conservation sum rub®.(l1) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cyclesgde the analytic
structure of dynamical zeta functions and the rules for tansng cycle expansions.
The marginal orbits have to be omitted, and the cycle expassnow need to
include families of infinitely many longer and longer unsgadbits which accumulate
toward the marginally stable cycles. Correlations for sumh-hyperbolic systems
may decay algebraically with the decay rates controlledheyliranch cuts of
dynamical zeta functions. Compared to pure hyperbolicesyst the physical
consequences are drastic: exponential decays are refigcsidw power-law
decays, and transport properties, such as tfiesiibn may become anomalous.

Commentary

Remark 23.1 What about the evolution operator formalism? The main virtue of evolution
operators was their semigroup propert$ (25. This was natural for hyperbolic systems
where instabilities grow exponentially, and evolution @ters capture this behavior due
to their multiplicative nature. Whether the evolution agter formalism is a good way

to capture the slow, power law instabilities of intermittelynamics is less clear. The
approach taken here leads us to a formulation in terntlyoémical zeta functionsther
than spectral determinants, circumventing evolution afoes altogether. It is not known

if the spectral determinants formulation would yield anpéiits when applied to intermittent
chaos. Some results on spectral determinants and intentytican be found in2]. A
useful mathematical technique to deal with isolated maitjirstable fixed point is that

of inducing that is, replacing the intermittent map by a completelydrpplic map with
infinite alphabet and redefining the discrete time; we hawsl ukis method implicitly

by changing from a finite to an infinite alphabet. We refer tts.r§3, 20] for detailed
discussions of this technique, as well as applicationsdariensional maps.
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Remark 23.2 Intermittency. Intermittency was discovered by Manneville and Poméau [
in their study of the Lorentz system. They demonstratedthatighborhood of parameter
valuer; = 16607 the mean duration of the periodic motion scales ag{)'/2. In ref. [5]

they explained this phenomenon in terms of a 1-dimensiorg (such as43.1)) near
tangent bifurcation, and classified possible types of migency.

Piecewise linear models like the one considered here haae $tedied by Gaspard
and Wang §]. The escape problem has here been treated followingdefgsummations
following ref. [8]. The proof of the bound?3.27) can be found in P. Dahlgvist's notes on
ChaosBook.org/PDahlgvistEscape.ps.gz.

Farey map 18.3) has been studied widely in the context of intermittent dyitas,
for example in refs. 16, 17, 3, 18, 19, 14, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey mdB(3]) and the related Gauss shift map4(49
have been studied by Mayer{]. He relates the continued fraction transformation to the
Riemann zeta function, and constructs a Hilbert space oohthie evolution operator is
self-adjoint, and its eigenvalues are exponentially spajeest as for the dynamical zeta
functions P4] for “Axiom A” hyperbolic systems.

Remark 23.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller's monogrépis [a highly recommended
introduction to these methods.

Remark 23.4 Probabilistic methods, BER zeta functions.  Probabilistic description
of intermittent chaos was introduced by Geisal and Thomé&le The BER approximation
studied here is inspired by Baladi, Eckmann and Ruél#, jwith further developments
inrefs. [L3, 15].
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Exercises

23.1.

23.2.

23.3.

Integral representation of Jonquiere functions.
Check the integral representation

B z 00 é_-oz—l
Iz.a) = @fo de S

Note how the denominator is connected to Bose-
Einstein distribution. Computé(x + ie) — J(x — i€) for
arealx > 1.

for a > 0.(23.46)

Power law correction to a power law. Expand
(23.2Q further and derive the leading power law
correction to 23.23.

Power-law fall off.
of orbits do not always behave in a geometric fashion.
Consider the maph

23.6. Accelerated difusion.

In cycle expansions the stabilitiesog 7.

Consider a majh, such that

h = f, but now running branches are turner into standing
branches and vice versa, so thaR B, 4 are standing
while 0 leads to both positive and negative jumps. Build
the corresponding dynamical zeta function and show
that

t for > 2
tint  for @ =2
o2t ~{ 7 for ae(L,2)
t2/Int for a=1
t? for a €(0,1)
Anomalous diffusion (hyperbolic maps).

Anomalous difusive properties are associated to
deviations from linearity of the variance of the phase
variable we are looking at: this means the thudiion

23.4.

23.5.

. constant{5.13 either vanishes or diverges. We briefly
08 illustrate in this exercise how the local local properties
' of a map are crucial to account for anomalous behavior
0.6 even for hyperbolic systems.
Consider a class of piecewise linear maps, relevant to
0.4 the problem of the onset offfiiision, defined by
02 AX for x € [0,x]
a—Acylx— X' for xe|x], %
02 04 06 08 1 » 2
f(x) = { 1-A'(x=x}) for xe x5, x| (23
This map behaves ds— xasx — 0. Define a symbolic 1-a+Aeylx=x7 for xe X%
dynamics for this map by assigning 0 to the points that 1+A(x-1) for xe|x3, 1]

land on the interval [01/2) and 1 to the points that land
on (1/2,1]. Show that the stability of orbits that spend
a long time on the 0 side goesas In particular, show
that

2
A go.01~N
——

n

Power law fall-off of stability eigenvalues in the
stadium billiard **. From the cycle expansions point
of view, the most important consequence of the shear in
J" for long sequences of rotation bounagsin (8.13

is that theA,, grows only as a power law in number of
bounces:

ApocnZ. (23.47)
Check.
Probabilistic zeta function for maps. Derive the

probabilistic zeta function for a map with recurrence
distributiony,.

exerlnter - 6jun2003.tex

whereA = (1/3- €)1, A = (1/3 - 2e¥7), A, =
e a=1+e X" = 1/3,x) = X" =7, % = x*+€7,
and the usual symmetry propertiesl(1]) are satisfied.

Thus this class of maps is characterized by two escaping
windows (through which the ffusion process may
take place) of size &/7: the exponenty mimicks the
order of the maximum for a continuous map, while
piecewise linearity, besides making curvatures vanish
and leading to finite cycle expansions, prevents the
appearance of stable cycles. The symbolic dynamics
is easily described once we consider a sequence of
parameter valuegm}, whereen, = A~ (™D: we then
partition the unit interval though the sequence of points
0,X{, X", %5, %, X,%;,1 and label the corresponding
sub—intervals 1s,, S, 2, dp, da, 3: Symbolic dynamics is
described by an unrestricted grammar over the following
set of symbols

{1,2,3, 8- 1',ds- 39

#=ab ik=mm+1m
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This leads to the following dynamical zeta function: limit: as a matter of fact, from23.49 we get the
oy 5 e , \-18symptotic behavioD ~ €', which shows how the
ggl(z, a) = 1- N 4 cosh(y)g,}q/y‘lF ( - —) onset of dffusion is governed by the order of the map at
its maximum.
from which, by 4.8 we get
1y-1x _m n Remark 23.5 Onset of diffusion for continuous maps.
D = 2en’ A1 -1/A) (23.4d)he zoology of behavior for continuous maps at the
1-2 -4 b (vl + viery) onset of difusion is described in refs1p, 13, 25]: our

L , . . ) treatment for piecewise linear maps was introduced in
The main interest in this expression is that it allows ref. [26]

exploring howD vanishes in thee — 0 (m > o)
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