Chapter 23

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlgvist, G. Tanner and P. Cvitanovic)

N THE THEORY Of chaotic dynamics developed so far we assumed that thet@rol
operators have discrete spedz@ z, 2, . . .} given by the zeros of

1Y@ = ()] [@-z2).
k

The assumption was based on the tacit premise that the dgmé&®@iverywhere
exponentially unstable. Real life is nothing like that tstspaces are generically
infinitely interwoven patterns of stable and unstable birav The stable (in

the case of Hamiltonian flows, integrable) orbits do not camitate with the
ergodic components of the phase space, and can be treatéabbigal methods.
In general, one is able to treat the dynamics near stablésabiwell as chaotic
components of the phase space dynamics well within a peridit approach.
Problems occur at the borderline between chaos and reguiamics where
marginally stable orbits and manifolds presenfidilties and still unresolved
challenges.

We shall use the simplest example of such behavior - integnay in 1-
dimensional maps - to illustratéfects of marginal stability. The main message
will be that spectra of evolution operators are no longecrei®, dynamical zeta
functions exhibit branch cuts of the form

Y@ =()+0-27C-).

and correlations decay no longer exponentially, but as ptaves.
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Figure 23.1: Typical phase space for an area-
preserving map with mixed phase space dynamic:
here the standard map fer= 1.2 .
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23.1 Intermittency everywhere

In many fluid dynamics experiments one observes transifionsregular behaviors
to behaviors where long time intervals of regular behavilanginar phases”) are
interrupted by fast irregular bursts. The closer the patamis to the onset of
such bursts, the longer are the intervals of regular behaVioe distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calledtermittency and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginallylststiate space regions.
Complete hyperbolicity assumed ifi§.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamicsrinoth potentials,
billiards with smooth walls, the infinite horizon Lorentzsg&tc.) one encounters
mixed state spaces with islands of stability coexistinghwiyperbolic regions,
see figure23.1  Wherever stable islands are interspersed with chaotioneg
trajectories which come close to the stable islands can'ghagd’ for arbitrarily
long times. These intervals of regular motion are inteedgby irregular bursts
as the trajectory is re-injected into the chaotic part ofghase space. How the
trajectories are precisely ‘glued’ to the marginally séakegion is often hard to
describe. What coarsely looks like a border of an island wvitler magnification
dissolve into infinities of island chains of decreasing sibeoken tori and bifurcating
orbits, as illustrated in figur3.1

Intermittency is due to the existence of fixed points and eyaf marginal
stability (5.5), or (in studies of the onset of intermittency) to the proiymof a
nearly marginal complex or unstable orbits. In Hamiltorsgstems intermittency
goes hand in hand with the existence of (marginally stabl&MKori. In more
general settings, the existence of marginal or nearly matgirbits is due to
incomplete intersections of stable and unstable manifolds Smale horseshoe
type dynamics (see figure3.2). Following the stretching and folding of the
invariant manifolds in time one will inevitably find stateagge points at which
the stable and unstable manifolds are almost or exactlyet#iaj to each other,
implying non-exponential separation of nearby points atesspace or, in other
words, marginal stability. Under small parameter perttidos such neighborhoods
undergo tangent bifurcations - a stablestable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pinitich we shall
encounter in chapterl, and the intermittency discussed here are two sides of the
same coin. [section 11.5]
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Figure 23.2: A complete binary repeller with a \ | , ,
marginal fixed point. X
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Figure 23.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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How to deal with the full complexity of a typical Hamiltonissystem with
mixed phase space is a venyfutiult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considerather simple
examples. Here we shall restrict our considerations tariedsional maps which
in the neighborhood of a single marginally stable fixed pait=0 take the form

X f(X) = x+ O(xS), (23.1)

and are expanding everywhere else. Such a map may allowdapeslike the
map shown in figur€3.2 or the dynamics may be bounded, like the Farey map
(18.31) 163,164c153,154

[ x/(1-X xe[0,1/2]
X f(x)—{ 1-x)/x xe[1/2,1]

introduced in sectl8.5

Figure23.3compares a trajectory of the tent mam 6 side by side with a
trajectory of the Farey map. In a stark contrast to the umifpichaotic trajectory
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of the tent map, the Farey map trajectory alternates integntly between slow
regular motion close to the marginally stable fixed point] ehaotic bursts.

The presence of marginal stability has striking dynamioabequences: correlation
decay may exhibit long range power law asymptotic behavidrdifusion processes
can assume anomalous character. Escape from a repelles fufrth figure23.2
may be algebraic rather than exponential. In long time e&gilans of the dynamics
intermittency manifests itself by enhancement of natur@dsare in the proximity
of marginally stable cycles.

The questions we shall address here are: how does margahdlitgtaffect
zeta functions or spectral determinants? And, can we degulwer law decays of
correlations from cycle expansions?

In example21.5we saw that marginal stability violates one of the condgion
which ensure that the spectral determinant is an entiretitmc Already the
simple fact that the cycle weight/[L — A[,| in the trace (6.3 or the spectral
determinant17.3) diverges for marginal orbits witi\ ;| = 1 tells us that we have
to treat these orbits with care.

In the following we will incorporate marginal stability datb into cycle-expansions
in a systematic manner. To get to know théfidulties lying ahead, we will
start in sect23.2with a piecewise linear map, with the asymptotie8.(). We
will construct a dynamical zeta function in the usual wayheiit worrying too
much about its justification and show that it has a branch ingutarity. We
will calculate the rate of escape from our piecewise lineaprand find that it
is characterized by decay, rather than exponential decpgwer law. We will
show that dynamical zeta functions in the presence of malrgtability can still
be written in terms of periodic orbits, exactly as in chapteb and 20, with
one exception: the marginally stable orbits have to be eitigliexcluded. This
innocent looking step has far reaching consequences;dégous to change the
symbolic dynamics from a finite to an infinite alphabet, ania reorganization
of the order of summations in cycle expansions, s&&2.4

Branch cuts are typical also for smooth intermittent maytk igblated marginally
stable fixed points and cycles. In se28.3 we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maifs éal to intermittency.
The knowledge of the type of singularity one encounters lesals to develop the
efficient resummation method presented in s2gt3.1

Finally, in sect23.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and providgeable information
about more complicated systems, such as billiards.

23.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertfiinteresting dynamics,
itis also at the root of many sorrows such as slow convergehcgcle expansions.
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Figure 23.4: A piecewise linear intermittent map 02
of (23.2 type: more specifically, the map piecewise
linear over intervalsZ3.8) of the toy example studied 0
below,a=.5,b=.6,s=10.

In order to get to know the kind of problems which arise wherlging dynamic-
al zeta functions in the presence of marginal stability witeensider an artfully
concocted piecewise linear model first. From there we wilenon to the more
general case of smooth intermittant maps, s&&t3

23.2.1 Atoy map

The Bernoulli shift map Z1.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now caost a likewise
piecewise linear model, an intermittent map stripped dawitstbare essentials.

Consider a map — f(x) on the unit intervalM = [0, 1] with two monotone
branches

fo(x) for xe My =1[0,4a]
f("):{ fi0) for xe My = [b.1] - (23.2)

The two branches are assumed complete, thig{ielo) = f1(M1) = M. The map
allows escape it < b and is bounded i& = b (see figure23.2and figure23.4).
We take the right branch to be expanding and linear:

fa(¥) = ﬁ(x 1.

Next, we will construct the left branch in a way, which willl@k us to
model the intermittent behavio28.1) near the origin. We chose a monotonically
decreasing sequence of poimgsin [0, a] with g1 = aandg, — 0 asn — co.
This sequence defines a partition of the left inteiVg] into an infinite number of
connected intervald,, n > 2 with

Ma=1th,Gr1]  and Mo ={_ | Mn. (23.3)
n=2

The mapfy(x) is now specified by the following requirements
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e fp(x) is continuous.
o fp(x) is linear on the interval$, for n > 2.
o fo(0h) = Gn-1, that isM, = 3™ ([a 1]) .
This fixes the map for any given sequericg}. The last condition ensures the

existence of a simple Markov partition. The slopes of théower linear segments
are

, _ fo@)-fo(w) _  1-
o) = ﬁ = lei/gl for x e M, (23.4)
fo® = 5 = for xe My

with |[My| = gn-1 — gn for n > 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code™jflays a key role
for intermittent maps of the forn2@.1). An orbit 10" enters the intervald; —
Mni1 = My — ... — My successively and the family approaches the marginal
stable fixed point ak = 0 forn — co. The stability of a cycle 10for n > 1 is
given by the chain rule4(50),

1 1-a
Ao = T5(Xns1) fo(Xn) . .. To(x2) f1 (x1) = Mol
N

e (23.5)
"

with X € M;.

The properties of the maj28.2) are completely determined by the sequence
{dn}. By choosingg, = 27", for example, we recover the uniformly hyperbolic
Bernoulli shift map 21.6). An intermittent map of the form2@3.3 having the
asymptotic behavior23.1) can be constructed by choosing an algebraically decaying
sequencéd,} behaving asymptotically like

1
On ~ s (23.6)

wheresis the intermittency exponent i28.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-laat,igh

1

(Ml ~ s

(23.7)

As can be seen fron28.5), the stability eigenvalues of periodic orbit families
approaching the marginal fixed point, such as thefafily increase in turn only
algebraically with the cycle length.
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It may now seem natural to construct an intermittent toy nmferms of a
partition M| = 1/n**1/S, that is, a partition which follows23.7) exactly. Such
a choice leads to a dynamical zeta function which can beenritt terms of so-
called Jonquiére functions (or polylogarithms) whichsarhaturally also in the
context of the Farey mapl8.31), and the anomalous ftlision of sect24.3
We will, however, not go along this route here; instead, wi avigage in a bit
of reverse engineering and construct a less obvious partithich will simplify
the algebra considerably later without loosing any of the features typical for
intermittent systems. We fix the intermittent toy map by #yeq the intervals
M, in terms of Gamma functions according to

[remark 24.8]

I'h+m-1/s-1)

Ml =C r(n+m)

for n>2, (23.8)

wherem = [1/9] denotes the integer part of4andC is a normalization constant
fixed by the conditior) ), M| = a1 = &, that is,

0 -1
_ I'(n-1/9)
=2 2, Taen | 239)

n=m+1

Using Stirling’s formula for the Gamma function
I ~eZY2\2nr (1+1/122+ .. ),

we verify that the intervals decay asymptotically liké*/9, as required by the
condition €3.7).

Next, let us write down the dynamical zeta function of the nogp in terms
of its periodic orbits, that is

Y@ =] (1— If—pl)
p

One may be tempted to expand the dynamical zeta functiomrirstef the binary
symbolic dynamics of the map; we saw, however, in s&8t5 that such cycle
expansion converges extremely slowly. The shadowing nmésimebetween orbits
and pseudo-orbits fails for orbits of the form™With stabilities given by Z3.5),
due to the marginal stability of the fixed poidt It is therefore advantageous to
choose as the fundamental cycles the family of orbits wittectd¥! or, equivalently,
switch from the finite (binary) alphabet to an infinite alpatbiven by

10" > n.

Due to the piecewise-linear form of the map which maps irstieni,, exactly
onto Mp_1, all periodic orbits entering the left branch at least twace canceled
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exactly by pseudo cycles, and the cycle expanded dynangtafunction depends
only on the fundamental series1D, 10Q.. .:

1/¢(2)

s - 2
n(l_M)Zl_zV\w 1|

p£0

S [(n+m-1/s—1)
1- (1 b)Z Cl— 2y Wzn

(23.10)

The fundamental termlg.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent [ir> 1. We will see that this
behavior is due to a branch cut of{lstarting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing tém(83.10. Note also
that we omitted the fixed poird in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta functiomore detail in
sect.23.2.4

23.2.2 Branch cuts

Starting from the dynamical zeta functio@3(10, we first have to worry about
finding an analytical continuation of the sum fgr> 1. We do, however, get this
part for free here due to the particular choice of intervabtes made in43.9.
The sum over ratios of Gamma functions 28(10 can be evaluated analytically
by using the following identities valid for/b = « > 0 (the famed binomial
theorem in disguise),

e a non-integer

@ _ I‘(n (1’)
(1-z Z s 1)2” (23.11)
e «integer
1-2%log(1-2 = Za:(—l)"cnz” (23.12)

+ ( l)rr+la| Z (n @ - 1)'

n=a+1

with

In order to simplify the notation, we restrict the interraitty parameter to the
range 1< 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
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to arbitrarys > 0 using equation2@.11) and @3.12. The infinite sum in23.10
can now be evaluated with the help @8(11) or (23.19, that is,

Z rh-1s , { (-H[A-2Ys-1+17 for 1<1/s<2;
I'(n+1) (1-2log(l-2+2z for s=1.

The normalization constam in (23.8) can be evaluated explicitly using@g.9
and the dynamical zeta function can be given in closed forra.otain for 1<
1/s<2

1-b s 1
1@ =1-1-b)z- Tsi1s a((l Vs —1+ gz). (23.13)
and fors=1,
1-b
1/((2=1-(1-bz- am (1-2log(1-2) + 2. (23.14)

It now becomes clear why the particular choice of intervady made in the
last section is useful; by summing over the infinite familypefiodic orbits 01
explicitly, we have found the desired analytical contimmatfor the dynamical
zeta function forlzl > 1. The function has a branch cut starting at the branch
pointz = 1 and running along the positive real axis. That means, thamycal
zeta function takes onfilerent values when approaching the positive real axis for
Rez> 1 from above and below. The dynamical zeta function for ganer 0
takes on the form

U@ =1-Q-Dz- o (-9 - a@) (@319

for non-integerswith m = [1/s] and

a 1-b 1

V2@ = 1-(-bjz- T o

(1-2"log(1-2) - gm(?)) (23.16)

for 1/s = minteger andgs(2) are polynomials of ordem = [1/s] which can

be deduced from23.17) or (23.12. We thus find algebraic branch cuts for non
integer intermittency exponentg<dand logarithmic branch cuts for/4 integer.
We will see in sect23.3that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamici fienctions due
to intermittency. So, how do we calculate averages or esedpe of the dynamics
of the map from a dynamical zeta function with branch cuts?taike ‘a learning
by doing’ approach and calculate the escape from our toy wreg £ b.
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Figure 23.5: The survival probability 'y
calculated by contour integration; integrating
(23.17) inside the domain of convergends <
1 (shaded area) of /&(z) in periodic orbit
representation yieldsl6.26§. A deformation of

the contoury; (dashed line) to a larger circheg

gives contributions from the poles and zeros (x)
of 1/{(z) between the two circles. These are the
only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise,
given by the contouy,, running along the branch

cut (b). (@)

23.2.3 Escape rate

Our starting point for the calculation of the fraction ofguors afterntime steps,
is the integral representatiofd.19

Ip= % 515( z" (diz Iog(l(z))dz, (23.17)
where the contour encircles the origin in the clockwisediom. If the contour
lies inside the unit circléz = 1, we may expand the logarithmic derivative of
"Y(2) as a convergent sum over all periodic orbits. Integrals surds can be
interchanged, the integrals can be solved term by term fentbtmula (6.26 is
recovered. For hyperbolic maps, cycle expansion methodgher techniques
may provide an analytic extension of the dynamical zetatfancbeyond the
leading zero; we may therefore deform the original contoto & larger circle
with radiusR which encircles both poles and zeros/ot(2), see figure23.5(a).
Residue calculus turns this into a sum over the zegaand polesz of the dyn-
amical zeta function, that is

zeros ¢ P0|93
Inh= Z 7 —+— dzz —Iogg‘l (23.18)
Z.|<R \Z¢f|<R ﬂ

where the last term gives a contribution from a large cingle We thus find
exponential decay df,, dominated by the leading zero or pole/of(z).

Things change considerably in the intermittent case. Thetmo= 1 is a
branch cut singularity and there exists no Taylor seriesiesion ofZ = around
z=1. Second, the path deformation that led u2®.19 requires more care, as it
must not cross the branch cut. When expanding the contoarde|¥| values, we
have to deform it along the branch Re &)L, Im (z) = 0 encircling the branch cut
in anti-clockwise direction, see figug3.5(b). We will denote the detour around
the cut agycyt. We may write symbolically

zeros poles
375066
e R Yeut
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where the sums include only the zeros and the poles in theea@ased by the
contours. The asymptotics is controlled by the zero, poleubrclosest to the
origin.

Let us now go back to our intermittent toy map. The asympgott the
survival probability of the map is here governed by the barenf the integrand
dﬁzlog ¢t in (23.17) at the branch point = 1. We restrict ourselves again to the
case 1< 1/s < 2 first and write the dynamical zeta functia?3(13 in the form

102 =a0+a(1-2) +bo(1-2Y5=G(1-2)

and

b—
=T bo

~a 1-b
T 1-1/s1-a

o))

Q

Settingu = 1 - z, we need to evaluate

1

d
— -_ _n_
5> Sécm(l u) " log G(u)du (23.19)

whereyc,: goes around the cut (i.e., the negativaxis). Expanding the integrand
8 Jog G(u) = G’(u)/G(u) in powers ofu andu®/* atu = 0, one obtains

4 _a 100 gen
au logG(u) = % + saou + O(u). (23.20)

The integrals along the cut may be evaluated using the gefoenaula

1 vy T-—a-1) 1
2 P UA-WTdu= TRy T

Yeut

(1+0@1/n) (23.21)

which can be obtained by deforming the contour back to a loopral the point
u = 1, now in positive (anti-clockwise) direction. The contantegral then picks
up the (-1)st term in the Taylor expansion of the functighatu = 1, cf. (23.11).
For the continuous time case the corresponding formula is

1
2ni

2edz= r 1

= e (23.22)

Yeut

Plugging €3.20 into (23.19 and using 23.21) we get the asymptotic result

bl 1 1 al-b 1 1
asT(1-1/9n¥s  s—1b-al(1-1/9nvs’ (23.23)
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Figure 23.6: The asymptotic escape from ar
intermittent repeller is a power law. Normally it is
preceded by an exponential, which can be related
zeros close to the cut but beyond the branch poi ;-

z=1, as in figure23.5(b). g 200 400 600 800 1000

We see that, asymptotically, the escape from an interntitegreller is described

by power law decay rather than the exponential decay we anéida with for
hyperbolic maps; a numerical simulation of the power-lavage from an intermittent
repeller is shown in figur@3.6

For general non-integer/& > 0, we write
1/¢(@ = AW + (W*°B(u) = G(U)

with u = 1 — zand A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansion&(of andB(u) are

_b-a by = a 1-b
=T Tg)1-a

see £3.15. ExpandingﬁI log G(u) aroundu = 0, one again obtains leading order
contributions according t02@3.20 and the general result follows immediately
using @3.21), that is,

Tn~ sg(l)b—al(1-1/s)n/s’ (23.24)

Applying the same arguments for integer intermittency egmis s = m, one
obtains

a 1-bm

o~ (1) sgn(l)b—anm”

(23.25)

So far, we have considered the survival probability for eeliep, that is we
assumedh < b. The formulas 23.24 and £3.25 do obviously not apply for the
casea = b, that is, for the bounded map. The €ogentay = (b —a)/(1 - a)
in the series representation @{u) is zero, and the expansion of the logarithmic
derivative ofG(u) (23.20 is no longer valid. We get instead

1 1/s-1
S ioge() = { (1o )3 s<1
u G(§+O(u %) s>1
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assuming non-integer/ &for convenience. One obtains for the survival probability.

I~ 1+0(n1s) s<1
n 1/s+0O(nYs 1) s>1 -

For s > 1, this is what we expect. There is no escape, so the survighhpility

is equal to 1, which we get as an asymptotic result here. Thdtriors > 1 is
somewhat more worrying. It says thgt defined as sum over the instabilities of
the periodic orbits as in20.12 does not tend to unity for large However, the
cases > 1is in many senses anomalous. For instance, the invariasttgeannot
be normalized. It is therefore not reasonable to expectpddbdic orbit theories
will work without complications.

23.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructelaeiptevious section,
we had the nice property that interval lengths did exactlp@de with the inverse
of the stability of periodic orbits of the system, that is

Ml = 1/|Az0l™ ™.

There is thus no problem in replacing the survival probsblii, given by (L.2),
(20.2), that is the fraction of state spadd survivingn iterations of the map,

1 O
Tn=—— > IMI.
"M 2 IMi]

by a sum over periodic orbits of the forrh.2§. The only orbit to worry about is
the marginal fixed poind itself which we excluded from the zeta functicB(10.

For smooth intermittent maps, things are less clear andatttelfat we had to
prune the marginal fixed point is a warning sign that inteestimates by periodic
orbit stabilities might go horribly wrong. The derivatiofitbe survival probability
in terms of cycle stabilities in chaptgd did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittentyps. We therefore have
to carefully reconsider this derivation in order to showt fheriodic orbit formulas
are actually valid for intermittent systems in the first jglac

We will for simplicity consider maps, which have a finite nuentof says
branches defined on intervalds and we assume that the map maps each interval
Ms onto M, that is f(Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see fig#&).

The generating partition is composed of the domals. The nth level

partition c™ = {M;} can be constructed iteratively. Hers are wordsi =
$S ... S of lengthn, and the intervals\i; are constructed recursively

Msj = M), (23.26)
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wheres jis the concatenation of lettsrwith word j of lengthn; < n.

In what follows we will concentrate on the survival probéil’,, postponing
other quantities of interest, such as averages, to latasiderations. In establishing
the equivalence of the survival probability and the pedaatibit formula for the
escape rate for hyperbolic systems we have assumed thataghésrexpanding,
with a minimal expansion ratgf’(X)] > Amin > 1. This enabled us to bound
the size of every survivor stripf; by (20.6), the stabilityA; of the periodic orbit
within the M;, and bound the survival probability by the periodic orbits{20.7).

The bound 20.6)

1 il 1
YA T TM T TEA

relies on hyperbolicity, and is thus indeed violated foemmtittent systems. The
problem is that now there is no lower bound on the expansite the minimal

expansion rate idmin = 1. The survivor stripMo» which includes the marginal
fixed point is thus completely overestimated byAly| = 1 which is constant for

all n. )
[exercise 17.7]

However, bounding survival probability strip by strip istrwhat is required
for establishing the bound(.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average sizenfatgalong a periodic
orbit can be bounded close to the stability of the periodic orhitdib but the
interval Mo. The weaker bound applies to averaging over each prime gycle
separately

1 1 IMi| 1
C—<—§—<C—, 23.27
AG T £ TM TP IA @320

where the wordi represents a code of the periodic orpitand all its cyclic
permutations. It can be shown that one can find positive aott;, C, independent
of p. Summing over all periodic orbits leads then again2®.7).

To study averages of multiplicative weights we follow sé@ét.1and introduce
a state space observalag) and the integrated quantity

n-1

A'(x) = > alf ().

=0
This leads us to introduce the generating functitb. {0

(P A0,
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o

Figure 23.7: Markov graph corresponding to the
alphabet0“1;0, k> 1} OAQ‘Q D0 >

where(.) denote some averaging over the distribution of initial pgimvhich we
choose to be uniform (rather than thgriori unknown invariant density). Again,
all we have to show is, that constaxts, C, exist, such that

M1 1 . A
o & L[ er0gx< (23.28)
Ry LM g Al

is valid for all p. After performing the above average one gets

Ciln(B) < = f AN gx < CoIn(B), (23.29)
IM| I m
with
0, eBho
I'n(B) = ‘A i (23.30)

and a dynamical zeta function can be derived. In the intéentitcase one can
expect that the bound8.29 holds using an averaging argument similar to the
one discussed in2@3.27. This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natpitahiadt to use
is not {0,1} but rather the infinite alphabg®~11,0; k > 1}. The symbol 0
occurs unaccompanied by any 1's only in thenarginal fixed point which is
disconnected from the rest of the Markov graph see figaré

What happens if we remove a single prime cycle from a dyndméta func-
tion? In the hyperbolic case such a removal introduces a ipotee 1/¢ and
slows down the convergence of cycle expansions. The hieunigéerpretation
of such a pole is that for a subshift of finite type removal ofirrgle prime
cycle leads to unbalancing of cancellations within the itfiof of shadowing
pairs. Nevertheless, removal of a single prime cycle is goeentially small
perturbation of the trace sums, and the asymptotics of gexaged trace formulas
is undfected.

[chapter 21]

In the intermittent case, the fixed poidtdoes not provide any shadowing ,
and a statement such as

Aq.ger & Ao,
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is meaningless. It seems therefore sensible to take ouaitherf(1-tp) = 1 -z
from the product representation of the dynamical zeta fandfl7.19, that is, to
consider a pruned dynamical zeta functigdier(2) defined by

1/£(2) = (1 - 21/ dinter () -

We saw in the last sections, that the zeta functigtindi(2) has all the nice
properties we know from the hyperbolic case, that is, we eaihficycle expansion
with - in the toy model case - vanishing curvature contritmgi and we can
calculate dynamical properties like escape after havirtgrstood, how to handle
the branch cut. But you might still be worried about leaving the extra factor
1-zall together. It turns out, that this is not only a matter af\eenience, omitting
the marginal0 cycle is a dire necessity. The cycle weighj} = 1 overestimates
the corresponding interval length Mo in the partition of the phase spadéd by
an increasing amount thus leading to wrong results whenledicg escape. By
leaving out thed cycle (and thus also th&{y contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determina7.3), given
in product form as

det (1-z£) = E[ ﬁ( \AplA”‘) '

m=0

for intermittent maps the marginal stable cycle has to béuebedl. It introduces
an (unphysical) essential singularityzat 1 due the presence of a factor{%)~
stemming from thé cycle.

23.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The pietee linearity

of the map led to exact cancellations of the curvature dmmions leaving only
the fundamental terms. There are still infinitely many abitcluded in the
fundamental term, but the cycle weights were chosen in swehyathat the zeta
function could be written in closed form. For a smooth intiét@mt map this all

will not be the case in general; still, we will argue that wevdnalready seen
almost all the fundamentally new features due to interméye What remains are
technicalities - not necessarily easy to handle, but ngthary surprise any more.

In the following we will sketch, how to make cycle expansienhniques work
for general 1-dimensional maps with a single isolated nmaitdixed point. To
keep the notation simple, we will consider two-branch mayjith & complete
binary symbolic dynamics as for example the Farey map, fiQ&& or the
repeller depicted in figur23.2 We again assume that the behavior near the fixed
point is given by £3.1). This implies that the stability of a family of periodic
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Table 23.1: Infinite alphabet versus the original binary alphabet fer shortest periodic
orbit families. Repetitions of prime cycles (14 12,0101 = 012,...) and their cyclic
repeats (116 101, 1110= 1101 ...) are accounted for by cancelations and combination
factors in the cycle expansio8g.31).

oo — alphabet binary alphabet
n=1 n=2 n=3 n=4 n=>5
I-cycles n 1 10 100 1000 10000
2-cycles mn
1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000

3n 1001 10010 100100 1001000 10010000

4n 10001 100010 1000100 10001000 100010000
3-cycles kmn

1in 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

orbits approaching the marginally stable orbit, as for exanthe family 10, will
increase only algebraically, that is we find again for lamge

1 1
A nbrls”

wheres denotes the intermittency exponent.

When considering zeta functions or trace formulas, we apaire to take
out the marginal orbiD; periodic orbit contributions of the forryn; are now
unbalanced and we arrive at a cycle expansion in terms oftelfirmany fundamental
terms as for our toy map. This corresponds to moving from @uarly symbolic
dynamics to an infinite symbolic dynamics by making the idiattion

10"t 5 n; 100110 5 nmp 100110™ 1104 S nmk . ..

see also tabl@3.3 The topological length of the orbit is thus no longer detesd

by the iterations of our two-branch map, but by the numbeiiroés$ the cycle
goes from the right to the left branch. Equivalently, one rdefine a new map,
for which all the iterations on the left branch are done in step. Such a map is
called aninduced magnd the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map.

[exercise 11.1]

For generic intermittent maps, curvature contributionthim cycle expanded
zeta function will not vanish exactly. The most natural waytganize the cycle
expansion is to collect orbits and pseudo orbits of the sapeldgical length
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with respect to the infinite alphabet. Denoting cycle wesghtthe new alphabet
astym. = tygp-179m1_, ONE Obtains

™
AN
I
—
=
|
iR
=}
=
i
-
I
Ngk
(o]
®

(23.31)

p#0 n=1
= 1- Ztn - ZZ %(tmn—tmtn)
n=1 m=1n=1
- Z Z Z(%tkmn— %tkmtn + étktmtn) - Z Z Z Z e
k=1 m=1n=1 =1 k=1 m=1n=1

The first sum is the fundamental term, which we have alreaéy $e the toy
model, 3.10. The curvature terms, in the expansion are noefold infinite
sums where the prefactors take care of double counting wieppieriodic orbits.

Let us consider the fundamental term first. For generic iinitéent maps, we
can not expect to obtain an analytic expression for the tefsum of the form

f@) = Z hnZ". (23.32)
n=0
with algebraically decreasing ddeients
hy ~ n—la with >0

To evaluate the sum, we face the same problem as for our toy thegpower
series diverges far > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expecteda@fully subtracting
the asymptotic behavior with the help &f3.17) or (23.19, one can in general
construct an analytic continuation 6z) aroundz = 1 of the form

f@ ~ A@+1-2"1B@ a¢N (23.33)
f@ ~ A@+(1-2"'In(l-2 «eN,

whereA(2) and B(2) are functions analytic in a disc aroumd= 1. We thus again
find that the zeta functior2@.31) has a branch cut along the real axis Re 4.
From here on we can switch to auto-pilot and derive algelza@ape, decay of
correlation and all the rest. We find in particular that thgngstotic behavior
derived in 3.24 and @3.29 is a general result, that is, the survival probability
is given asymptotically by

1

In~Ce (23.34)
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for all 1-dimensional maps of the forn23.1). We have to work a bit harder if
we want more detailed information like the prefac@rexponential precursors
given by zeros or poles of the dynamical zeta function or éigitder corrections.
This information is buried in the functior&(z) andB(2) or more generally in the
analytically continued zeta function. To get this analy@ntinuation, one may
follow either of the two diferent strategies which we will sketch next.

23.3.1 Resummation

One way to get information about the zeta function near tlaadir cut is to
derive the leading cdicients in the Taylor series of the functioA$z) and B(2)
in (23.33 atz = 1. This can be done in principle, if the déeientsh, in sums
like (23.32 are known (as for our toy model). One then considers a reqatiom
of the form

.
2 h7 =
j=0

-t

T
o

a(l-2 + (172)"’1ibj(1— 2, (23.35)
=0

and the cogiicientsa; andb; are obtained in terms of thg's by expanding (22)
and (1- 21+~ on the right hand side arourm= 0 using @3.11) and equating
the codficients.

In practical calculations one often has only a finite humifecaeficients
hj, 0 < j < N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resation scheme for the
computation of the cdBcientsa; andb; in (23.39. We replace the infinite sums
in (23.39 by finite sums of increasing degreesandn,, and require that

Na Ny N
Dla-2' +(1-2"1 ) b1-2 = > hZ + 0" . (23.36)
i=0 i=0 i=0

One proceeds again by expanding the right hand side ampen@, skipping all
powersz¥*1 and higher, and then equating éients. It is natural to require that
[np + @ — 1 — ng| < 1, so that the maximal powers of the two sumsa8.86 are
adjacent. If one chooses + n, + 2 = N + 1, then, for each cufblengthN, the

integersn, and n, are uniquely determined from a linear system of equations.

The price we pay is that the so obtained fieeents depend on the cufoN.
One can now study convergence of the ficeents a;, and bj, with respect to
increasing values of, or various quantities derived froay andb;. Note that
the leading cofficientsag andbg determine the prefact@ in (23.39), cf. (23.23.
The resummed expression can also be used to compute zaids, @noutside the
radius of convergence of the cycle expansE)hjzi.

The scheme outlined in this section tacitly assumes thapesentation of
form (23.33 holds in a disc of radius 1 arourm= 1. Convergence is improved
further if additional information about the asymptoticsafms like £3.32) is used
to improve the ansat28.35.
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23.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytictooration of sums
of the form 3.3 without explicitly relying on an ansat28.35. The main
idea is to rewrite the sun28.32 as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuatiogach integral by
contour deformation. In order to do so, we need to knowrtlidependence of
the codficientsh, = h(n) explicitly for all n. If the codficients are not known
analytically, one may proceed by approximating the largehavior in the form

h(n) =n(Cy+Cont+..), n#0,

and determine the constai@snumerically from periodic orbit data. By using the
Poisson resummation identity

00

Z S(x—n) = i exp(2nimx), (23.37)

n=—co

we may write the sum a28.39
£2) = 2h(0) + > f dx &1MXn(x)Z". (23.38)
2 Ebo JO

The continuous variabla corresponds to the discrete summation indeand it

is convenient to writez = rexp(o) from now on. The integrals are still not
convergent for > 0, but an analytical continuation can be found by considerin
the contour integral, where the contour goes out along theaeis, makes a
quarter circle to either the positive or negative imaginaxis and goes back to
zero. By letting the radius of the circle go to infinity, we es8ally rotate the
line of integration from the real onto the imaginary axis.r BFem = 0 term in
(23.38, we transformx — ix and the integral takes on the form

fw dxh(X) r* e =i fm dx hix) rixe™.
0 0

The integrand is now exponentially decreasing for all0 ando # 0 or 2r. The
last condition reminds us again of the existence of a brantlatcRe z> 1. By
the same technique, we find the analytic continuation fathallother integrals in
(23.39. The real axis is then rotated accordingxte~ sign(m)ix where signifn)
refers to the sign ofn.

f dx eZIMXp(x) pXgxe = J_rif dx H(zix) r=*ex@im=o)
0 o

inter - 12sep2003.tex



CHAPTER 23. INTERMITTENCY 406

Changing summation and integration, we can carry out theasarjm| explicitly
and one finally obtains the compact expression

@ = 3h0)+i fo X i) e -
: ifmdxl;ezzﬂx[h(ix)rixe_w—h(—ix)r‘ixe""L
0 _

The transformation from the original sum to the two integiial (23.39 is exact
forr < 1, and provides an analytic continuation fas 0. The expressior2@.39

is especially useful for anficient numerical calculations of a dynamical zeta
function for|z > 1, which is essential when searching for its zeros and poles.

23.3.3 Curvature contributions

So far, we have discussed only the fundamental &b, t, in (23.31), and
showed how to deal with such power series with algebraicbreasing cagcients.
The fundamental term determines the main structure of tteefaaction in terms
of the leading order branch cut. Corrections to both thesearal poles of the
dynamical zeta function as well as the leading and sublgadider terms in
expansions like43.33 are contained in the curvature terms 28(31). The first
curvature correction is the 2-cycle sum

1
E(tmn - tmtn) 5

i1
e

I
=N

n:

with algebraically decaying cdiécients which again diverge fdg > 1. The
analytically continued curvature terms have as usual braants along the positive
real z axis. Our ability to calculate the higher order curvatumente depends on
how much we know about the cycle weigltts. The form of the cycle stability
(23.5 suggests thdt,, decrease asymptotically as

1

- T (23.40)

tmn

for 2-cycles, and in general forcycles as

1

N Gy

If we happen to know the cycle weights m,..m, analytically, we may proceed as
in sect.23.3.2 transform the multiple sums into multiple integrals anthte the
integration contours.

We have reached the edge of what has been accomplished s@éamputing
and what is worth the dynamical zeta functions from periadtut data. In the
next section, we describe a probabilistic method appleablintermittent maps
which does not rely on periodic orbits.
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23.4 BER zeta functions

§
J So far we have focused on 1-d models as the simplest settindich
to investigate dynamical implications of marginal fixedmiei We now take an
altogether dferent track and describe how probabilistic methods may hetasred
in order to write down approximate dynamical zeta functiéos intermittent
systems.

We will discuss the method in a very general setting, for a flowrbitrary
dimension. The key idea is to introduce a surface of seckosuch that all
trajectories traversing this section will have spent sdme both near the marginal
stable fixed point anih the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timer(x), or the time of flight of a trajectory starting in
x to the next return to the surface of sect®n The period of a periodic orbip
intersecting the” sectionn, times is

np-1

To= > (f*(xp)),

k=0

wheref(x) is the Poincaré map, ang, € # is a cycle point. The dynamical zeta
function (17.19

AoeBAp=sTp np=l
s =[](1-Z5) . Aem XAt (@aan
p k=0

[chapter 15]
associated with the observalalg) captures the dynamics of both the flawdthe
Poincaré map. The dynamical zeta function for the flow isinietd as 12(s,8) =
1/£(1, s, B), and the dynamical zeta function for the discrete time €axi@ map is
1/{(z B) = 1/¢{(z 0, B).

Our basic assumption will bprobabilistic ~ We assume that the chaotic
interludes render the consecutixeturn (or recurrence times Tx), T(X+1) and
observables(x;), a(x.1) effectively uncorrelated. Consider the quangtf*o-0-sT(xo.n)
averaged over the surface of sectidn With the above probabilistic assumption
the largen behavior is

<eBA(xo,n)—sT(xo,n)){P - (f eBa(X)fsrp(X)dx)n ’
P

wherep(x) is the invariant density of the Poincaré map. This typeedfdvior is
equivalent to there being only one zexs, 8) = [ €30-70) p(x)dxof 1/¢(z s.8)
in the zB plane. In the language of Ruelle-Pollicott resonancesrttéans that
there is an infinite gap to the first resonance. This in turrliesghat ¥(z s, B)

may be written as
[remark 15.1]
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Y(@sp) =2- f 09~ ()l | (23.42)
P

where we have neglected a possible analytic and non-zefacpse The dynam-
ical zeta function of the flow is now

¢(sp) = /(L sp) =1- fp 209 p(x)e W dlx (23.43)

Normally, the best one can hope for is a finite gap to the leadésonance of
the Poincaré map. with the above dynamical zeta functidy approximatively
valid. As itis derived from an approximation due to BaladikBhann, and Ruelle,
we shall refer to it as the BER zeta functiof¢ger(s, £) in what follows.

A central role is played by the probability distribution eturn times

U(t) = f §(r — 7(X))p(X)dx (23.44)
P
[exercise 24.6]
The BER zeta function gt = 0 is then given in terms of the Laplace transform of
this distribution
1Udser(® = 1= [ (e
[exercise 23.5]

Example 23.1 Return times for the Bernoulli map. For the Bernoulli shift map
(21.6)

X+ f(X) =2xmod 1,

one easily derives the distribution of return times

1

The BER zeta function becomes (by the discrete Laplace transform (16.9))

S ©
Yiper@ = 1= un?'=1-) =
n=1 n=1
_ o 1-z _
S 1727 T (@/(L-2/Ao). (23.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point O
pruned.
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Example 23.2 Return times for the model of sect. ~ 23.2.1.  For the toy model of
sect. 23.2.1 one gets y1 = |Myl, and yin = IMyl(1 - b)/(1 - a), forn > 2, leading to a
BER zeta function

1¢per(@ = 1-2Mil - ) IMilZ,

n=2

which again coincides with the exact result, (23.10).

It may seem surprising that the BER approximation produgesteesults in
the two examples above. The reason for this peculiarityashbth these systems
are piecewise linear and have complete Markov partitions.lofg as the map
is piecewise linear and complete, and the probabilistic@pmation is exactly
fulfilled, the cycle expansion curvature terms vanish. TEREzeta function and
the fundamental part of a cycle expansion discussed in $8ct.1are indeed
intricately related, but not identical in general. In pautar, note that the BER zeta
function obeys the flow conservation sum ruk®(L1) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cyclesgdmthe analytic
structure of dynamical zeta functions and the rules for tansng cycle expansions.
The marginal orbits have to be omitted, and the cycle expasshow need to
include families of infinitely many longer and longer undéadrbits which accumulate
toward the marginally stable cycles. Correlations for sumh-hyperbolic systems
may decay algebraically with the decay rates controlledheyliranch cuts of
dynamical zeta functions. Compared to pure hyperbolicesyst the physical
consequences are drastic: exponential decays are refgcsidw power-law
decays, and transport properties, such as tiiesibn may become anomalous.

Commentary

Remark 23.1 What about the evolution operator formalism? The main virtue of evolution
operators was their semigroup propert$ (5. This was natural for hyperbolic systems
where instabilities grow exponentially, and evolution @ters capture this behavior due
to their multiplicative nature. Whether the evolution cgier formalism is a good way

to capture the slow, power law instabilities of intermittelynamics is less clear. The
approach taken here leads us to a formulation in terndyémical zeta functionsather
than spectral determinants, circumventing evolution afmes altogether. It is not known

if the spectral determinants formulation would yield anpéfts when applied to intermittent
chaos. Some results on spectral determinants and intenojtican be found in?]. A
useful mathematical technique to deal with isolated maidbjirstable fixed point is that

of inducing that is, replacing the intermittent map by a completelydnpplic map with
infinite alphabet and redefining the discrete time; we haws ukis method implicitly

by changing from a finite to an infinite alphabet. We refer tts.r§3, 20] for detailed
discussions of this technique, as well as applicationsdariensional maps.
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Remark 23.2 Intermittency. Intermittency was discovered by Manneville and Poméhu [
in their study of the Lorentz system. They demonstratedithatighborhood of parameter
valuer. = 16607 the mean duration of the periodic motion scales as {)“/2. In ref. [5]

they explained this phenomenon in terms of a 1-dimensiorg (such as43.1) near
tangent bifurcation, and classified possible types of initency.

Piecewise linear models like the one considered here haae $tadied by Gaspard
and Wang §]. The escape problem has here been treated followingfefesummations
following ref. [8]. The proof of the bound43.27 can be found in P. Dahlqvist's notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map 18.3) has been studied widely in the context of intermittent dgitas,
for example in refs. 6, 17, 3, 18, 19, 14, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey mdB(3]) and the related Gauss shift map4(46
have been studied by Mayet{]. He relates the continued fraction transformation to the
Riemann zeta function, and constructs a Hilbert space onhwthe evolution operator is
self-adjoint, and its eigenvalues are exponentially spagest as for the dynamical zeta
functions p4] for “Axiom A" hyperbolic systems.

Remark 23.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller's monogrébis [a highly recommended
introduction to these methods.

Remark 23.4 Probabilistic methods, BER zeta functions.  Probabilistic description
of intermittent chaos was introduced by Geisal and Thorm&e The BER approximation
studied here is inspired by Baladi, Eckmann and Ruélg, fwith further developments
inrefs. [13, 15].
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Exercises

23.1. Integral representation of Jonquiere functions. 23.6. Accelerated difusion. ~ Consider a map, such th:

23.2.

23.3.

23.4.

23.5.

Check the integral representation

z 00 é_«u—l
Iza) = @fo dS— for a>0.(23.46)

Note how the denominator is connected to Bose-
Einstein distribution. Computd(x + ie) — J(x — i€) for
arealx> 1.

Power law correction to a power law. Expand

(23.20 further and derive the leading power law
correction to 23.23.

Power-law fall off.  In cycle expansions the stabilitiesy3 7.

of orbits do not always behave in a geometric fashion.
Consider the mafp

1
0.8
0.6
0.4

0.2

02 04 06 08 1

This map behaves ds— xasx — 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [01/2) and 1 to the points that land
on (1/2,1]. Show that the stability of orbits that spend
along time on the 0 side goesw@é In particular, show
that

2
Aogoo1~N
—_——

n

Power law fall-off of stability eigenvalues in the
stadium billiard **.  From the cycle expansions point
of view, the most important consequence of the shear in
J" for long sequences of rotation bounagsin (8.13

is that theA, grows only as a power law in number of
bounces:

AnocnZ. (23.47)
Check.
Probabilistic zeta function for maps. Derive the

probabilistic zeta function for a map with recurrence
distributiony,.

exerlnter - 6jun2003.tex

h = f, butnow running branches are turner into star
branches and vice versa, so thaR,B, 4 are standir
while 0 leads to both positive and negative jumps.
the corresponding dynamical zeta function and -
that

t for @ >2
tint for =2
At ~{ 5 for ae(1,2)
t2/Int for a=1
t? for @ € (0,1)

Anomalous diffusion (hyperbolic maps
Anomalous dffusive properties are associatec
deviations from linearity of the variance of the pf
variable we are looking at: this means the theudiiol
constant{5.13 either vanishes or diverges. We bri
illustrate in this exercise how the local local prope
of a map are crucial to account for anomalous beh
even for hyperbolic systems.

Consider a class of piecewise linear maps, relev:
the problem of the onset offilision, defined by

AX for xe O,xﬂ
a—Ae, X=X for xe|xj, x5
fe(®) = ¢ 1-A(x-x3) for xe|x5,x;
l-a+Agx=x7| for xe|x;, %
1+A(x-1) for xe xg,l]

whereA = (1/3 - 7)1, A’ = (1/3 - 2€'7), A, =
eV a=1+e xt = 1/3,x{ = xt—ellr, X5 = X +ellr
and the usual symmetry properti€si(1]) are satisfiet

Thus this class of maps is characterized by two esc
windows (through which the ffusion process m
take place) of size &/”: the exponeny mimicks th
order of the maximum for a continuous map, w
piecewise linearity, besides making curvatures v
and leading to finite cycle expansions, prevent:
appearance of stable cycles. The symbolic dyn:
is easily described once we consider a sequer
parameter valuege,}, wheree, = A~™D: we the
partition the unit interval though the sequence of p
0,x7, X", X5, X, X', %, 1 and label the correspond
sub—intervals 1s,, S, 2, dp, da, 3: Symbolic dynamics
described by an unrestricted grammar over the follo
set of symbols

(1,2,3,5-1,d:-39  #=ab ik=mm-


http://ChaosBook.org/PDahlqvistEscape.ps.gz
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This leads to the following dynamical zeta function: limit: as a matter of fact, from23.49 we get the
27 7 il s _,asymptotic b(_aha\_/ioD ~ €Y7, which shows how the
LMza) = 1- N 4cosh(z)e,¥7’lﬁ (1 - _) onset of difusion is governed by the order of the map at
its maximum.
from which, by 4.8 we get
y-1 5 -m o Remark 23.5 Onset of diffusion for continuous maps.
_ 2em” A1 1/A) (23I49'}5he zoology of behavior for continuous maps at the
1-2-1 - 45#%1(%}//\) + m) onset of difusion is described in refs1p, 13, 25]: our

L . . L ) treatment for piecewise linear maps was introduced in
The main interest in this expression is that it allows ref. [2].

exploring howD vanishes in thee = 0 (M — o)
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