
Chapter 36

Helium atom

“But,” Bohr protested, “nobody will believe me unless I
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

S  much has been said about 1-dimensional maps, game of pinballand
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so far

in solving real physical problems, we have good news for you.We will show
in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,
and cycle expansions are essential tools to understand and calculate classical and
quantum mechanical properties of nothing less than the helium, a dreaded three-
body Coulomb problem.

This sounds almost like one step too much at a time; we all knowhow rich and
complicated the dynamics of the three-body problem is – can we really jump from
three static disks directly to three charged particles moving under the influence of
their mutually attracting or repelling forces? It turns out, we can, but we have to
do it with care. The full problem is indeed not accessible in all its detail, but we
are able to analyze a somewhat simpler subsystem – collinearhelium. This system
plays an important role in the classical dynamics of the fullthree-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to asemiclassical
treatment of collinear helium lies in understanding why we are allowed to do so.
We will not worry about this too much in the beginning; after all, 80 years and
many failed attempts separate Heisenberg, Bohr and others in the 1920ties from
the insights we have today on the role chaos plays for helium and its quantum
spectrum. We have introduced collinear helium and learned how to integrate
its trajectories in sect.6.3. Here we will find periodic orbits and determine the
relevant eigenvalues of the fundamental matrix in sect.36.1. We will explain in
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Figure 36.1: Coordinates for the helium three body
problem in the plane.
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Figure 36.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.
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sect.36.5why a quantization of the collinear dynamics in helium will enable us
to find parts of the full helium spectrum; we then set up the semiclassical spectral
determinant and evaluate its cycle expansion. A full quantum justification of this
treatment of helium is briefly discussed in sect.36.5.1.

36.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect.6.3: the collinear helium system
consists of two electrons of massme and charge−e moving on a line with respect
to a fixed positively charged nucleus of charge+2e, as in figure36.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2

1

2
+

p2
2

2
−

2
r1
−

2
r2
+

1
r1 + r2

= −1 . (36.1)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem treated in sect.36.5.

There is another classical quantity important for a semiclassical treatment of
quantum mechanics, and which will also feature prominentlyin the discussion in
the next section; this is the classical action (32.15) which scales with energy as

S (E) =
∮

dq(E) · p(E) =
e2m1/2

e

(−E)1/2
S , (36.2)

with S being the action obtained from (36.1) for E = −1, and coordinatesq =
(r1, r2), p = (p1, p2). For the Hamiltonian (36.1), the period of a cycle and its
action are related by (32.17), Tp =

1
2S p.

After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
, (36.3)
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Figure 36.3: (a) A typical trajectory in ther1 –
r2 plane; the trajectory enters here along ther1

axis and escapes to infinity along ther2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for smallr1 near the nucleus.
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and reparametrization of time bydτ = dt/r1r2, the equations of motion take form
(6.19)

[exercise 36.1]
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Ṗ2 = 2Q2
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Individual electron–nucleus collisions atr1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations (6.19)
are singular only at the triple collisionR12 = 0, i.e., when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when calculating
trajectories for collinear helium; they are, however, lessintuitive as a visualization
of the three-body dynamics. We will therefore refer to the old coordinatesr1, r2

when discussing the dynamics and the periodic orbits.

36.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium.The electrons
are attracted by the nucleus. During an electron–nucleus collision momentum is
transferred between the inner and outer electron. The innerelectron has a maximal
screening effect on the charge of the nucleus, diminishing the attractiveforce on
the outer electron. This electron – electron interaction isnegligible if the outer
electron is far from the nucleus at a collision and the overall dynamics is regular
like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach the nucleus nearly simultaneously.
The momentum transfer between the electrons depends now sensitively on how
the particles approach the origin. Intuitively, these nearly missed triple collisions
render the dynamics chaotic. A typical trajectory is plotted in figure 36.3 (a)
where we usedr1 andr2 as the relevant axis. The dynamics can also be visualized
in a Poincaré surface of section, see figure36.3(b). We plot here the coordinate

helium - 27dec2004.tex

CHAPTER 36. HELIUM ATOM 594

Figure 36.4: The cycle 011 in the fundamental
domain r1 ≥ r2 (full line) and in the full domain
(dashed line).
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and momentum of the outer electron whenever the inner particle hits the nucleus,
i.e., r1 or r2 = 0. As the unstructured gray region of the Poincaré section for
smallr1 illustrates, the dynamics is chaotic whenever the outer electron is close to
the origin during a collision. Conversely, regular motionsdominate whenever the
outer electron is far from the nucleus. As one of the electrons escapes for almost
any starting condition, the system is unbounded: one electron (say electron 1)
can escape, with an arbitrary amount of kinetic energy takenby the fugative.
The remaining electron is trapped in a Kepler ellipse with total energy in the
range [−1,−∞]. There is no energy barrier which would separate the bound from
the unbound regions of the phase space. From general kinematic arguments one
deduces that the outer electron will not return whenp1 > 0, r2 ≤ 2 at p2 = 0, the
turning point of the inner electron. Only if the two electrons approach the nucleus
almost symmetrically along the liner1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick one of
the particles out completely. In other words, the electron escape originates from
the near triple collisions.

The collinear helium dynamics has some important properties which we now
list.

36.2.1 Reflection symmetry

The Hamiltonian (6.10) is invariant with respect to electron–electron exchange;
this symmetry corresponds to the mirror symmetry of the potential along the line
r1 = r2, figure36.4. As a consequence, we can restrict ourselves to the dynamics
in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonalr1 = r2 as
a hard wall reflection. The dynamics in the full domain can then be reconstructed
by unfolding the trajectory through back-reflections. As explained in chapter19,
the dynamics in the fundamental domain is the key to the factorization of spectral
determinants, to be implemented here in (36.15). Note also the similarity between
the fundamental domain of the collinear potential figure36.4, and the fundamental
domain figure?? (b) in the 3–disk system, a simpler problem with the same binary
symbolic dynamics.

in depth:

sect. 19.6, p. 331
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36.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear
helium fully chaotic. We have no proof of the assertion, but the analysis of the
symbolic dynamics lends further credence to the claim.

The potential in (36.1) forms a ridge along the liner1 = r2. One can show
that a trajectory passing the ridge must go through at least one two-body collision
r1 = 0 or r2 = 0 before coming back to the diagonalr1 = r2. This suggests
a binary symbolic dynamics corresponding to the dynamics in the fundamental
domainr1 ≥ r2; the symbolic dynamics is linked to the Poincaré mapr2 = 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the liner1 = r2 between two collisions
with the nucleusr2 = 0;

1: if a trajectory is reflected from the liner1 = r2 between two collisions with
the nucleusr2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in the
fundamental domain, i.e., there exists a one-to-one correspondence between binary
symbol sequences and collinear trajectories in the fundamental domain, with exception
of the0 cycle.

36.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the number
of periodic orbits in the fundamental domain, as in sect.13.5.2. However, mere
existence of these cycles does not suffice to calculate semiclassical spectral deter-
minants. We need to determine their phase space trajectories and calculate their
periods, topological indices and stabilities. A restriction of the periodic orbit
search to a suitable Poincaré surface of section, e.g.r2 = 0 or r1 = r2, leaves us
in general with a 2-dimensional search. Methods to find periodic orbits in multi-
dimensional spaces have been described in chapter12. They depend sensitively
on good starting guesses. A systematic search for all orbitscan be achieved only
after combining multi-dimensional Newton methods with interpolation algorithms
based on the binary symbolic dynamics phase space partitioning. All cycles up
to symbol length 16 (some 8000 primitive cycles) have been computed by such
methods, with some examples shown in figure36.5. All numerical evidence
indicates that the dynamics of collinear helium is hyperbolic, and that all periodic
orbits are unstable.

Note that the fixed point0 cycle is not in this list. The0 cycle would correspond
to the situation where the outer electron sits at rest infinitely far from the nucleus
while the inner electron bounces back and forth into the nucleus. The orbit is
the limiting case of an electron escaping to infinity with zero kinetic energy. The
orbit is in the regular (i.e., separable) limit of the dynamics and is thus marginally
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Figure 36.5: Some of the shortest cycles in
collinear helium. The classical collinear electron
motion is bounded by the potential barrier−1 =
−2/r1−2/r2+1/(r1 + r2) and the conditionri ≥ 0.
The orbits are shown in the fullr1–r2 domain, the
itineraries refers to the dynamics in ther1 ≥ r2

fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.
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stable. The existence of this orbit is also related to intermittent behavior generating
the quasi–regular dynamics for larger1 that we have already noted in figure36.3(b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to program.
There is, however, a class of periodic orbits, orbits with symmetries, which can be
easily found by a one-parameter search. The only symmetry left for the dynamics
in the fundamental domain is time reversal symmetry; a time reversal symmetric
periodic orbit is an orbit whose trajectory in phase space ismapped onto itself
when changing (p1, p2)→ (−p1,−p2), by reversing the direction of the momentum
of the orbit. Such an orbit must be a “libration” or self-retracing cycle, an orbit
that runs back and forth along the same path in the (r1, r2) plane. The cycles1, 01
and001 in figure36.5are examples of self-retracing cycles. Luckily, the shortest
cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start perpendicular
to the boundary of the fundamental domain, that is, on eitherof the axisr2 = 0
or r1 = r2, or on the potential boundary− 2

r1
− 2

r2
+ 1′

r1+r2
= −1. By shooting off

trajectories perpendicular to the boundaries and monitoring the orbits returning to
the boundary with the right symbol length we will find time reversal symmetric
cycles by varying the starting point on the boundary as the only parameter. But

helium - 27dec2004.tex



CHAPTER 36. HELIUM ATOM 597

how can we tell whether a given cycle is self-retracing or not? All the relevant
information is contained in the itineraries; a cycle is self-retracing if its itinerary
is invariant under time reversal symmetry (i.e., read backwards) and a suitable
number of cyclic permutations. All binary strings up to length 5 fulfill this condition.
The symbolic dynamics contains even more information; we can tell at which
boundary the total reflection occurs. One finds that an orbit starts out perpendicular

• to the diagonalr1 = r2 if the itinerary is time reversal invariant and has an
odd number of 1’s; an example is the cycle001 in figure36.5;

• to the axisr2 = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cycle0011 in figure36.5;

• to the potential boundary if the itinerary is time reversal invariant and has
an odd number of symbols; an example is the cycle011 in figure36.5.

All cycles up to symbol length 5 are time reversal invariant,the first two non-time
reversal symmetric cycles are cycles001011 and001101 in figure36.5. Their
determination would require a two-parameter search. The two cycles are mapped
onto each other by time reversal symmetry, i.e., they have the same trace in the
r1–r2 plane, but they trace out distinct cycles in the full phase space.

We are ready to integrate trajectories for classical collinear helium with the
help of the equations of motions (6.19) and to find all cycles up to length 5. There

[exercise 36.5]
is only one thing not yet in place; we need the governing equations for the matrix
elements of the fundamental matrix along a trajectory in order to calculate stability
indices. We will provide the main equations in the next section, with the details
of the derivation relegated to the appendixB.4.

36.3 Local coordinates, fundamental matrix

In this section, we will derive the equations of motion for the fundamental matrix
along a collinear helium trajectory. The fundamental matrix is 4-dimensional; the
two trivial eigenvectors corresponding to the conservation of energy and displacements
along a trajectory can, however, be projected out by suitable orthogonal coordinates
transformations, see appendixB. We will give the transformation to local coordinates
explicitly, here for the regularized coordinates (6.17), and state the resulting equations
of motion for the reduced [2× 2] fundamental matrix.

The vector locally parallel to the trajectory is pointing inthe direction of the
phase space velocity (7.7)

vm = ẋm(t) = ωmn
∂H
∂xn
= (HP1,HP2,−HQ1,−HQ2)

T ,

with HQi =
∂H
∂Qi

, and HPi =
∂H
∂Pi

, i = 1,2. The vector perpendicular to a trajectory
x(t) = (Q1(t),Q2(t), P1(t), P2(t)) and to the energy manifold is given by the gradient
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of the Hamiltonian (6.18)

γ = ∇H = (HQ1,HQ2,HP1,HP2)
T .

By symmetryvmγm = ωmn
∂H
∂xn

∂H
∂xm
= 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (36.5)

=



























−HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2



























with R = |∇H|2 = (H2
Q1
+ H2

Q2
+ H2

P1
+ H2

P2
), which provides a transformation to

local phase space coordinates centered on the trajectoryx(t) along the two vectors
(γ, v). The vectorsγ1,2 are phase space vectors perpendicular to the trajectory

[exercise 36.6]
and to the energy manifold in the 4-dimensional phase space of collinear helium.
The fundamental matrix (4.6) rotated to the local coordinate system byO then has
the form

m =



























m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1



























, M = OTmO

The linearized motion perpendicular to the trajectory on the energy manifold is
described by the [2× 2] matrix m; the ‘trivial’ directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced fundamental matrixm are given by

ṁ = l(t)m(t), (36.6)

with m(0) = 1. The matrixl depends on the trajectory in phase space and has the
form

l =



























l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0



























,

where the relevant matrix elementsli j are given by

l11 =
1
R

[2HQ1Q2(HQ2HP1 + HQ1HP2) (36.7)
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p S p/2π ln |Λp| σp mp
1 1.82900 0.6012 0.5393 2

01 3.61825 1.8622 1.0918 4
001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

Table 36.1: Action S p (in units of 2π), Lyapunov exponent|Λp|/Tp for the motion in the collinear
plane, winding numberσp for the motion perpendicular to the collinear plane, and thetopological
indexmp for all fundamental domain cycles up to topological length 6.

+(HQ1HP1 − HQ2HP2)(HQ1Q1 − HQ2Q2 − HP1P1 + HP2P2)]

l12 = −2HQ1Q2(HQ1HQ2 − HP1HP2)

+(H2
Q1
+ H2

P2
)(HQ2Q2 + HP1P1) + (H2

Q2
+ H2

P1
)(HQ1Q1 + HP2P2)

l21 =
1

R2
[2(HQ1P2 + HQ2P1)(HQ2HP1 + HQ1HP8)

−(H2
P1
+ H2

P2
)(HQ1Q1 + HQ2Q2) − (H2

Q1
+ H2

Q2
)(HP1P1 + HP2P2)]

l22 = −l11 .

HereHQiQ j , HPiP j , i, j = 1, 2 are the second partial derivatives ofH with respect
to the coordinatesQi, Pi, evaluated at the phase space coordinate of the classical
trajectory.

36.4 Getting ready

Now everything is in place: the regularized equations of motion can be implemented
in a Runge–Kutta or any other integration scheme to calculate trajectories. We
have a symbolic dynamics and know how many cycles there are and how to find
them (at least up to symbol length 5). We know how to compute the fundamental
matrix whose eigenvalues enter the semiclassical spectraldeterminant (33.12). By
(32.17) the actionS p is proportional to the period of the orbit,S p = 2Tp.
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There is, however, still a slight complication. Collinear helium is an invariant
4-dimensional subspace of the full helium phase space. If werestrict the dynamics
to angular momentum equal zero, we are left with 6 phase spacecoordinates. That
is not a problem when computing periodic orbits, they are oblivious to the other
dimensions. However, the fundamental matrix does pick up extra contributions.
When we calculate the fundamental matrix for the full problem, we must also
allow for displacements out of the collinear plane, so the full fundamental matrix
for dynamics forL = 0 angular momentum is 6 dimensional. Fortunately, the
linearized dynamics in and off the collinear helium subspace decouple, and the
fundamental matrix can be written in terms of two distinct [2× 2] matrices, with
trivial eigendirections providing the remaining two dimensions. The submatrix
related to displacements off the linear configuration characterizes the linearized
dynamics in the additional degree of freedom, theΘ-coordinate in figure36.1. It
turns out that the linearized dynamics in theΘ coordinate is stable, corresponding
to a bending type motion of the two electrons. We will need theFloquet exponents
for all degrees of freedom in evaluating the semiclassical spectral determinant in
sect.36.5.

The numerical values of the actions, Floquet exponents, stability angles, and
topological indices for the shortest cycles are listed in table 36.3. These numbers,
needed for the semiclassical quantization implemented in the next section, an also
be helpful in checking your own calculations.

36.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy levels
let us have a brief look at the overall structure of the spectrum. This will give us
a preliminary feel for which parts of the helium spectrum areaccessible with the
help of our collinear model – and which are not. In order to keep the discussion as
simple as possible and to concentrate on the semiclassical aspects of our calculations
we offer here only a rough overview. For a guide to more detailed accounts see
remark36.4.

36.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-
electron atoms. The eigenenergies form a Rydberg series

EN = −
e4me

~2

Z2

2N2
, (36.8)

whereZe is the charge of the nucleus andme is the mass of the electron. Through
the rest of this chapter we adopt the atomic unitse = me = ~ = 1.

The simplest model for the helium spectrum is obtained by treating the two
electrons as independent particles moving in the potentialof the nucleus neglecting
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the electron–electron interaction. Both electrons are then bound in hydrogen like
states; the inner electron will see a chargeZ = 2, screening at the same time the
nucleus, the outer electron will move in a Coulomb potentialwith effective charge
Z − 1 = 1. In this way obtain a first estimate for the total energy

EN,n = −
2

N2
−

1
2n2

with n > N. (36.9)

This double Rydberg formula contains already most of the information we need to
understand the basic structure of the spectrum. The (correct) ionizations thresholds
EN = −

2
N2 are obtained in the limitn→∞, yielding the ground and excited states

of the helium ionHe+. We will therefore refer toN as the principal quantum
number. We also see that all statesEN,n with N ≥ 2 lie above the first ionization
threshold forN = 1. As soon as we switch on electron-electron interaction these
states are no longer bound states; they turn into resonant states which decay into
a bound state of the helium ion and a free outer electron. Thismight not come as
a big surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape after
some finite time. More remarkable is the fact that the first,N = 1 series consists
of true bound states for alln, an effect which can only be understood by quantum
arguments.

The hydrogen-like quantum energies (36.8) are highly degenerate; states with
different angular momentum but the same principal quantum number N share the
same energy. We recall from basic quantum mechanics of hydrogen atom that
the possible angular momenta for a givenN spanl = 0, 1 . . . N − 1. How does
that affect the helium case? Total angular momentumL for the helium three-
body problem is conserved. The collinear helium is a subspace of the classical
phase space forL = 0; we thus expect that we can only quantize helium states
corresponding to the total angular momentum zero, a subspectrum of the full
helium spectrum. Going back to our crude estimate (36.9) we may now attribute
angular momenta to the two independent electrons,l1 andl2 say. In order to obtain
total angular momentumL = 0 we needl1 = l2 = l andlz1 = −lz2, that is, there are
N different states corresponding toL = 0 for fixed quantum numbersN, n. That
means that we expectN different Rydberg series converging to each ionization
thresholdEN = −2/N2. This is indeed the case and theN different series can
be identified also in the exact helium quantum spectrum, see figure 36.6. The
degeneracies between the differentN Rydberg series corresponding to the same
principal quantum numberN, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of theL = 0 spectrum
can be reproduced by the semiclassical quantization of collinear helium. In the
collinear helium, both classical electrons move back and forth along a common
axis through the nucleus, so each has zero angular momentum.We therefore
expect that collinear helium describes the Rydberg series with l = l1 = l2 = 0.
These series are the energetically lowest states for fixed (N, n), corresponding to
the Rydberg series on the outermost left side of the spectrumin figure36.6. We
will see in the next section that this is indeed the case and that the collinear model
holds down to theN = 1 bound state series, including even the ground state
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Figure 36.6: The exact quantum helium spectrum
for L = 0. The energy levels denoted by bars have
been obtained from full 3-dimensional quantum
calculations [3].
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of helium! We will also find a semiclassical quantum number corresponding to
the angular momentuml and show that the collinear model describes states for
moderate angular momentuml as long asl ≪ N. .

[remark 36.4]

36.5.2 Semiclassical spectral determinant for collinear helium

Nothing but lassitude can stop us now from calculating our first semiclassical
eigenvalues. The only thing left to do is to set up the spectral determinant in terms
of the periodic orbits of collinear helium and to write out the first few terms of its
cycle expansion with the help of the binary symbolic dynamics. The semiclassic-
al spectral determinant (33.12) has been written as product over all cycles of the
classical systems. The energy dependence in collinear helium enters the classical
dynamics only through simple scaling transformations described in sect.6.3.1
which makes it possible to write the semiclassical spectraldeterminant in the form

det (Ĥ−E)sc = exp

















−
∑

p

∞
∑

r=1

1
r

eir(sS p−mp
π
2 )

(−det (1− Mr
p⊥))1/2|det (1− Mr

p‖)|
1/2

















, (36.10)
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with the energy dependence absorbed into the variable

s =
e2

~

√

me

−E
,

obtained by using the scaling relation (36.2) for the action. As explained in
sect.36.3, the fact that the [4× 4] fundamental matrix decouples into two [2× 2]
submatrices corresponding to the dynamicsin the collinear space andperpendicular
to it makes it possible to write the denominator in terms of a product of two
determinants. Stable and unstable degrees of freedom enterthe trace formula in
different ways, reflected by the absence of the modulus sign and the minus sign
in front of det (1− M⊥). The topological indexmp corresponds to the unstable
dynamics in the collinear plane. Note that the factoreiπN̄(E) present in (33.12)
is absent in (36.10). Collinear helium is an open system, i.e., the eigenenergies
are resonances corresponding to the complex zeros of the semiclassical spectral
determinant and the mean energy staircaseN̄(E) not defined. In order to obtain a
spectral determinant as an infinite product of the form (33.18) we may proceed as
in (17.9) by expanding the determinants in (36.10) in terms of the eigenvalues of
the corresponding fundamental matrices. The matrix representing displacements
perpendicular to the collinear space has eigenvalues of theform exp(±2πiσ),
reflecting stable linearized dynamics.σ is the full winding number along the orbit
in the stable degree of freedom, multiplicative under multiple repetitions of this
orbit .The eigenvalues corresponding to the unstable dynamics along the collinear
axis are paired as{Λ, 1/Λ} with |Λ| > 1 and real. As in (17.9) and (33.18) we may
thus write

[

−det (1− Mr
⊥)|det (1− Mr

‖
)|
]−1/2

(36.11)

=
[

−(1− Λr)(1− Λ−r)|(1− e2πirσ)(1− e−2πirσ)
]−1/2

=

∞
∑

k,ℓ=0

1

|Λr |1/2Λrk
e−ir(ℓ+1/2)σ .

The± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits with
positive/negative eigenvaluesΛ. Using the relation (36.12) we see that the sum
over r in (36.10) is the expansion of the logarithm, so the semiclassical spectral
determinant can be rewritten as a product over dynamical zeta functions, as in
(17.9):

det (Ĥ − E)sc =

∞
∏

k=0

∞
∏

m=0

ζ−1
k,m =

∞
∏

k=0

∞
∏

m=0

∏

p

(1− t(k,m)
p ) , (36.12)

where the cycle weights are given by

t(k,m)
p =

1

|Λ|1/2Λk
ei(sS p−mp

π
2−4π(ℓ+1/2)σp) , (36.13)
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andmp is the topological index for the motion in the collinear plane which equals
twice the topological length of the cycle. The two independent directions perpendicular
to the collinear axis lead to a twofold degeneracy in this degree of freedom which
accounts for an additional factor 2 in front of the winding numberσ. The values
for the actions, winding numbers and stability indices of the shortest cycles in
collinear helium are listed in table36.3.

The integer indicesℓ andk play very different roles in the semiclassical spec-
tral determinant (36.12). A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potential inthe vicinity of the
trajectory. Stable motion corresponds to a harmonic oscillator potential, unstable
motion to an inverted harmonic oscillator. The indexℓ which contributes as
a phase to the cycle weights in the dynamical zeta functions can therefore be
interpreted as a harmonic oscillator quantum number; it corresponds to vibrational
modes in theΘ coordinate and can in our simplified picture developed in sect. 36.5.1
be related to the quantum numberl = l1 = l2 representing the single particle
angular momenta. Every distinctℓ value corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral determinant 1/ζℓ keeping
ℓ fixed. The harmonic oscillator approximation will eventually break down with
increasing off-line excitations and thus increasingℓ. The indexk corresponds to
‘excitations’ along the unstable direction and can be identified with local resonances
of the inverted harmonic oscillator centered on the given orbit. The cycle
contributionst(k,m)

p decrease exponentially with increasingk. Higherk terms in an
expansion of the determinant give corrections which becomeimportant only for
large negative imaginarys values. As we are interested only in the leading zeros
of (36.12), i.e., the zeros closest to the real energy axis, it is sufficient to take only
thek = 0 terms into account.

Next, let us have a look at the discrete symmetries discussedin sect.36.2.
Collinear helium has aC2 symmetry as it is invariant under reflection across
the r1 = r2 line corresponding to the electron-electron exchange symmetry. As
explained in sects.19.1.1and19.5, we may use this symmetry to factorize the
semiclassical spectral determinant. The spectrum corresponding to the states
symmetric or antisymmetric with respect to reflection can beobtained by writing
the dynamical zeta functions in the symmetry factorized form

1/ζ(ℓ) =
∏

a

(1− ta)2
∏

s̃

(1− t2s̃ ) . (36.14)

Here, the first product is taken over all asymmetric prime cycles, i.e., cycles that
are not self-dual under theC2 symmetry. Such cycles come in pairs, as two
equivalent orbits are mapped into each other by the symmetrytransformation.
The second product runs over all self-dual cycles; these orbits cross the axis
r1 = r2 twice at a right angle. The self-dual cycles close in the fundamental
domainr1 ≤ r2 already at half the period compared to the orbit in the full domain,
and the cycle weightsts̃ in (36.14) are the weights of fundamental domain cycles.
TheC2 symmetry now leads to the factorization of (36.14) 1/ζ = ζ−1

+ ζ
−1
− , with

1/ζ(ℓ)+ =
∏

a

(1− ta)
∏

s̃

(1− ts̃) ,
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1/ζ(ℓ)− =
∏

a

(1− ta)
∏

s̃

(1+ ts̃) , (36.15)

settingk = 0 in what follows. The symmetric subspace resonances are given
by the zeros of 1/ζ(ℓ)+ , antisymmetric resonances by the zeros of 1/ζ

(ℓ)
− , with the

two dynamical zeta functions defined as products over orbitsin the fundamental
domain. The symmetry properties of an orbit can be read off directly from its
symbol sequence, as explained in sect.36.2. An orbit with an odd number of 1’s
in the itinerary is self-dual under theC2 symmetry and enters the spectral deter-
minant in (36.15) with a negative or a positive sign, depending on the symmetry
subspace under consideration.

36.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral det-
erminant and have thereby picked up twogood quantum numbers; the quantum
numberm has been identified with an excitation of the bending vibrations, the
exchange symmetry quantum number±1 corresponds to states being symmetric
or antisymmetric with respect to the electron-electron exchange. We may now
start writing down the binary cycle expansion (18.7) and determine the zeros of
spectral determinant. There is, however, still another problem: there is no cycle 0
in the collinear helium. The symbol sequence0 corresponds to the limit of an outer
electron fixed with zero kinetic energy atr1 = ∞, the inner electron bouncing back
and forth into the singularity at the origin. This introduces intermittency in our
system, a problem discussed in chapter23. We note that the behavior of cycles
going far out in the channelr1 or r2→ ∞ is very different from those staying in the
near core region. A cycle expansion using the binary alphabet reproduces states
where both electrons are localized in the near core regions:these are the lowest
states in each Rydberg series. The states converging to the various ionization
thresholdsEN = −2/N2 correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionization channelr1, r2 → ∞.
To include those states, we have to deal with the dynamics in the limit of large
r1, r2. This turns out to be equivalent to switching to a symbolic dynamics with
an infinite alphabet. With this observation in mind, we may write the cycle

[remark 36.5]
expansion (....) for a binary alphabet without the0 cycle as

1/ζℓ(s) = 1 − t(ℓ)1 − t(ℓ)01 − [t(ℓ)001+ t(ℓ)011− t(ℓ)01t(ℓ)1 ]

−[t(ℓ)0001+ t(ℓ)0011− t(ℓ)001t
(ℓ)
1 + t(ℓ)0111− t(ℓ)011t

(ℓ)
1 ] − . . . . (36.16)

The weightst(ℓ)p are given in (36.12), with contributions of orbits and composite
orbits of the same total symbol length collected within square brackets. The cycle
expansion depends only on the classical actions, stabilityindices and winding
numbers, given for orbits up to length 6 in table36.3. To get reacquainted with
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N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

Table 36.2: Collinear helium, real part of the symmetric subspace resonances obtained by a cycle
expansion (36.16) up to cycle lengthj. The exact quantum energies [3] are in the last column. The
states are labeled by their principal quantum numbers. A dash as an entry indicates a missing zero
at that level of approximation.

the cycle expansion formula (36.16), consider a truncation of the series after the
first term

1/ζ(ℓ)(s) ≈ 1− t1 .

The quantization condition 1/ζ(ℓ)(s) = 0 leads to

Em,N = −
(S 1/2π)2

[m + 1
2 + 2(N + 1

2)σ1]2
, m,N = 0, 1, 2, . . . , (36.17)

with S 1/2π = 1.8290 for the action andσ1 = 0.5393 for the winding number, see
table36.3, the 1 cycle in the fundamental domain. This cycle can be described as
theasymmetric stretch orbit, see figure36.5. The additional quantum numberN in
(36.17) corresponds to the principal quantum number defined in sect. 36.5.1. The
states described by the quantization condition (36.17) are those centered closest to
the nucleus and correspond therefore to the lowest states ineach Rydberg series
(for a fixedm and N values), in figure36.6. The simple formula (36.17) gives
already a rather good estimate for the ground state of helium! Results obtained
from (36.17) are tabulated in table36.2, see the 3rd column underj = 1 and the
comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include more
orbits in the cycle expansion (36.16), covering more of the phase space dynamics
further away from the center. Taking longer and longer cycles into account, we
indeed reveal more and more states in eachN-series for fixedm. This is illustrated
by the data listed in table36.2for symmetric states obtained from truncations of
the cycle expansion of 1/ζ+. [exercise 36.7]

Results of the same quality are obtained for antisymmetric states by calculating
the zeros of 1/ζ(ℓ)− . Repeating the calculation withℓ = 1 or higher in (36.15)
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reveals states in the Rydberg series which are to the right ofthe energetically
lowest series in figure36.6.

Résum é

We have covered a lot of ground starting with considerationsof the classical
properties of a three-body Coulomb problem, and ending withthe semiclassical
helium spectrum. We saw that the three-body problem restricted to the dynamics
on a collinear appears to be fully chaotic; this implies thattraditional semiclassical
methods such asWKBquantization will not work and that we needed the full
periodic orbit theory to obtain leads to the semiclassical spectrum of helium. As a
piece of unexpected luck the symbolic dynamics is simple, and the semiclassical
quantization of the collinear dynamics yields an importantpart of the helium
spectrum, including the ground state, to a reasonable accuracy. A sceptic might
say: “Why bother with all the semiclassical considerations? A straightforward
numerical quantum calculation achieves the same goal with better precision.”
While this is true, the semiclassical analysis offers new insights into thestructure
of the spectrum. We discovered that the dynamics perpendicular to the collinear
plane was stable, giving rise to an additional (approximate) quantum number
ℓ. We thus understood the origin of the different Rydberg series depicted in
figure 36.6, a fact which is not at all obvious from a numerical solution of the
quantum problem.

Having traversed the long road from the classical game of pinball all the way
to a credible helium spectrum computation, we could declarevictory and fold
down this enterprise. Nevertheless, there is still much to think about - what about
such quintessentially quantum effects as diffraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of interestto offer.

Commentary

Remark 36.1 Sources. The full 3-dimensional Hamiltonian after elimination of the
center of mass coordinates, and an account of the finite nucleus mass effects is given in
ref. [2]. The general two–body collision regularizing Kustaanheimo–Stiefel transformation [5],
a generalization of Levi-Civita’s [13] Pauli matrix two–body collision regularization for
motion in a plane, is due to Kustaanheimo [12] who realized that the correct higher-
dimensional generalization of the “square root removal” trick (6.15), by introducing a
vectorQ with propertyr = |Q|2 , is the same as Dirac’s trick of getting linear equation
for spin 1/2 fermions by means of spinors. Vector spaces equipped with aproduct and
a known satisfy|Q · Q| = |Q|2 definenormed algebras. They appear in various physical
applications - as quaternions, octonions, spinors. The technique was originally developed
in celestial mechanics [6] to obtain numerically stable solutions for planetary motions.
The basic idea was in place as early as 1931, when H. Hopf [14] used a KS transformation
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in order to illustrate a Hopf’s invariant. The KS transformation for the collinear helium
was introduced in ref. [2].

Remark 36.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinear helium cycles have been found
in numerical investigations. A proof that all cycles are unstable, that they are uniquely
labeled by the binary symbolic dynamcis, and that this dynamics is complete is, however,
still missing. The conjectured Markov partition of the phase space is given by the triple
collision manifold, i.e., by those trajectories which start in or end at the singular point
r1 = r2 = 0. See also ref. [2].

Remark 36.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamical effects due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Electrons are fermions and that
determines the symmetry properties of the quantum states. The total wave function,
including the spin degrees of freedom, must be antisymmetric under the electron-electron
exchange transformation. That means that a quantum state symmetric in the position
variables must have an antisymmetric spin wave function, i.e., the spins are antiparallel
and the total spin is zero (singletstate). Antisymmetric states have symmetric spin wave
function with total spin 1 (tripletstates). The threefold degeneracy of spin 1 states is lifted
by the spin-orbit coupling.

Remark 36.4 Helium quantum numbers. The classification of the helium states in
terms of single electron quantum numbers, sketched in sect.36.5.1, prevailed until the
1960’s; a growing discrepancy between experimental results and theoretical predictions
made it necessary to refine this picture. In particular, the different Rydberg series sharing
a givenN-quantum number correspond, roughly speaking, to a quantization of the inter
electronic angleΘ, see figure36.1, and can not be described in terms of single electron
quantum numbersl1, l2. The fact that something is slightly wrong with the single electron
picture laid out in sect.36.5.1is highlighted when considering the collinear configuration
where both electrons are on thesame side of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quantum states should also belong
to single electron quantum numbers (l1, l2) = (0, 0). However, the single electron picture
breaks down completely in the limitΘ = 0 where electron-electron interaction becomes
the dominant effect. The quantum states corresponding to this classical configuration are
distinctively different from those obtained from the collinear dynamics with electrons on
different sides of the nucleus. The Rydberg series related to theclassicalΘ = 0 dynamics
are on the outermost rigth side in eachN subspectrum in figure36.6, and contain the
energetically highest states for givenN, n quantum numbers, see also remark36.5. A
detailed account of the historical development as well as a modern interpretation of the
spectrum can be found in ref. [1].

Remark 36.5 Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace is discussed in refs. [7, 8, 9]. Classical
and semiclassical considerations beyond what has been discussed in sect.36.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons are on
the same side of the nucleus reveals that this configuration is fully stable both in the
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collinear plane and perpendicular to it. The correspondingquantum states can be obtained
with the help of an approximate EBK-quantization which reveals helium resonances with
extremely long lifetimes (quasi - bound states in the continuum). These states form
the energetically highest Rydberg series for a given principal quantum numberN, see
figure36.6. Details can be found in refs. [10, 11].

In order to obtain the Rydberg series structure of the spectrum, i.e., the succession
of states converging to various ionization thresholds, we need to take into account the
dynamics of orbits which make large excursions along ther1 or r2 axis. In the chaotic
collinear subspace these orbits are characterized by symbol sequences of form (a0n) where
a stands for an arbitrary binary symbol sequence and 0n is a succession ofn 0’s in a row.
A summation of the form

∑∞
n=0 ta0n , wheretp are the cycle weights in (36.12), and cycle

expansion of indeed yield all Rydberg states up the various ionization thresholds, see
ref. [4]. For a comprehensive overview on spectra of two-electron atoms and semiclassical
treatments ref. [1].

Exercises

36.1. Kustaanheimo–Stiefel transformation. Check
the Kustaanheimo–Stiefel regularization for collinear
helium; derive the Hamiltonian (6.18) and the collinear
helium equations of motion (6.19).

36.2. Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
mhe = ∞, and angular momentumL = 0, show that
the three body problem can be written in terms of
three independent coordinates only, the electron-nucleus
distancesr1 and r2 and the inter-electron angleΘ, see
figure6.1.

36.3. Helium trajectories. Do some trial integrations of
the collinear helium equations of motion (6.19). Due
to the energy conservation, only three of the phase
space coordinates (Q1,Q2, P1, P2) are independent.
Alternatively, you can integrate in 4 dimensions and use
the energy conservation as a check on the quality of your
integrator.

The dynamics can be visualized as a motion in the
original configuration space (r1, r2), ri ≥ 0 quadrant,
or, better still, by an appropriately chosen 2-d Poincaré
section, exercise36.4. Most trajectories will run away,
do not be surprised - the classical collinear helium is
unbound. Try to guess approximately the shortest cycle
of figure36.4.

36.4. A Poincaré section for collinear Helium. Construct
a Poincaré section of figure36.3b that reduces the
helium flow to a map. Try to delineate regions which

correspond to finite symbol sequences, i.e. initial
conditions that follow the same topological itinerary
in the figure 36.3a space for a finite number of
bounces. Such rough partition can be used to initiate
2–dimensional Newton-Raphson method searches for
helium cycles, exercise36.5.

36.5. Collinear helium cycles. The motion in the (r1, r2)
plane is topologically similar to the pinball motion in a
3-disk system, except that the motion is in the Coulomb
potential.

Just as in the 3-disk system the dynamics is simplified
if viewed in the fundamental domain, in this case the
region betweenr1 axis and ther1 = r2 diagonal. Modify
your integration routine so the trajectory bounces off the
diagonal as off a mirror. Miraculously, the symbolic
dynamics for the survivors again turns out to be binary,
with 0 symbol signifying a bounce off the r1 axis, and
1 symbol for a bounce off the diagonal. Just as in the
3-disk game of pinball, we thus know what cycles need
to be computed for the cycle expansion (36.16).

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either
returning to the sameri axis or reflecting off the
diagonal. Now either Use special symmetries of orbits
such as self-retracing to find all orbits up to length 5 by
a 1-dimensional Newton search.

36.6. Collinear helium cycle stabilities. Compute the
eigenvalues for the cycles you found in exercise36.5,
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