Chapter 36

Helium atom

“But,” Bohr protested, “nobody will believe me unless |

can explain every atom and every molecule.” Rutherford

was quick to reply, “Bohr, you explain hydrogen and you

explain helium and everybody will believe the rest.”
—John Archibald Wheeler (1986)

(G. Tanner)

other curious but rather idealized dynamical systems. Uf lyave become

impatient and started wondering what good are the meth@agdd so far
in solving real physical problems, we have good news for y@ée will show
in this chapter that the concepts of symbolic dynamics,alistperiodic orbits,
and cycle expansions are essential tools to understandaémdate classical and
guantum mechanical properties of nothing less than therhela dreaded three-
body Coulomb problem.

SFAR much has been said about 1-dimensional maps, game of pauicll

This sounds almost like one step too much at a time; we all kmawrich and
complicated the dynamics of the three-body problem is — careally jump from
three static disks directly to three charged particles mgpuinder the influence of
their mutually attracting or repelling forces? It turns ,ome can, but we have to
do it with care. The full problem is indeed not accessibleliitsidetail, but we
are able to analyze a somewhat simpler subsystem — colliediam. This system
plays an important role in the classical dynamics of the thulee-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of heliunstraiclassical
treatment of collinear helium lies in understanding why e @lowed to do so.
We will not worry about this too much in the beginning; aftély 80 years and
many failed attempts separate Heisenberg, Bohr and othéng i1920ties from
the insights we have today on the role chaos plays for helinchis quantum
spectrum. We have introduced collinear helium and learred to integrate
its trajectories in sec6.3. Here we will find periodic orbits and determine the
relevant eigenvalues of the fundamental matrix in sé6tl. We will explain in
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Figure 36.1: Coordinates for the helium three body ++
problem in the plane. He
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Figure 36.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. 1 I’2

sect.36.5why a quantization of the collinear dynamics in helium willable us
to find parts of the full helium spectrum; we then set up theiskassical spectral
determinant and evaluate its cycle expansion. A full quarnjustification of this
treatment of helium is briefly discussed in se8.5.1

36.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in se6t3: the collinear helium system
consists of two electrons of masg and charge-e moving on a line with respect
to a fixed positively charged nucleus of charg2e, as in figure36.2

The Hamiltonian can be brought to a non—dimensionalizeoh for

2
Pi

P, PR_2_ 2 -1 36.1
2 2 I Io ri+ro ( )

The case of negative energies chosen here is the most tiigrese for us. It
exhibits chaos, unstable periodic orbits and is respomsibslthe bound states and
resonances of the quantum problem treated in 8éch

There is another classical quantity important for a seragital treatment of
guantum mechanics, and which will also feature promineintijre discussion in
the next section; this is the classical acti2.(L9 which scales with energy as

e

S(E) =  da(E) - p(E) -
with S being the action obtained fron3§.1) for E = -1, and coordinateg =

(r1,r2), p = (p1, p2). For the Hamiltonian 36.1), the period of a cycle and its
action are related by8@.17), Ty = 3S,.

After a Kustaanheimo—Stiefel transformation

P P2

=20 =30 (36.3)

2 2
rn = Q. r=Q3, p1
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a) b)
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Figure 36.3: (a) A typical trajectory in the; — ) -
r, plane; the trajectory enters here along the ar o
axis and escapes to infinity along theaxis; (b) B T R T Figure 36.4: The cycle 011 in the fundamental
Poincaré me}pr§=0) for collinear helium. Strong . 7 domainr; > r, (full line) and in the full domain
chaos prevails for smalk near the nucleus. 1 L (dashed line).
and reparametrization of time lay = dt/r1r», the equations of motion take form and momentum of the outer electron whenever the inner paits the nucleus,
(6.19 [exercise 36.1] i.e,, rp orrp = 0. As the unstructured gray region of the Poincaré section f
smallry illustrates, the dynamics is chaotic whenever the outetrele is close to
) p2 Q2 ) 1 the origin during a collision. Conversely, regular motialzsninate whenever the
P1=20Q; [2 - EZ - Q3 (1 + q?]] ; Q1= ZP1Q§ (36.4) outer electron is far from the nucleus. As one of the elestestapes for almost
2

any starting condition, the system is unbounded: one eledgay electron 1)
can escape, with an arbitrary amount of kinetic energy tadkeithe fugative.
The remaining electron is trapped in a Kepler ellipse wittalt@nergy in the
range F1, —]. There is no energy barrier which would separate the botord f
the unbound regions of the phase space. From general kiiceangtiments one

. p2 Q? . 1
P2:2Q2[2—§1—Q%(1+¥12]]; Q= 7PQ%.

Individual electron-nucleus collisions at = Qf = 0 orr; = Q3 = 0 no deduces that the outer electron will not return wipgn- 0,1, < 2 atp, = 0, the
longer pose a problem to a numerical integration routinee &uations.19 turning point of the inner electron. Only if the two electsompproach the nucleus
are singular only at the triple collisioR;2 = 0, i.e., when both electrons hit the almost symmetrically along the limg = r,, and pass close to the triple collision
nucleus at the same time. can the momentum transfer between the electrons be larggylerio kick one of

the particles out completely. In other words, the electrecepe originates from

The new coordinates and the Hamiltoni&ril@ are very useful when calculating the near triple collisions

trajectories for collinear helium; they are, however, essitive as a visualization

of the three-body dynamics. We will therefore refer to the @bordinates, ra The collinear helium dynamics has some important propewtieich we now
when discussing the dynamics and the periodic orbits. list.
36.2 Chaos, symbolic dynamics and periodic orbits 36.2.1 Reflection symmetry

The Hamiltonian §.10) is invariant with respect to electron—electron exchange;
this symmetry corresponds to the mirror symmetry of the m@ealong the line

ri = rp, figure36.4 As a consequence, we can restrict ourselves to the dynamics
in thefundamental domain ry > rp and treat a crossing of the diagomal= r, as

a hard wall reflection. The dynamics in the full domain camtbe reconstructed
by unfolding the trajectory through back-reflections. Asplained in chaptei9,

the dynamics in the fundamental domain is the key to the feton of spectral
determinants, to be implemented here3f.(5. Note also the similarity between
the fundamental domain of the collinear potential figses, and the fundamental
domain figure?? (b) in the 3—disk system, a simpler problem with the samerpina
symbolic dynamics.

Let us have a closer look at the dynamics in collinear heliuhie electrons
are attracted by the nucleus. During an electron—nuclellisioo momentum is
transferred between the inner and outer electron. The &laetron has a maximal
screening #ect on the charge of the nucleus, diminishing the attradtivee on
the outer electron. This electron — electron interactionegligible if the outer
electron is far from the nucleus at a collision and the oVelgiamics is regular
like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach tloéems nearly simultaneously.
The momentum transfer between the electrons depends naitiwey on how
the particles approach the origin. Intuitively, these hearissed triple collisions
render the dynamics chaotic. A typical trajectory is pldtta figure 36.3 (a)
where we used; andr; as the relevant axis. The dynamics can also be visualized

. ) P . . . in depth:
in a Poincaré surface of section, see figaée3 (b). We plot here the coordinate ” ;ne;plg 6. p. 331
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36.2.2 Symbolic dynamics

We have already made the claim that the triple collisiongleerthe collinear
helium fully chaotic. We have no proof of the assertion, Ihg &nalysis of the
symbolic dynamics lends further credence to the claim.

The potential in 86.1) forms a ridge along the ling; = ro. One can show
that a trajectory passing the ridge must go through at leestwo-body collision
ri = 0 orrp = 0 before coming back to the diagomal = r,.  This suggests
a binary symbolic dynamics corresponding to the dynamics in the domehtal
domainry > ry; the symbolic dynamics is linked to the Poincaré mag: 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the ling = r, between two collisions
with the nucleus, = 0;

1: if a trajectory is reflected from the lirg = r, between two collisions with
the nucleus, = 0.

Empirically, the symbolic dynamics is complete for a Ponécenap in the
fundamental domain, i.e., there exists a one-to-one quuretence between binary
symbol sequences and collinear trajectories in the fundeahdomain, with exception
of theO cycle.

36.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easptotcthe number
of periodic orbits in the fundamental domain, as in s&8t5.2 However, mere
existence of these cycles does ndfise to calculate semiclassical spectral deter-
minants. We need to determine their phase space trajectanmig calculate their
periods, topological indices and stabilities. A restdotiof the periodic orbit
search to a suitable Poincaré surface of sectionrg.g.0 orry = rp, leaves us
in general with a 2-dimensional search. Methods to find péiorbits in multi-
dimensional spaces have been described in chagteThey depend sensitively
on good starting guesses. A systematic search for all arhitshe achieved only
after combining multi-dimensional Newton methods wittenpiolation algorithms
based on the binary symbolic dynamics phase space pairiiiorll cycles up
to symbol length 16 (some 8000 primitive cycles) have beenprded by such
methods, with some examples shown in fig@&5 All numerical evidence
indicates that the dynamics of collinear helium is hypady@nd that all periodic
orbits are unstable.

Note that the fixed poir@ cycle is not in this list. Th@ cycle would correspond
to the situation where the outer electron sits at rest ifiyfiar from the nucleus
while the inner electron bounces back and forth into theeusl| The orbit is
the limiting case of an electron escaping to infinity witha&imetic energy. The
orbit is in the regular (i.e., separable) limit of the dynasiand is thus marginally
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Figure 36.5: Some of the shortest cycles in
collinear helium. The classical collinear electron
motion is bounded by the potential barriet =
—2/r1—2/r,+1/(ry + rp) and the conditiom; > 0.
The orbits are shown in the full—, domain, the
itineraries refers to the dynamics in the > r,
fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.
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stable. The existence of this orbit is also related to intiéemt behavior generating
the quasi—regular dynamics for langethat we have already noted in figus6.3(b).

Search algorithm for an arbitrary periodic orbit is quiterhersome to program.
There is, however, a class of periodic orbits, orbits witmsyetries, which can be
easily found by a one-parameter search. The only symmétriptehe dynamics
in the fundamental domain is time reversal symmetry; a tievensal symmetric
periodic orbit is an orbit whose trajectory in phase spacmapped onto itself
when changingfgi, p2) — (—p1, —p2), by reversing the direction of the momentum
of the orbit. Such an orbit must be a “libration” or self-ggting cycle, an orbit
that runs back and forth along the same path in the£) plane. The cycle§, 01
and001 in figure36.5are examples of self-retracing cycles. Luckily, the shatrte
cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle ratart perpendicular
to the boundary of the fundamental domain, that is, on eitfi¢he axisro = 0
orry = ry, or on the potential boundaPy% - % + rl£r2 = —1. By shooting &
trajectories perpendicular to the boundaries and monidtie orbits returning to
the boundary with the right symbol length we will find time eesal symmetric

cycles by varying the starting point on the boundary as tHg parameter. But
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how can we tell whether a given cycle is self-retracing or?néil the relevant
information is contained in the itineraries; a cycle is selfacing if its itinerary
is invariant under time reversal symmetry (i.e., read backis) and a suitable
number of cyclic permutations. All binary strings up to lém§ fulfill this condition.
The symbolic dynamics contains even more information; we tedl at which
boundary the total reflection occurs. One finds that an odnitssout perpendicular

e to the diagonat; = r if the itinerary is time reversal invariant and has an
odd number of 1's; an example is the cyfl in figure36.5

e to the axisrp = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cy@@Ll1 in figure36.5

e to the potential boundary if the itinerary is time reversadariant and has
an odd number of symbols; an example is the cgdi2 in figure36.5

All cycles up to symbol length 5 are time reversal invariding, first two non-time
reversal symmetric cycles are cycl@é81011 andd01101 in figure36.5 Their
determination would require a two-parameter search. Thecjwles are mapped
onto each other by time reversal symmetry, i.e., they hageséime trace in the
ri—t, plane, but they trace out distinct cycles in the full phasecep

We are ready to integrate trajectories for classical cedimhelium with the
help of the equations of motion§.(9 and to find all cycles up to length 5. Ther‘[%Bxercise 36.5]
is only one thing not yet in place; we need the governing eégustfor the matrix )
elements of the fundamental matrix along a trajectory ireptd calculate stability
indices. We will provide the main equations in the next settiwith the details
of the derivation relegated to the appen8ixX.

36.3 Local coordinates, fundamental matrix

In this section, we will derive the equations of motion foe flandamental matrix
along a collinear helium trajectory. The fundamental magi4-dimensional; the

two trivial eigenvectors corresponding to the conservetifenergy and displacements
along atrajectory can, however, be projected out by s@tatthogonal coordinates
transformations, see appendixWe will give the transformation to local coordinates
explicitly, here for the regularized coordinatésl(7), and state the resulting equations
of motion for the reduced [ 2] fundamental matrix.

The vector locally parallel to the trajectory is pointingtire direction of the

phase space velocity (7)

. oH
Vm = Xm(t) = wmnﬂ = (Hpy. Hp,, —Ha,s _HQz)T’

with Ho = 28, and Hp, = g—;'l, i = 1,2. The vector perpendicular to a trajectory

X(t) = (Qu(t), (jz(t), P1(t), P2(t)) and to the energy manifold is given by the gradient
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of the Hamiltonian §.18

y = VH = (Hg,, Hg,, Hp,, Hp,)" .

By symmetryyym = wmn%% = 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (y1.72,7/RV) (36.5)

-Hp,/R  Hqg, Hg,/R Hp,
Hp,/R  -Hg, Hq,/R Hp,
-Hg,/R —Hp, Hp,/R —Hg,
Hq /R Hp,  Hp,/R —Hg,

with R = [VH]2 = (H(Z31 + Hé2 + HE,1 + HE,Z), which provides a transformation to

local phase space coordinates centered on the trajedtymiong the two vectors

(y,Vv). The vectorsy;, are phase space vectors perpendicular to the trajec}oré/ )
. . . . . . exercise 36.6]

and to the energy manifold in the 4-dimensional phase spacellmear helium.

The fundamental matrix(6) rotated to the local coordinate system®yhen has

the form

M1 M *
Mpy Mpo =
0 0 1

*

* *

m = , M=0"TmoO

P oOOoO

The linearized motion perpendicular to the trajectory om éhergy manifold is
described by the [% 2] matrix m; the ‘trivial’ directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced fundamental matrare given by

= [(Om(t), (36.6)

with m(0) = 1. The matrixl depends on the trajectory in phase space and has the
form

| = log lpp % O
1 0 0 O0O0f
* £ % 0

where the relevant matrix elemerisare given by

1
la = E[ZHQ1Q2(HQ2HP1+HQ1HP2) (36.7)
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p Sp/2r  In|Ay| op My
1] 1.82900 0.6012 0.5393
01| 3.61825 1.8622 1.0918
001 | 5.32615 3.4287 1.6402
011| 5.39451 1.8603 1.6117
0001| 6.96677 4.4378 2.1710
0011| 7.04134 23417 2.1327
0111| 7.25849 3.1124 2.1705
00001| 8.56618 5.1100 2.6919
00011| 8.64306 2.7207 2.6478
00101| 8.93700 5.1562 2.7291
00111| 8.94619 4.5932 2.7173
01011| 9.02689 4.1765 2.7140
01111| 9.07179 3.3424 2.6989
000001| 10.13872 5.6047 3.2073
000011| 10.21673 3.0323 3.1594
000101| 10.57067 6.1393 3.2591
000111| 10.57628 5.6766 3.2495
001011| 10.70698 5.3251 3.2519
001101| 10.70698 5.3251 3.2519
001111| 10.74303 4.3317 3.2332
010111| 10.87855 5.0002 3.2626
011111] 10.91015 4.2408 3.2467

NNRNNNNNNNOOOOCOOWmwoo RN

e N g g g g g e N N N

Table 36.1: Action S, (in units of 2r), Lyapunov exponerii\y|/T, for the motion in the collinear
plane, winding numbesr,, for the motion perpendicular to the collinear plane, andttp®logical
indexm, for all fundamental domain cycles up to topological length 6

+(HQ1HP1 - HQzHF’z)(HQ1Q1 - HQzQz - HP1P1 + szpz)]
iz = -2Hq,q,(HoHo, — He,Hp,)
+(Hél " ng)(HQZQZ +Hewp,) + (Héz + H§1)(HQ1Q1 +Hp,p,)

1
o1 = 5[2(Hoip, + Hopy)(Ho He, + Ho,Hee)

_(Hgl + ng)(HQlQl + HQzQz) - (Hél + Héz)(HPlpl + HPZPZ)]
l2 = -l

Here HQ,QJ, lepl, i, j = 1,2 are the second partial derivativeskbfwith respect
to the coordinate§);, P;, evaluated at the phase space coordinate of the classical
trajectory.

36.4 Getting ready

Now everything is in place: the regularized equations ofiamtan be implemented
in a Runge—Kutta or any other integration scheme to calkeutajectories. We
have a symbolic dynamics and know how many cycles there atdan to find
them (at least up to symbol length 5). We know how to compugeithdamental
matrix whose eigenvalues enter the semiclassical spetaiminant33.12). By
(32.17) the actionSy, is proportional to the period of the orb®,, = 2T .
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There is, however, still a slight complication. Collinealibm is an invariant
4-dimensional subspace of the full helium phase space. tésteict the dynamics
to angular momentum equal zero, we are left with 6 phase spandinates. That
is not a problem when computing periodic orbits, they arévihls to the other
dimensions. However, the fundamental matrix does pick ugesontributions.
When we calculate the fundamental matrix for the full prableve must also
allow for displacements out of the collinear plane, so thefftndamental matrix
for dynamics forL = 0 angular momentum is 6 dimensional. Fortunately, the
linearized dynamics in andffothe collinear helium subspace decouple, and the
fundamental matrix can be written in terms of two distinc[2] matrices, with
trivial eigendirections providing the remaining two dinseans. The submatrix
related to displacementdtdhe linear configuration characterizes the linearized
dynamics in the additional degree of freedom, @eoordinate in figure6.1 It
turns out that the linearized dynamics in teoordinate is stable, corresponding
to a bending type motion of the two electrons. We will needriogjuet exponents
for all degrees of freedom in evaluating the semiclassigatsal determinant in
sect.36.5

The numerical values of the actions, Floguet exponentbjlisfzeangles, and
topological indices for the shortest cycles are listed inlet&6.3 These numbers,
needed for the semiclassical quantization implementeldeiméxt section, an also
be helpful in checking your own calculations.

36.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium tuarenergy levels
let us have a brief look at the overall structure of the spectrThis will give us

a preliminary feel for which parts of the helium spectrum aceessible with the
help of our collinear model — and which are not. In order tokiéee discussion as
simple as possible and to concentrate on the semiclasspatts of our calculations
we dfer here only a rough overview. For a guide to more detailedwats see
remark36.4

36.5.1 Structure of helium spectrum

We start by recalling Bohr's formula for the spectrum of ogkn like one-
electron atoms. The eigenenergies form a Rydberg series

e'me 72
En=—%—, 36.8
N 2 aNe (36.8)

whereZeis the charge of the nucleus and is the mass of the electron. Through
the rest of this chapter we adopt the atomic uaitsme = 71 = 1.

The simplest model for the helium spectrum is obtained batitng the two
electrons as independent particles moving in the potesfttake nucleus neglecting
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the electron—electron interaction. Both electrons are tieind in hydrogen like
states; the inner electron will see a charge 2, screening at the same time the
nucleus, the outer electron will move in a Coulomb potentigh effective charge

Z - 1= 1. In this way obtain a first estimate for the total energy

2 1 .
Enn = N o with n> N. (36.9)

This double Rydberg formula contains already most of thermftion we need to
understand the basic structure of the spectrum. The (¢pivazations thresholds
En = —% are obtained in the limit — oo, yielding the ground and excited states
of the helium ionHe". We will therefore refer toN as the principal quantum
number. We also see that all statgg, with N > 2 lie above the first ionization
threshold forN = 1. As soon as we switch on electron-electron interactiosehe
states are no longer bound states; they turn into resoreessthich decay into
a bound state of the helium ion and a free outer electron. Mgkt not come as
a big surprise if we have the classical analysis of the ptes/gection in mind: we
already found that one of the classical electrons will alnabsays escape after
some finite time. More remarkable is the fact that the fiXst: 1 series consists
of true bound states for ati, an @fect which can only be understood by quantum
arguments.

The hydrogen-like quantum energi€x5(8) are highly degenerate; states with
different angular momentum but the same principal quantum nukhlskare the
same energy. We recall from basic quantum mechanics of bgdratom that
the possible angular momenta for a givdrspanl = 0,1...N — 1. How does
that dfect the helium case? Total angular momenturfor the helium three-
body problem is conserved. The collinear helium is a sulespécthe classical
phase space fdr = 0; we thus expect that we can only quantize helium states
corresponding to the total angular momentum zero, a subspeof the full
helium spectrum. Going back to our crude estim&t& g we may now attribute
angular momenta to the two independent electrgremdl, say. In order to obtain
total angular momenturo = 0 we need; = I, = | andlz = —l, that is, there are
N different states correspondinglto= 0 for fixed quantum numbens, n. That
means that we exped{ different Rydberg series converging to each ionization
thresholdEy = —2/N2. This is indeed the case and thedifferent series can
be identified also in the exact helium quantum spectrum, seeefB6.6 The
degeneracies between thdfdientN Rydberg series corresponding to the same
principal quantum numbeX, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse seusfttine spectrum.

In the next step, we may even speculate which parts of.tke0 spectrum
can be reproduced by the semiclassical quantization aheall helium. In the
collinear helium, both classical electrons move back amthfalong a common
axis through the nucleus, so each has zero angular momenrentherefore
expect that collinear helium describes the Rydberg serigslw= 11 = [, = 0.
These series are the energetically lowest states for fiXed)( corresponding to
the Rydberg series on the outermost left side of the spedtmfigure 36.6 We
will see in the next section that this is indeed the case aaidltie collinear model
holds down to theN = 1 bound state series, including even the ground state
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Figure 36.6: The exact quantum helium spectrum N=
for L = 0. The energy levels denoted by bars have

been obtained from full 3-dimensional quantum
calculations f].

of helium! We will also find a semiclassical quantum numberesponding to
the angular momenturhand show that the collinear model describes states for

moderate angular momentunas long a$ < N. .
[remark 36.4]

36.5.2 Semiclassical spectral determinant for collineardlium

Nothing but lassitude can stop us now from calculating ot Bemiclassical
eigenvalues. The only thing left to do is to set up the spedeterminant in terms
of the periodic orbits of collinear helium and to write oué thirst few terms of its
cycle expansion with the help of the binary symbolic dynamithe semiclassic-
al spectral determinan88.12 has been written as product over all cycles of the
classical systems. The energy dependence in collineamhelnters the classical
dynamics only through simple scaling transformations dieed in sect.6.3.1
which makes it possible to write the semiclassical spedetdrminant in the form

eir(ssp—mpg)

~ S 1
R 1 ,(36.10)
* zp: ; r (~det(1- Mp,))V2idet (1- My IY2
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with the energy dependence absorbed into the variable

obtained by using the scaling relatioB6(2) for the action. As explained in
sect.36.3 the fact that the [4« 4] fundamental matrix decouples into twoX22]
submatrices corresponding to the dynannidbe collinear space anmbrpendicular
to it makes it possible to write the denominator in terms ofredpct of two
determinants. Stable and unstable degrees of freedomtbeténace formula in
different ways, reflected by the absence of the modulus sign anaitius sign
in front of det(1- M_). The topological indexn, corresponds to the unstable
dynamics in the collinear plane. Note that the fac6M(®) present in §3.19

is absent in36.10. Collinear helium is an open system, i.e., the eigeneasrgi
are resonances corresponding to the complex zeros of thielassical spectral
determinant and the mean energy stairdd€€) not defined. In order to obtain a
spectral determinant as an infinite product of the foB® {8 we may proceed as
in (17.9 by expanding the determinants i86(10 in terms of the eigenvalues of
the corresponding fundamental matrices. The matrix reptésy displacements
perpendicular to the collinear space has eigenvalues ofoitme expé2ric),
reflecting stable linearized dynamigs s the full winding number along the orbit
in the stable degree of freedom, multiplicative under migtirepetitions of this
orbit .The eigenvalues corresponding to the unstable digsaaong the collinear
axis are paired ajg\, 1/A} with |A| > 1 and real. As in17.9 and 33.18 we may
thus write

[~det (1- M)idet (1- M| 2 (36.11)
- [7(1 _ Ar)(l _ A—r)l(l _ e27rinr)(1 _ e—27rim-)]’1/2

)

1 .
_ Z — rke—lr(i+l/2)u- i
=0 |AT|/2A

The + sign corresponds to the hyperbdgiiwerse hyperbolic periodic orbits with
positivenegative eigenvalues. Using the relation36.12 we see that the sum
overr in (36.10 is the expansion of the logarithm, so the semiclassicaitsge
determinant can be rewritten as a product over dynamical fzeictions, as in

(17.9:

det - E)g = ﬁ - Gk = ﬁ ﬁ [ Ja-t&m), (36.12)
k=0 m=0 k=0 m=0 p

where the cycle weights are given by

&m _ 1 (sSp-mpZ-dn(er1/2)
tem = —|A|1/2Aké( pMp=4r(C+1/2)75) (36.13)
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andmj is the topological index for the motion in the collinear gamhich equals
twice the topological length of the cycle. The two indepenrtdhrections perpendicular
to the collinear axis lead to a twofold degeneracy in thisee®f freedom which
accounts for an additional factor 2 in front of the windingmhero. The values

for the actions, winding numbers and stability indices @& #hortest cycles in
collinear helium are listed in tabl&s.3

The integer indice$ andk play very diferent roles in the semiclassical spec-
tral determinant36.12. A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potentighévicinity of the
trajectory. Stable motion corresponds to a harmonic @goillpotential, unstable
motion to an inverted harmonic oscillator. The indéxvhich contributes as
a phase to the cycle weights in the dynamical zeta functiamstlerefore be
interpreted as a harmonic oscillator quantum number; fesponds to vibrational
modes in thé coordinate and can in our simplified picture developed ih 8€c5.1
be related to the quantum numbdee I; = |, representing the single particle
angular momenta. Every distinétvalue corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral ohétant /¢, keeping
¢ fixed. The harmonic oscillator approximation will eventyddreak down with
increasing @-line excitations and thus increasiig The indexk corresponds to
‘excitations’ along the unstable direction and can be iifiedtwith local resonances
of the inverted harmonic oscillator centered on the givenitor  The cycle
contributionstS‘m) decrease exponentially with increasiagHigherk terms in an
expansion of the determinant give corrections which beconpartant only for
large negative imaginargvalues. As we are interested only in the leading zeros
of (36.19), i.e., the zeros closest to the real energy axis, itfS@ent to take only
thek = 0 terms into account.

Next, let us have a look at the discrete symmetries discuissedct.36.2
Collinear helium has &, symmetry as it is invariant under reflection across
ther; = ry line corresponding to the electron-electron exchange sstmymAs
explained in sectsl9.1.1and 19.5 we may use this symmetry to factorize the
semiclassical spectral determinant. The spectrum camneipg to the states
symmetric or antisymmetric with respect to reflection cambtined by writing
the dynamical zeta functions in the symmetry factorizednfor

100 =[a-w?] Ja-d. (36.14)

Here, the first product is taken over all asymmetric primdesd.e., cycles that
are not self-dual under th€, symmetry. Such cycles come in pairs, as two
equivalent orbits are mapped into each other by the symntetnsformation.
The second product runs over all self-dual cycles; thesésodooss the axis
ri = ry twice at a right angle. The self-dual cycles close in the &mental
domainr; < r, already at half the period compared to the orbit in the futhdn,
and the cycle weight in (36.14) are the weights of fundamental domain cycles.
TheC, symmetry now leads to the factorization 66(14 1/¢ = £;17%, with

10 = [la-w]]a-.
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1y = J]a-w]]a+t), (36.15)

settingk = 0 in what follows. The symmetric subspace resonances asn giv
by the zeros of /]gff), antisymmetric resonances by the zeros ,q;ﬂ’i, with the
two dynamical zeta functions defined as products over oifitse fundamental
domain. The symmetry properties of an orbit can be redlicectly from its
symbol sequence, as explained in s86t2 An orbit with an odd number of 1's
in the itinerary is self-dual under th& symmetry and enters the spectral deter-
minant in 86.15 with a negative or a positive sign, depending on the symmetr
subspace under consideration.

36.5.3 Cycle expansion results

So far we have established a factorized form of the semickdsspectral det-
erminant and have thereby picked up tgmod quantum numbers; the quantum
numberm has been identified with an excitation of the bending vibratj the
exchange symmetry quantum numhselr corresponds to states being symmetric
or antisymmetric with respect to the electron-electronhexge. We may now
start writing down the binary cycle expansiot8(7) and determine the zeros of
spectral determinant. There is, however, still anotheblero: there is no cycle 0

in the collinear helium. The symbol sequetceorresponds to the limit of an outer
electron fixed with zero kinetic energyrat= oo, the inner electron bouncing back
and forth into the singularity at the origin. This introdsdatermittency in our
system, a problem discussed in chagi@r We note that the behavior of cycles
going far outin the channe} orr, — oo is very diferent from those staying in the
near core region. A cycle expansion using the binary alphapeoduces states
where both electrons are localized in the near core regitrese are the lowest
states in each Rydberg series. The states converging toatfey ionization
thresholdsEy = —2/N? correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionizathannelr;,r, — co.
To include those states, we have to deal with the dynamickerimit of large
ri,ro. This turns out to be equivalent to switching to a symboliaaiyics with
an infinite alphabet. ~ With this observation in mind, we maytevthe cycle

B . ; = k 36.
expansion (....) for a binary alphabet without theycle as remark 36.5)

9= 1 ~t9 0@ +0 {0

oo1 + Toi1
(0) (0) () 4(0) | +(O) (€) 4(0)
~[to001 + toors ~ tooats " + torzs —tosats 1+ - (36.16)

The Weightstg) are given in 86.19, with contributions of orbits and composite
orbits of the same total symbol length collected within squaackets. The cycle
expansion depends only on the classical actions, staliilitices and winding

numbers, given for orbits up to length 6 in tatd8.3 To get reacquainted with
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j=1 j=4 j=8 j=12 =16 -Egm
3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
— 05698 05906 0.5916 0.5902 0.5899
— — — 05383 0.5429 0.5449
0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
— — 02812 0.2808 0.2808 0.2811
— — 02550 0.2561 0.2559 0.2560
— — —  0.2416 0.2433 0.2438
0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
— 01655 0.1650 0.1654 0.1657 0.1657
— — 01508 0.1505 0.1507 0.1508
— — 01413 0.1426 0.1426 0.1426

ADAMNWWWWNNNRE Z
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Table 36.2: Collinear helium, real part of the symmetric subspace r@soes obtained by a cycle
expansion §6.16 up to cycle length.. The exact quantum energi€g fare in the last column. The
states are labeled by their principal quantum numbers. A dasan entry indicates a missing zero
at that level of approximation.

the cycle expansion formul&@§.16, consider a truncation of the series after the
first term

N9 ~1-t1.
The quantization condition/Z((s) = 0 leads to

(S1/2n)?

e gN=012..., (36.17)
[m+ 3 +2(N+ 3)oq]?

Emn =

with S1/27 = 1.8290 for the action ana; = 0.5393 for the winding number, see
table36.3 the 1 cycle in the fundamental domain. This cycle can berdestas
theasymmetric stretch orbit, see figur&6.5 The additional quantum numbirin
(36.17 corresponds to the principal quantum number defined in 36d.1 The
states described by the quantization conditi®® {7) are those centered closest to
the nucleus and correspond therefore to the lowest statescim Rydberg series
(for a fixedm and N values), in figure36.6 The simple formula36.17) gives
already a rather good estimate for the ground state of helieesults obtained
from (36.17) are tabulated in tabld6.2 see the 3rd column undér= 1 and the
comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we needdode more
orbits in the cycle expansio3§.16, covering more of the phase space dynamics
further away from the center. Taking longer and longer cyafto account, we
indeed reveal more and more states in edederies for fixedn. This is illustrated
by the data listed in tabl@6.2for symmetric states obtained from truncations of

the cycle expansion of/Z,. [exercise 36.7]

Results of the same quality are obtained for antisymmetattes by calculating
the zeros of 1{@. Repeating the calculation with = 1 or higher in 86.19
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reveals states in the Rydberg series which are to the rigtiteoenergetically
lowest series in figur86.6

Résum é

We have covered a lot of ground starting with consideratiohshe classical
properties of a three-body Coulomb problem, and ending thighsemiclassical
helium spectrum. We saw that the three-body problem réstrito the dynamics
on a collinear appears to be fully chaotic; this implies theditional semiclassical
methods such a8vKBquantization will not work and that we needed the full
periodic orbit theory to obtain leads to the semiclassipat&rum of helium. As a
piece of unexpected luck the symbolic dynamics is simpld,tha semiclassical
quantization of the collinear dynamics yields an importpatt of the helium
spectrum, including the ground state, to a reasonable acyuA sceptic might
say: “Why bother with all the semiclassical considerat®na straightforward
numerical quantum calculation achieves the same goal véttetbprecision.”
While this is true, the semiclassical analysfieos new insights into thetructure

of the spectrum. We discovered that the dynamics perpeladituthe collinear
plane was stable, giving rise to an additional (approxiingtgantum number
¢. We thus understood the origin of theffdrent Rydberg series depicted in
figure 36.6 a fact which is not at all obvious from a numerical solutidntte
quantum problem.

Having traversed the long road from the classical game dfgiirall the way
to a credible helium spectrum computation, we could decla®ry and fold
down this enterprise. Nevertheless, there is still muchittktabout - what about
such quintessentially quantunffects as diraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of intetesiffer.

Commentary

Remark 36.1 Sources. The full 3-dimensional Hamiltonian after elimination ofth
center of mass coordinates, and an account of the finite msichass #ects is given in
ref. [2]. The general two—body collision regularizing KustaamheiStiefel transformatiors],
a generalization of Levi-Civita's1[3] Pauli matrix two—body collision regularization for
motion in a plane, is due to Kustaanheimd][ who realized that the correct higher-
dimensional generalization of the “square root removatkt(6.15, by introducing a
vectorQ with propertyr = |Q[2, is the same as Dirac’s trick of getting linear equation
for spin J2 fermions by means of spinors. Vector spaces equipped wittoduct and

a known satisfyiQ - Q| = |QJ? definenormed algebras. They appear in various physical
applications - as quaternions, octonions, spinors. THenigoe was originally developed
in celestial mechanics] to obtain numerically stable solutions for planetary ron8.
The basic idea was in place as early as 1931, when H. Heptised a KS transformation
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in order to illustrate a Hopf's invariant. The KS transfotioa for the collinear helium
was introduced in ref).

Remark 36.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinegiim cycles have been found
in numerical investigations. A proof that all cycles aretabte, that they are uniquely
labeled by the binary symbolic dynamcis, and that this dyinais complete is, however,
still missing. The conjectured Markov partition of the paapace is given by the triple
collision manifold, i.e., by those trajectories which staror end at the singular point
r; =r, = 0. See also ref].

Remark 36.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamicfibets due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Eleus are fermions and that
determines the symmetry properties of the quantum statdee tdtal wave function,
including the spin degrees of freedom, must be antisymmetriler the electron-electron
exchange transformation. That means that a quantum statmetyic in the position
variables must have an antisymmetric spin wave functien, the spins are antiparallel
and the total spin is zero (singletstate). Antisymmetrite® have symmetric spin wave
function with total spin 1 (tripletstates). The threefokb@gneracy of spin 1 states is lifted
by the spin-orbit coupling.

Remark 36.4 Helium quantum numbers.  The classification of the helium states in
terms of single electron quantum numbers, sketched in 88ci.1, prevailed until the
1960's; a growing discrepancy between experimental resuld theoretical predictions
made it necessary to refine this picture. In particular, ifffei@nt Rydberg series sharing
a givenN-quantum number correspond, roughly speaking, to a quaitiz of the inter
electronic angl®, see figure36.1, and can not be described in terms of single electron
guantum numbelig, |,. The fact that something is slightly wrong with the singleatton
picture laid out in sec886.5.1is highlighted when considering the collinear configunatio
where both electrons are on tkame side of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quartatessshould also belong
to single electron quantum numbelsg [2) = (0, 0). However, the single electron picture
breaks down completely in the lim@ = 0 where electron-electron interaction becomes
the dominant #ect. The quantum states corresponding to this classicéigewation are
distinctively diferent from those obtained from the collinear dynamics wigicteons on
different sides of the nucleus. The Rydberg series related wabsical® = 0 dynamics
are on the outermost rigth side in ealhsubspectrum in figur86.6 and contain the
energetically highest states for givéhn quantum numbers, see also remaks A
detailed account of the historical development as well a®dem interpretation of the
spectrum can be found in refl][

Remark 36.5 Beyond the unstable collinear helium subspace. ~ The semiclassical
quantization of the chaotic collinear helium subspacessuised in refs/[ 8, 9]. Classical
and semiclassical considerations beyond what has beeunsd&t in sect36.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium wheothbelectrons are on
the same side of the nucleus reveals that this configuragidally stable both in the

helium - 27dec2004.tex



EXERCISES 609

collinear plane and perpendicular to it. The correspondirantum states can be obtained
with the help of an approximate EBK-quantization which r@senelium resonances with
extremely long lifetimes (quasi - bound states in the cantin). These states form

the energetically highest Rydberg series for a given ppadcijuantum numbeN, see
figure36.6 Details can be found in refsL(), 11].

In order to obtain the Rydberg series structure of the specti.e., the succession
of states converging to various ionization thresholds, wednto take into account the
dynamics of orbits which make large excursions alongrther r, axis. In the chaotic
collinear subspace these orbits are characterized by dywatpeences of formraQ") where
a stands for an arbitrary binary symbol sequence dhid @ succession af 0's in a row.

A summation of the forn} ;" taor, Wheret, are the cycle weights ir36.19, and cycle

expansion of indeed yield all Rydberg states up the varioniation thresholds, see
ref. [4]. For a comprehensive overview on spectra of two-electtoma and semiclassical
treatments ref.1].

Exercises

36.1.

36.2.

36.3.

36.4.

Kustaanheimo—Stiefel transformation. Check
the Kustaanheimo—Stiefel regularization for collinear
helium; derive the Hamiltoniar6(18 and the collinear
helium equations of motior6(19.

Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
My = oo, and angular momentum = 0, show that 36.5.
the three body problem can be written in terms of
three independent coordinates only, the electron-nucleus
distances; andr, and the inter-electron angl®, see
figure6.1

Helium trajectories. Do some trial integrations of
the collinear helium equations of motiof.(9. Due

to the energy conservation, only three of the phase
space coordinatesQq, Q., P1, P;) are independent.
Alternatively, you can integrate in 4 dimensions and use
the energy conservation as a check on the quality of your
integrator.

The dynamics can be visualized as a motion in the
original configuration spaceirz), ri > 0 quadrant,

or, better still, by an appropriately choser Roincaré
section, exercis@€6.4 Most trajectories will run away,
do not be surprised - the classical collinear helium is
unbound. Try to guess approximately the shortest cycle
of figure36.4

A Poincaré section for collinear Helium. ~ Construct
a Poincaré section of figur86.3 that reduces the 36.6.
helium flow to a map. Try to delineate regions which
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correspond to finite symbol sequences, i.e. initial
conditions that follow the same topological itinerary
in the figure 36.3a space for a finite number of
bounces. Such rough partition can be used to initiate
2—dimensional Newton-Raphson method searches for
helium cycles, exercisét.5

Collinear helium cycles.  The motion in the i{z,r2)
plane is topologically similar to the pinball motion in a
3-disk system, except that the motion is in the Coulomb
potential.

Just as in the 3-disk system the dynamics is simplified
if viewed in thefundamental domain, in this case the
region betweem; axis and the; = r, diagonal. Modify
your integration routine so the trajectory bouncégtoe
diagonal as fi a mirror. Miraculously, the symbolic
dynamics for the survivors again turns out to be binary,
with 0 symbol signifying a bouncefibther; axis, and

1 symbol for a bouncefbthe diagonal. Just as in the
3-disk game of pinball, we thus know what cycles need
to be computed for the cycle expansi@®(19.

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either
returning to the same; axis or reflecting & the
diagonal. Now either Use special symmetries of orbits
such as self-retracing to find all orbits up to length 5 by
a 1-dimensional Newton search.

Collinear helium cycle stabilities. Compute the
eigenvalues for the cycles you found in exercies




