Chapter 20

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king the élan vital the principle of
evolution ... writing a book, starting a war, founding a
school....”

—F. Scott FitzgeraldThis Side of Paradise

operator formalism. Here we slow down in order to develop esdimgertip

I N THE PRECEDING CHAPTERS W€ have moved rather briskly through the evolution
feeling for the traces of evolution operators.

20.1 Escaperates

We start by verifying the claimil.11) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. ddes again the game
of pinball of figurel.1. Designate byM a state space region that encloses the
three disks, say the surface of the taklall pinball directions. The fraction of
initial points whose trajectories start out within the stspace regiom1 and recur
within that region at the timeis given by

. 1
rM(t)zM f fM dxdys(y - () . (20.1)

This quantity is eminently measurable and physically eg#ng in a variety of
problems spanning nuclear physics to celestial mecharlic® integral overx
takes care of all possible initial pinballs; the integraépy checks whether they
are still within M by the timet. If the dynamics is bounded, and envelops the
entire accessible state spatg(t) = 1 for allt. However, if trajectories exiMm
the recurrence fraction decreases with time. For exampletrajectory that falls
off the pinball table in figuré..1is gone for good.
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CHAPTER 20. WHY CYCLE? 337

These observations can be made more concrete by examigipgthell phase
space of figurel.9. With each pinball bounce the initial conditions that suevi
get thinned out, each strip yielding two thinner strips witth. The total fraction
of survivors (L.2) aftern bounces is given by

R
g1 . 20.2
n |M|Z|M.|, (20.2)

wherei is a binary label of théth strip, and|M;| is the area of theéth strip.
The phase space volume is preserved by the flow, so the sfrs\avors are
contracted along the stable eigendirections, and ejettied the unstable eigendirections.
As a crude estimate of the number of survivors in itfmestrip, assume that the
spreading of a ray of trajectories per bounce is given by tofat, the mean
value of the expanding eigenvalue of the correspondinggomahtal matrix of the
flow, and replaceM;| by the phase space strip width estimgé|/IM| ~ 1/A;.
This estimate of a size of a neighborhood (given already @&B)ds right in spirit,
but not without drawbacks. One problem is that in generalkigenvalues of a
fundamental matrix for a finite segment of a trajectory havéwmariant meaning;
they depend on the choice of coordinates. However, we sateipterl16 that the
sizes of neighborhoods are determined by stability eigaagaof periodic points,
and those are invariant under smooth coordinate transtmnsa

In the approximatior, receives 2 contributions of equal size

n
Py~ 2 g gy (20.3)
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up to pre-exponential factors. We see here the interplalyeofito key ingredients

of chaos first alluded to in sect.3.1 the escape ratg equals local expansion
rate (the Lyapunov exponeiit= In A), minus the rate of global reinjection back
into the system (the topological entropy= In 2).

As at each bounce one loses routinely the same fraction jettosies, one
expects the sum2(.2 to fall off exponentially withn. More precisely, by the
hyperbolicity assumption of sedi6.1.1the expanding eigenvalue of the fundamental
matrix of the flow is exponentially bounded from both abovd balow,

1 < |Aminl < [A(X)] < [Amax » (20.4)

and the area of each strip iad. 29 is bounded byAmad < IMi| < |A 1 |. Replacing
IMi| in (20.2) by its over (under) estimates in terms|a&fnax, |Aminl immediately

leads to exponential bounds/(Bma)" < I'n < (2/|Amin)", i.€.,

IN|Amad = In2 > —% INTh >IN [Aminl = IN2. (20.5)

The argument based o&(.5 establishes only that the sequenge= —% InTy
has a lower and an upper bound for anyn order to prove thag, converge to the
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CHAPTER 20. WHY CYCLE? 338

limit -y, we first show that for hyperbolic systems the sum over saniivtervals
(20.2 can be replaced by the sum over periodic orbit stabilii®ys(20.4) the size
of M; strip can be bounded by the stability of ith periodic point:

1 IMi| 1
Ci— < — < Cor—, 20.6
N RN (20.6)

for any periodic point of periodn, with constant€; dependent on the dynamical
system but independent of The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, therdtimg of theith strip is
better and better approximated by the derivatives evaluatethe periodic point
within the strip. Hence the survival probability can be boei close to the cycle
point stability sum

\ &Ml
CiTh < Z Ll <Gl (20.7)
i

wherel',, = Zi(”) 1/|Aj| is the asymptotic trace sumiq.26. In this way we have
established that for hyperbolic systems the survival godibasum (20.2) can be
replaced by the periodic orbit surh@.26.

[exercise 20.1]

We conclude that for hyperbolic, locally unstable flows theefion 0.1) of [&X€™cise 14-4]
initial X whose trajectories remain trapped withif up to timet is expected to
decay exponentially,

Tp() o« e,

wherey is the asymptoti@scape ratelefined by

1
v = —tllm T INT pq(1) . (20.8)

20.2 Natural measurein termsof periodic orbits

We now refine the reasoning of se2fd. 1. Consider the tracel6.7) in the asymptotic
limit (16.25:

; ) gBA(x)
trL" = fdxo‘(x— f'(x)) 4% » Z eB|A_|
|

The factor ¥|A;j| was interpreted in20.2 as the area of thé&h phase space
strip. Hence tiL" is a discretization of thitegral [ dxé’A"® approximated by a
tessellation into strips centered on periodic poigtgigure1.11, with the volume
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CHAPTER 20. WHY CYCLE? 339

of theith neighborhood given by estima®f;| ~ 1/|A;|, ande’A"® estimated by
e?A') jts value at théth periodic point. If the symbolic dynamics is a complete,
any rectangled.m- - 9.51% - - - &) of sect.11.4.1lalways contains the cycle point
S-S5 - 5, hence even though the periodic points are of measure zero
(just like rationals in the unit interval), they are densetlom non—wandering set.
Equipped with a measure for the associated rectangle, dienobits sidifice to
cover the entire non—wandering set. The averagé®fevaluated on the non—
wandering set is therefore given by the trace, properly atined sx(1) = 1

PRI S
e =) g SN (20.9)

i
Herey; is thenormalized natural measure

(n)
D=1, i = €7 /1Al (20.10)

correct both for the closed systems as well as the open sysitgect15.1.3

Unlike brute numerical slicing of the integration spac@iah arbitrary lattice
(for a critique, see sect4.3), the periodic orbit theory is smart, as it automatically
partitions integrals by the intrinsic topology of the flonmdaassigns to each tile
the invariant natural measugge

20.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanovic)

Our goal in sectl5.1was to evaluate the space and time averaged expectation
value (15.9. An average over all periodic orbits can accomplish thedoly if
the periodic orbits fully explore the asymptotically aczibe state space.

Why should the unstable periodic points end up being densk& cycles
are intuitively expected to bdensebecause on a connected chaotic set a typical
trajectory is expected to behave ergodically, and passtelfinrmany times arbitrarily
close to any point on the set, including the initial pointlud trajectory itself. The
argument is more or less the following. Take a partitiomVdin arbitrarily small
regions, and consider particles that start out in regidn and return to it inn
steps after some peregrination in state space. In pantieufzrticle might return
a little to the left of its original position, while a closeighbor might return a
little to the right of its original position. By assumptiothe flow is continuous,
so generically one expects to be able to gently move thalmptint in such a
way that the trajectory returns precisely to the initialrpii.e., one expects a
periodic point of periodhin celli. As we diminish the size of regions;, aiming
a trajectory that returns td1; becomes increasingly filicult. Therefore, we are
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CHAPTER 20. WHY CYCLE? 340

guaranteed that unstable orbits of larger and larger paredensely interspersed
in the asymptotic non—wandering set.

The above argument is heuristic, by no means guaranteed ria anod it
must be checked for the particular system at hand. A variétgrgodic but
insuficiently mixing counter-examples can be constructed - thetrfemiliar
being a quasiperiodic motion on a torus.

20.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories rensainfined for all times,
escape rate20.8 vanishey = —sy = 0, and the leading eigenvalue of the Perron-
Frobenius operatoi@.10 is simply expéty) = 1. Conservation of material flow
thus implies that for bound flows cycle expansions of dynaieta functions
and spectral determinants satisfy ex@dmiv conservatiorsum rules:

)
1/£(0,0) = 1 0
/£(0,0) +Zn: T
F(0,0) = 1—ch(o,0)_o (20.11)
n=1

obtained by setting = 0 in (18.19, (18.19 cycle weightst, = e‘STp/|Ap| —
1/IApl . These sum rules depend neither on the cycle perigdsor on the
observable(x) under investigation, but only on the cycle stabilitleg;, Apo, - - -,
Apgd, and their significance is purely geometric: they are a nreastihow well
periodic orbits tessellate the state space. Conservafiomaterial flow provides
the first and very useful test of the quality of finite cycledémtruncations, and is
something that you should always check first when constrg@icycle expansion
for a bounded flow.

The trace formula version of the flow conservation flow sune mdmes in
two varieties, one for the maps, and another for the flows. &y fionservation
the leading eigenvalue & = 0, and for mapsi8.149) yields

1
trL" = =1+e™"+... . 20.12
P T (2012

For flows one can apply this rule by grouping together cyctesmft = T to
t=T+AT

1 T<ITp<T+AT Tp 1 T+AT
— —F - dt(1+e%t +...
AT ; |det(1— ME)) AT _]—;— ( teET S )
= 1+AiT 3 %T(es"ﬂ—l) ~1+e%T +... (20.13)
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CHAPTER 20. WHY CYCLE? 341

As is usual for the the fixed level trace sums, the convergeh(&9.12 is controled
by the gap between the leading and the next-to-leading \eadjexs of the evolution
operator.

20.4 Corredation functions

The time correlation function &g(t) of two observablesA and B along the
trajectoryx(t) = f!(xo) is defined as

Cag(t; %) = T|[nm % j; ! drA(X(t + 1)) B(X(7)), Xo = X(0). (20.14)

If the system is ergodic, with invariant continuous meagy(®)dx, then correlation
functions do not depend oxy (apart from a set of zero measure), and may be
computed by a state space average as well

Caslt) = fM A% po(X0)A(F(30)) B(0). (20.15)

For a chaotic system we expect that time evolution will lotdse information
contained in the initial conditions, so th@xg(t) will approach theuncorrelated
limit (A) - (B). As a matter of fact the asymptotic decay of correlation fioms

Cag := Cag — (A)(B) (20.16)

for any pair of observables coincides with the definitiomoking a fundamental
property in ergodic theory. We now assuii® = O (otherwise we may define
a new observable bB(x) — (B)). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of tleerBn-Frobenius oper-
ator £. We can write 20.15 as

Cpalt) = fM dx fM dy Ay)B(X)po(93(y — F'(x)).

and recover the evolution operator

Cpalt) = fM dx fM dy AY) L (y. ) B(X)oo(X)

We recall that in sectl4.1 we showed thap(x) is the eigenvector off
corresponding to probability conservation

f dy L% Y)o(y) = p(¥).
M
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CHAPTER 20. WHY CYCLE? 342

Now, we can expand thedependent part in terms of the eigenbasigLof

B(X)oo(X) = D, Capa(X).
a=0

wherepp(X) is the natural measure. Since the average of the left hdedsizero
the codficientcy must vanish. The action of then can be written as

Caclt) = Y &', | dy Ay, ) (2017)
a#0 M
[exercise 20.2]
We see immediately that if the spectrum hagam, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvédye= 0) then @0.17)
implies exponentiadecay of correlations

éAB(t) ~et,

The correlation decay rate= s, then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading migtue of the Perron-
Frobenius operator), while the choice of a particular oleae influences only
the prefactor.

Correlation functions are often accessible from time sarieasurable in laboratory
experiments and numerical simulations: moreover they iaked to transport
exponents.

20.5 Traceformulasvs. level sums

,
J Trace formulas 16.10 and (L6.23 diverge precisely where one would
like to use them, as equal to eigenvalues,. Instead, one can proceed as follows;
according to16.27 the “level” sums (all symbol strings of length are asymptotically
going likee®"

2

ieFixfn

&BAN%)
IA] ’

so annth order estimatey of the leading eigenvalue is given by

SA () g=smn
1= Y =T (20.18)

- Aj
icFix fn Al

which generates a “normalized measure.” THadlilty with estimating this1 —
oo limit is at least twofold:
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CHAPTER 20. WHY CYCLE? 343

1. due to the exponential growth in number of intervals, dredexponential
decrease in attainable accuracy, the maximadtainable experimentally or numerically
is in practice of order of something between 5 to 20.

2. the pre-asymptotic sequence of finite estimafgss not unique, because
the sumd', depend on how we define the escape region, and because imlgener
the areag\; in the sum 20.2 should be weighted by the density of initial conditions
Xo. For example, an overall measuring unit rescalvig — aM; introduces 1In
corrections insp) defined by the log of the sun20.9: s — sn) — Ina/n. This
can be partially fixed by defining a level average

PAIX)gsn

(¢49) o= > A (20.19)

ieFixfn

and requiring that the ratios of successive levels satisfy

_ <eBA(S(n)) >(n+l)
<68A(S(n))>(n)

This avoids the worst problem with the formulz0(18, the inevitable 1In corrections
due to its lack of rescaling invariance. However, even thoogich published
pondering of “chaos” relies on it, there is no need for sucmggstics: the dyn-
amical zeta functions and spectral determinants are airg@driant not only
under linear rescalings, but undal smooth nonlinear conjugacies— h(x), and
require non — oo extrapolations to asymptotic times. Comparing with thdeyc
expansions18.7) we see what the fference is; while in the level sum approach
we keep increasing exponentially the number of terms withigfierence to the
fact that most are already known from shorter estimatesidrcycle expansions
short terms dominate, longer ones enter only as exponigraiakll corrections.

The beauty of the trace formulas is that they are coordiaiiiz independent:
both |det(1— Mp)| — |det (L — MTe(x))| and e = A" contribution to the
cycle weightt, are independent of the starting periodic point pointFor the
fundamental matrixVl, this follows from the chain rule for derivatives, and for
& from the fact that the integral ovefA ™ is evaluated along a closed loop. In
addition,|det(1 - Mp)| is invariant under smooth coordinate transformations.

Résumé

We conclude this chapter by a general comment on the relafitre finite trace
sums such as2(Q.2 to the spectral determinants and dynamical zeta functions
One might be tempted to believe that given a deterministe aisum like 20.2
could be evaluated to any desired precision. For short fiimtes this is indeed
true: every regionV; in (20.2) can be accurately delineated, and there is no need
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CHAPTER 20. WHY CYCLE? 344

for fancy theory. However, if the dynamics is unstable, lo@aiations in initial
conditions grow exponentially and in finite time attain tieesf the system. The
difficulty with estimating then — oo limit from (20.2 is then at least twofold:

1. due to the exponential growth in number of intervals, dredexponential
decrease in attainable accuracy, the maximatainable experimentally or numerically
is in practice of order of something between 5 to 20;

2. thg pre-asymptotic sequence of finite estimates not unique, because
the sumd’, depend on how we define the escape region, and because imlgener
the areasM;| in the sum 20.2) should be weighted by the density of initigj.

In contrast, the dynamical zeta functions and spectratuah@@nts are invariant
underall smooth nonlinear conjugacies— h(x), not only linear rescalings, and
require non — co extrapolations.

Commentary

Remark 20.1 Nonhyperbolic measures. u; = 1/|Ai| is the natural measure only for
the strictly hyperbolic systems. For non-hyperbolic systethe measure might develop
cusps. For example, for Ulam type maps (unimodal maps widdrpiic critical point
mapped onto the “left” unstable fixed poirg, discussed in more detail in chapt&s),
the measure develops a square-root singularity o thyele:

1

= —— 20.20
|Aol/2 ( )

Ho

The thermodynamics averages are still expected to conwertpe “hyperbolic” phase
where the positive entropy of unstable orbits dominates theemarginal orbits, but they
fail in the “non-hyperbolic” phase. The general case remaimclear 19, 2, 3, 5].

Remark 20.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are notthe first thing that one would intuitively write dovting approximate trace formulas
are more accessibly heuristically. The trace formula ayietp(20.13 seems to have
be discussed for the first time by Hannay and Ozorio de Alméigal1]. Another
novelty of the cycle averaging formulas and one of their maitues, in contrast to the
explicit analytic results such as those of ref}, fis that their evaluatioloes notequire
any explicit construction of the (coordinate dependengeefunctions of the Perron-
Frobenius operator (i.e., the natural meaguy)e

Remark 20.3 Role of noise in dynamical systems.  In any physical application the
dynamicsis always accompanied by additional externakndibe noise can be characterized
by its strengtho- and distribution. Lyapunov exponents, correlation deaay dynamo

rate can be defined in this case the same way as in the detstimg@ise. You might fear
that noise completely destroys the results derived hereveMer, one can show that the
deterministic formulas remain valid to accuracy compagatith noise width if the noise
level is small. A small level of noise even helps as it makesdynamics more ergodic,
with deterministically non-communicating parts of thetstspace now weakly connected
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due to the noise, making periodic orbit theory applicabl@an-ergodic systems. For
small amplitude noise one can expand

A=Tp+ Aol +@mot + ...,

around the deterministic averagas The expansion cdicientsag, az, ... can also be
expressed via periodic orbit formulas. The calculationhefse cofficients is one of the

challenges facing periodic orbit theory, discussed in.[efs5, 7].

Exercises

20.1.

Escape rate of the logistic map. In our numerical work we fix (arbitrarily, the value

. . . - h inref.§]) b = 0.6,
(a) Calculate the fraction of trajectories remaining chosen in ref.{]) S0

trapped in the interval [ ] for the logistic map f(x) =0.1218x(1 - x)(1 - 0.6 x)
f(X) = A(L - (2x— 1)), (20.21) with a peak at (7.
and determine th& dependence of the escape rate (d) therepeller off (xX) = AX(1-X), for eitherA = 9/2
v(A) numerically. or A = 6 (this is a continuation of exercide.2).
(b) Work out a numerical method for calculating the (e) forthe 2-branch flow conserving map
lengths of intervals of trajectories remaining stuck
for niterations of the map. fo9) = h-p+ y(h-p)? +4hx el
(c) What is your expectation about thedependence 2h
near the critical valué, = 1? o = h+p-1+ y(h+p-17+4h(x— |
20.2. Four scale map decay. = Compute the second largest o ] ) 2h
eigenvalue of the Perron-Frobenius operator for the four This is a nonlinear perturbation oh( = 0)
scale map Bernoulli map 21.@; the first 15 elgenva!ues of
. the Perron-Frobenius operator are listed in réf. [
X if 0 <Xfobpas 0.8, h = 0.1. Use these parameter values
f(x) ={ (~D)((x=b/a)/(b—b/a))+b it b/a1 whenkompygigthe Lyapunov exponent.

20.3.

a(x—h) if b<x<b+b/a,
(1-b)((x-b-b/a)/(L-b-b/az))+b if Ladeeda) ardl(b) can be computed analytically; cases
. , (c), (d) and (e) require numerical computation of cycle
Lyapunov exponents for 1-dimensional maps. stabilities. Just to see whether the theory is worth the

Extend your cycle expansion programs so that the  ¢qple, also cross check your cycle expansions results

first and the sec_ond moments of observables can be ¢, cases (c) and (d) with Lyapunov exponent computed
computed. Use it to compute the Lyapunov exponent . direct numerical averaging along trajectories of
for some or all of the following maps: randomly chosen initial points:

(a) the piecewise-linear flow conserving map, the

skew tent map (f) trajectory-trajectory separation1%.27 (hint:

rescalesx every so often, to avoid numerical
ax if 0<x<al, overflows),

f(x) = { P
ai(l-¥ ifat<x<l () iterated stability {5.32.
(b) the Ulam mapf(x) = 4x(1 - x) How good is the numerical accuracy compared with the
(c) the skew Ulam map periodic orbit theory predictions? 0o
f(X) = Aox(1-X)(1-bX) , 1/Ag = X(1-%)(1-bx) .(20.23)
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