Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

aim is narrow; we keep the exposition focused on prereggisiv the

applications to be developed in this text. We assume thatebader
is familiar with dynamics on the level of the introductoryxt® mentioned in
remarkl.1, and concentrate here on developing intuition about whanhamical
system can do. It will be a coarse brush sketch—a full detsmnif all possible
behaviors of dynamical systems is beyond human ken. Anyfwag, novice there
is no shortcut through this lengthy detour; a sophisticatageler might prefer to
skip this well-trodden territory and embark upon the joyraechapterl 4.

W fast track:
chapter 14, p. 235

WE START oUT With a recapitulation of the basic notions of dynamics. Our

2.1 Dynamical systems

R
In a dynamical system we observe the world as a function a&.tNle express ou
observations as numbers and record how they change withdiwen suficiently

detailed information and understanding of the underlyiatural laws, we see the

future in the present as in a mirror. The motion of the plangtinst the celestial
firmament provides an example. Against the daily motion efgtars from East
to West, the planets distinguish themselves by moving antbadfixed stars.
Ancients discovered that by knowing a sequence of planettipns—latitudes
and longitudes—its future position could be predicted.

[section 1.3]

For the solar system, tracking the latitude and longitudéercelestial sphere
sufices to completely specify the planet’'s apparent motionpédisible values for
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CHAPTER 2. GO WITH THE FLOW 33

1)

Figure 2.1: A trajectory traced out by the evolution
rule ft. Starting from the state space potafter a  x
timet, the point is atf!(x).

positions and velocities of the planets form fitlease spacef the system. More
generally, a state of a physical system, at a given instdimi can be represented
by a single point in an abstract space cali&ate spacer phase spac# . As the
system changes, so does tepresentative poinin state space. We refer to the
evolution of such points adynamics and the functionf' which specifies where
the representative point is at tirhas theevolution rule

If there is a definite ruldf that tells us how this representative point moves
in M, the system is said to be deterministic. = For a determingicamical
system, the evolution rule takes one point of the state spademaps it into
exactly one point. However, this is not always possible.éx@mple, knowing the
temperature today is not enough to predict the temperatumertow; knowing
the value of a stock today will not determine its value torostr The state
space can be enlarged, in the hope that in facsently large state space it is
possible to determine an evolution rule, so we imagine tmatving the state
of the atmosphere, measured over many points over the @hdnet should be
suficient to determine the temperature tomorrow. Even thattigjnibe true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a uniqueduso trajectories
cannot intersect. We say ‘almost’ because there might exgst of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is ndingel. We may think
such sets a nuisance, but it is quite the contrary—they wibte us to partition
state space, so that the dynamics can be better understood.

[chapter 11]

Locally, the state spackt looks likeRY, meaning thatl numbers are dficient
to determine what will happen next. Globally, it may be a mooenplicated
manifold formed by patching together several piece®fforming a torus, a
cylinder, or some other geometric object. When we needéssthat the dimension
d of M is greater than one, we may refer to the pante M as x; where
i =1,2,3,...,d. The evolution rulef' : M — M tells us where a poink is
in M after a time intervat.

The pair M, f) constitute alynamical system

The dynamical systems we will be studying are smooth. Thexessed
mathematically by saying that the evolution rifecan be diferentiated as many
times as needed. Its action on a poxts sometimes indicated by(x,t) to
remind us thaf is really a function of two variables: the time and a pointtates
space. Note that time is relative rather than absolute, §otba time interval
is necessary. This follows from the fact that a point in stgiace completely
determines all future evolution, and it is not necessaryntmkanything else. The
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CHAPTER 2. GO WITH THE FLOW 34

Figure 2.2: The evolution ruleftcan be used to map
a regionM; of the state space into the regi6t{M;).

time parameter can be a real variakile R), in which case the evolution is called
aflow, or an integert(e Z), in which case the evolution advances in discrete steps
in time, given byiteration of amap Actually, the evolution parameter need not be
the physical time; for example, a time-stationary solutddm partial diferential
eqguation is parameterized by spatial variables. In suciatsiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy manifest themselves
through their trajectories: given an initial poixg, the evolution rule traces out a
sequence of points(t) = f!(Xg), thetrajectorythrough the poinky = x(0).
trajectory is parameterized by the tirhand thus belongs tof{(xg),t) € M x R.
By extension, we can also talk of the evolution of a regidnof the state space:
just apply ft to every point inM; to obtain a new regiorit(M;), as in figure2.2.

[exercise 2.1]

Becausef! is a single-valued function, any point of the trajectory dzn
used to label the trajectory. If we mark the trajectory byirisial point xg, we
are describing it in thd_agrangian coordinates We can regard the transport
of the material point at = 0 to its current pointx(t) = f'(xo) as a coordinate
transformation from the Lagrangian coordinates toEherian coordinates

The subset of points\ly, ¢ M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of xg; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbidismooth continuous
curve; for a map, it is a sequence of points. An orbit dyaamically invariant
notion. While “trajectory” refers to a stat€t) at time instant, “orbit” refers to
the totality of states that can be reached frggnwith state spacé foliated into
a union of such orbits (eacMy, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand quesdiwh there are many
answers, chapters to followffering some. Here is the first attempt to classify all
possible trajectories:

stationary: fY{(x) = x for all t
periodic:  fi(x) = f*Tr(x) for a given minimum period

aperiodic: fi(x) # f'(x)  forallt#t’ .

A periodic orbit (or acyclg p is the set of points\l, ¢ M swept out by a
trajectory that returns to the initial point in a finite timBeriodic orbits form a
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CHAPTER 2. GO WITH THE FLOW 35

very small subset of the state space, in the same sensetibattmumbers are a
set of zero measure on the unit interval.
[chapter 5]

Periodic orbits and equilibrium points are the simplestnegigs of ‘non-
wandering’ invariant sets preserved by dynamics. Dynaro&s also preserve
higher-dimensional smooth compact invariant manifoldssieaommonly encountered
are theM-dimensional tori of Hamiltonian dynamics, with notion oérpdic
motion generalized to quasiperiodic (superpositioMahcommesurate frequencies)
motion on a smooth torus, and families of solutions relaied tontinuous symmetry.

The ancients tried to make sense of all dynamics in termsrajgie motions;
epicycles, integrable systems. The embarassing truthtisdha generic dynamical
systems almost all motions are aperiodic. So we refine tissi@ilzation by dividing
aperiodic motions into two subtypes: those that wandigramd those that keep
coming back.

A point x e Mis called avandering pointif there exists an open neighborhood
M of x to which the trajectory never returns

() g Mo forall t>tmin. 2.1)

In physics literature, the dynamics of such state is oftéerred to agransient

Wandering points do not take part in the long-time dynansosjour first task
is to prune them from\1 as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set

For times much longer than a typical ‘turnover’ time, it malgense to relax
the notion of exact periodicity, and replace it by the notidmecurrence A point
is recurrentor non-wanderingf for any open neighborhood 1y of x and any time
tmin there exists a later timie such that

f{(x) e Mo. (2.2)

In other words, the trajectory of a non-wandering point teenthe neighborhood
My infinitely often. We shall denote b§ the non—wandering setf f, i.e., the
union of all the non-wandering points afl. The set, the non—wandering set of
f, is the key to understanding the long-time behavior of a dynal system; all
calculations undertaken here will be carried out on non-deeng sets.

So much about individual trajectories. What about cloudsititl points? If
there exists a connected state space volume that mapssatbunder forward
evolution (and you can prove that by the method of Lyapunawtionals, or
several other methods available in the literature), the foglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct di@sets, each with
its own basin of attraction the set of all points that fall into the attractor under
foward evolution. The attractor can be a fixed point, a péciadbit, aperiodic,
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CHAPTER 2. GO WITH THE FLOW 36

or any combination of the above. The most interesting ca$atof an aperiodic
recurrent attractor, to which we shall refer loosely atrange attractor We say
‘loosely’, as will soon become apparent that diagnosing aoding existence of
a genuine, card-carrying strange attractor is a highlymaal undertaking.

[example 2.3]

Conversely, if we can enclose the non—wanderingsby a connected state
space volumeM, and then show that almost all points withivlp, but not in
Q, eventually exitMg, we refer to the non—wandering $etas arepeller. An
example of a repeller is not hard to come by-the pinball gafreect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are sem@ienal that
almost all non-wandering points are aperiodic, that we lggiwen up the ancients’
fixation on periodic motions. Nothing could be further fromth. As longer and
longer cycles approximate more and more accurately fingmsats of aperiodic
trajectories, we shall establish control over non—wamdgesets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set anal lgetter

grip on what chaotic motion might look like, we need to ponfiews in a little
more depth.

2.2 Flows

There is no beauty without some strangeness.
—William Blake

A flow is a continuous-time dynamical system. The evolution fiiles a family
of mappings ofM — M parameterized by € R. Becausé represents a time
interval, any family of mappings that forms an evolutionerohust satisfy:

[exercise 2.2]
(@ fO%x)=x (in O time there is no motion)
(b) fY(f'(¥) = f*'(x) (the evolution law is the same at all times)
(c) the mappingx,t) — f(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © :’ _
[appendix H.1]

frs = flo 5 = fY(f9). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-'group? It may fail to form a group if the dynamicsnot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge'(f'(x)) = fO(x) =

X, in which case the family of mappind$(x) does not form a group. In exceedingly
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CHAPTER 2. GO WITH THE FLOW 37

many situations of interest—for times beyond the Lyapumme t for asymptotic
attractors, for dissipative partialférential equations, for systems with noise, for
non-invertible maps—the dynamics cannot be run backwardisnie, hence, the
circumspect emphasis aemgroups. On the other hand, there are many settings

of physical interest, where dynamics is reversible (sudmés-dimensional Hamiltonian
flows), and where the family of evolution mapsdoes form a group.

For infinitesimal times, flows can be defined byféiential equations. We
write a trajectory as

Xt +7) = f%7(x) = f(f(X0,1),7) (2.4)
and express the time derivative of a trajectory at p&{tt fexercise 2.3]
dx :
o P 0 T(f(X0, 1), 7)lr—g = X(t) . (2.5)
Tlr=0

as the time derivative of the evolution rule, a vector evadaat the same point.
By considering all possible trajectories, we obtain thetmeg(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

V(X) = X(t) . (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s methodadiamiliar procedures
for obtaining a set of dierential equations for the vector fiel@x) that describes
the evolution of a mechanical system. Equations of meckanay appear éierent

in form from (2.6), as they are often involve higher time derivatives, butguret¢ion
that is second or higher order in time can always be rewrdtea set of first order
equations.

We are concerned here with a much larger world of general floveghanical
or not, all defined by a time-independent vector fields). At each point of the
state space a vector indicates the local direction in wHiehtitajectory evolves.
The length of the vectaw(x)| is proportional to the speed at the poxptand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedtf, one can no longer think of the vector field
as being embedded in the state space. Instead, we have tinéntlagt each point
x of state space has afidirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctilethngent bundle
TM.

Example 2.1 A 2-dimensional vector field — v(X): A simple example of a flow is
afforded by the unforced Duffing system

X(t) y(t)
y(t) —0.15y(t) + x(t) — x(t)3 (2.7)

plotted in figure 2.3. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t),y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.
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Figure 2.3: (a) The 2-dimensional vector field TTTTT LlLL
for the Dufing system2.7), together with a short T[T LTS %ll
trajectory segment. (b) The flow lines. Each ¢T¢1¢ R P S P
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Figure 2.4: Lorenz “butterfly” strange attractor. (J. _020 “10 0 10 20
Halcrow) X
I v(xg) =0, (2.8)

Xq is anequilibrium point(also referred to asstationary fixed critical, invariant,
rest stagnationpoint, zero of the vector fieldv, or steady state our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map), and the tragtory remains
forever stuck atx;. Otherwise the trajectory passing throughat timet = 0
can be obtained by integrating the equatiah$)(

t
x(t) = fi{(x0) = Xo +fo dr v(x(7)), X(0) = Xp. (2.9)

We shall consider here ongutonomouslows, i.e., flows for which the velocity
field v, is stationary not explicitly dependent on time. A non-autonomous system

Y - wyn). (2.10)
-

can always be converted into a system where time does noaapgplicitly.
To do so, extend (‘suspend’) state space tode ()-dimensional by defining
x = {y, 7}, with a stationary vector field

[exercise 2.4]
[exercise 2.5]

V(X) = [ W({’ 7) ] . (2.11)

The new flowx = v(X) is autonomous, and the trajectorft) can be read 6 x(t)
by ignoring the last component af
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Figure 2.5: A trajectory of the Rossler flow at time
t =250. (G. Simon)

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X oy—X)
>'<=v(x)={ y | = px—y—xz} (2.12)
z Xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed oo = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ, = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria

at
[remark 2.2]

Xeq12 = (£ Vbl — 1), £ vb(o — 1), p - 1), (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQ, 1d unstable manifold closes into a homoclinic orbit
at p = 1356.... Beyond that, an infinity of associated periodic orbits are generated,
untilp = 24.74. . ., where EQ, , undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.4. (Continued in example 3.5.)

Example 2.3 The Rdéssler flow-A flow with a strange attractor: The Duffing
flow of figure 2.3 is bit of a bore—every trajectory ends up in one of the two attractive
equilibrium points. Let's construct a flow that does not die out, but exhibits a recurrent
dynamics. Start with a harmonic oscillator

X=-y, = X. :
X = -y y (2.14)

The solutions are re', ret, and the whole x-y plane rotates with constant angular
velocity 6 = 1, period T = 2r. Now make the system unstable by adding

X=-y, y =X+ ay, a>o0, (2.15)

or, in radial coordinates, t = arsir? 6, § = 1+ (a/2) sind. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, Kick it into 3rd dimension when X reaches some value c
by adding

z=b+zx-c), c>O0. (2.16)

flows - 1apr2008.tex



CHAPTER 2. GO WITH THE FLOW 40

As X crosses ¢, z shoots upwards exponentially, z ~ €*-9. In order to bring it back,
start decreasing X by modifying its equation to

X=-y-—2z.

Large z drives the trajectory toward x = O; there the exponential contraction by e
kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Rdssler!flow (for definitiveness, we fix the
parameters a, b, ¢ in what follows):

X+ ay
b+2z(x-c), a=b=02, c=57. (2.17)

z

The system is as simple as they get—it would be linear, were it not for the sole bilinear

i , . . . exercise 2.8]
term zx Even for so ‘simple’ a system the nature of long-time solutions is far from
obvious.

There are two repelling equilibrium points (2.8):

c+ Vc2 —4ab
+ T(a’ _1: 1)
(x.,y.,z) = (0.007Q -0.0351 0.0351)
(X.,V:,2,) = (5.6929 —28464 28.464) (2.18)

One is close to the origin by construction—the other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.5. As we
shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks with
time, so the flow is contracting.  Trajectories that start out sufficiently close to the origin
seem to converge to a strange attractor. We say ‘seem’ as there exists no procEf that
such an attractor is asymptotically aperiodic—it might well be that what we see is Bt e 331
long transient on a way to an attractive periodic orbit. For now, accept that figure 2.5
and similar figures in what follows are examples of ‘strange attractors.” (continued in
exercise 2.8 and example 3.4) (R. Paskauskas)

fast track:
W chapter 3, p. 46

2.3 Computing trajectories

o3

On two occasions | have been asked [by members o
Parliament], 'Pray, Mr. Babbage, if you put into the

machine wrong figures, will the right answers come out?’
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or lateryged to implement
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some finite time-step prescription for integration of theatgpns of motionZ.6).
The simplest is the Euler integrator which advances thedtajy bysr x velocity
at each time step:

X — X + Vi(X)or. (2.19)

This might siffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are marsllext reference texts
and computer programs that can help you learn how to sofferéitial equations
numerically using sophisticated numerical tools, suchsasigo-spectral methods

or implicit methods. If a ‘sophisticated’ integration ring takes days and[
gobbles up terabits of memory, you are using brain-damaggulével software.
Try writing a few lines of your own Runge-Kutta code in somendane everyday
language. While you absolutely need to master the requisiteerical methods,
this is neither the time nor the place to expound upon themw;, yau learn them
is your business. And if you have developed some nice raatioe solving
problems in this text or can point another student to soneisl&now.

exercise 2.6]

[exercise 2.7]

[exercise 2.9]
[exercise 2.10]

Résumé

Chaotic dynamics with a low-dimensional attractor can seafized as a succession
of nearly periodic but unstable motions. In the same spiriulence in spatially
extended systems can be described in terms of recurremnbtspaporal patterns.
Pictorially, dynamics drives a given spatially extendestsgn through a repertoire
of unstable patterns; as we watch a turbulent system evelery so often we
catch a glimpse of a familiar pattern. For any finite spatlotution and finite
time the system follows approximately a pattern belonging finite repertoire of
possible patterns, and the long-term dynamics can be thofigk a walk through
the space of such patterns. Recasting this image into matfenis the subject

of this book.

Commentary

Remark 2.1 Rdssler and Duffing flows. The Dufing system2.7) arises in the study
of electronic circuits}]. The Rossler flowZ.17) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. We shall us the Bbasld the 3-pinball (see
chapter8) systems throughout ChaosBook to motivate the notions ofdacé sections,
return maps, symbolic dynamics, cyce expansions, etc., €fbe Rossler flow was
introduced in ref. §] as a set of equations describing no particular physicakeaysbut
capturing the essence of chaos in a simplest imaginabletsrflow. Otto Rossler, a man
of classical education, was inspired in this quest by thatyacited grandfather of chaos,
Anaxagoras (456 B.C.). This, and references to earlier warkbe found in refs .5 8,
11]. We recommend in particular the inimitable Abraham andv@itlastrated classicq]
for its beautiful sketches of the Rossler and many otherdloiimothy Jonesi[] has a
number of interesting simulations on a Drexel website.
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Rossler flow is integrated in exerci8¢, its equilibria are determined in exercizs,
its Poincaré sections constructed in exer@sk and the corresponding return Poincaré
map computed in exercige2. Its volume contraction rate is computed in exerdisg its
topology investigated in exercige4, and its Lyapunov exponents evaluated in exertisé
The shortest Rossler flow cycles are computed and tabulatsercisel2.7.

Remark 2.2 Lorenz equation.  The Lorenz equation2(12 is the most celebrated
early illustration of “deterministic chaos’ ] (but not the first - the honor goes to Dame
Cartwright 27]). Lorenz’s paper, which can be found in reprint collectaoafs. [L4, 15],

is a pleasure to read, and is still one of the best introdastto the physics motivating
such models. For a geophysics derivation, see Rothmanecaotss []. The equations,
a set of ODEs irR3, exhibit strange attractor&§, 29, 30]. Frayland [L6] has a nice brief
discussion of Lorenz flow. Frgyland and Alfsern/] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are uhetlin ref. [L6]. Guckenheimer-
Williams [18] and Afraimovich-Bykov-Shilnikov 19 offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz éguatas undertaken by
Sparrow P1]. For a physical interpretation @fas “Rayleigh number.” see Jacksar]
and Seydelf5]. Lorenz truncation to 3 modes is so drastic that the modaidxeo relation
to the physical hydrodynamics problem that motivated it. &detailed pictures of Lorenz
invariant manifolds consult Vol Il of Jacksofi4]. Lorenz attractor is a very thin fractal —
as we saw, stable manifold thinckness is of order*£0but its fractal structure has been
accurately resolved by D. Viswanath, [L(]. (Continued in remark.1.)

Remark 2.3 Diagnosing chaos. In sect.1.3.1we have stated that a deterministic
system exhibits ‘chaos’ if its dynamics is locally unstafpesitive Lyapunov exponent)
and globally mixing (positive entropy). In sedt.3we shall define Lyapunov exponents,
and discuss their evaluation, but already at this point itilkdoe handy to have a few
quick numerical methods to diagnose chaotic dynamics. draskequency analysis
method [L5] is useful for extracting quasi-periodic and weakly chaaégions of state
space in Hamiltonian dynamics with many degrees of freed&ior. pointers to other
numerical methods, see ref.q].

Remark 2.4 Dynamical systems software: J.D. Meiss [L3] has maintained for many
yearsSci.nonlinear FAQuhich is now in part superseded by the SIAM Dynamical Systems
websitewww . dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software lisf],[ with links to DSTool, xpp,
AUTO, etc.. Springer on-linEncyclopaedia of Mathematiosaintains links to dynamical
systems software packages enm.springer.d®/d130210.htm
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EXERCISES

The exercises that you should do hawelerlined titles

43

. The rest¢maller type )

are optional. Dfficult problems are marked by any number of *** stars.

Exercises

2.1.

2.2.

2.3.

2.4.

2.5.

Trajectories do not intersect. A trajectory in the
state spaceéM is the set of points one gets by evolving
x € M forwards and backwards in time:

i =y

Show that if two trajectories intersect, then they are the
same curve.

Cx={ye M: forte R}.

2.6. Runge-Kutta integration.

Evolution as a group.  The trajectory evolutiorf! is
a one-parameter semigroup, whe2ed(

ft+s —

flo fS,

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter under
addition. Can you think of any other (semi-)group
replacing time?

Almost ODE'’s.

(a) Consider the poink on R evolving according
x = €*. Is this an ordinary dferential equation?

(b) Isx = x(x(t)) an ordinary diferential equation?
(c) What aboutx= x(t + 1) ?

All equilibrium points are fixed points.  Show that
a point of a vector fieldr where the velocity is zero is a
fixed point of the dynamics'.

Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potentiakp

X =-V¢(x)

wherex € RY, andg is a function from that space to the
realsR.

(@) Show that the velocity of the particle is in the
direction of most rapid decrease of the function
®.

(b) Show that all extrema af are fixed points of the
flow.
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2.7.

2.8.

2.9.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Implement the fourth-

order Runge-Kutta integration formula (see, for
example, ref. 17]) for X = v(X):
X1l = xn+%+§+%+ﬁ+0(6)
ki = 6tv(Xn), ko=087V(Xn+Kki/2)
ks = 67V(Xn+ka/2)
ki = 67V(Xn+ks).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rossler flow.  Use the result of exercise6 or some
other integration routine to integrate numerically the
Rossler flow 2.17). Does the result look like a ‘strange
attractor’?

Equilibria of the R dssler flow.

(a) Find all equilibrium points Xg, yq,2g) of the
Rossler system2(17). How many are there?

(b) Assume thatb = a. As we shall see, some
surprisingly large, and surprisingly small numbers
arise in this system. In order to understand their
size, introduce parameters

e=ajc, D=1-4¢, p* = (1+ VD)/2.

Express all the equilibria in terms of, €, D, p*).

Expand equilibria to the first order in Note that
it makes sense because £ b=0.2,c=5.7in

(2.17), € ~ 0.03. (continued as exercisel)

(Rytis Paskauskas)

Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
x=x%, x(0)=1
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(a) For what times do solutions of
X = X(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let's test the integrator you wrote in exercisé.
The equationx = —x with initial conditionsx(0) =
2 andx = 0 has as solutiox(t) = (1 + €Y.
Can your integrator reproduce this solution for
the intervalt € [0,10]? Check you solution by
plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

X +0.6X+X—|x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use&(0) =
X(0) = x(0) = 0. Can you reproduce the result
X(12) = 0.8462071873 (all digits are significant)?
Even though the equation being integrated is
chaotic, the time intervals are not long enough
for the exponential separation of trajectories to
be noticeable (the exponential growth factor is
~ 2.4).

(d) Determine the time interval for which the solution
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the helium system. In this exercise we commence their
evaluation for the collinear helium atorm.()
1, 2 Z 1

2 2 I Iy r1+r2'

1
H:§p§+

The nuclear charge for heliumZs= 2. Colinear helium
has only 3 degrees of freedom and the dynamics can be
visualized as a motion in they(r,), ri = 0 quadrant. In

(r1, r2)-coordinates the potential is singular fior— 0
nucleus-electron collisions. These 2-body collisions
can be regularized by rescaling the coordinates, with
details given in sec6.3. In the transformed coordinates
(X1, X2, P1, p2) the Hamiltonian equations of motion take
the form

. P2 QZ

P, = 2Q1{2— @2 - QA1+ ﬁ? }

i P2 2

P, = 2Q, {2— @1 - Q1+ %)}

QA = %Png, Q= %Pfo. (2.20)

whereR = (QF + Q3)Y/2.

() Integrate the equations of motion by the
fourth order Runge-Kutta computer routine of
exercise2.6 (or whatever integration routine you

like). A convenient way to visualize the &-
state space orbit is by projecting it onto the 2-
dimensional I(1(t), r2(t)) plane. (continued as
exercises.4)

of x = X, x(0) = 1 exists.

2.10. Classical collinear helium dynamics.  In order to
apply periodic orbit theory to quantization of helium
we shall need to compute classical periodic orbits of

(Gregor Tanner, Per Rosenqvist)
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