
Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

W   with a recapitulation of the basic notions of dynamics. Our
aim is narrow; we keep the exposition focused on prerequisites to the
applications to be developed in this text. We assume that thereader

is familiar with dynamics on the level of the introductory texts mentioned in
remark1.1, and concentrate here on developing intuition about what a dynamical
system can do. It will be a coarse brush sketch–a full description of all possible
behaviors of dynamical systems is beyond human ken. Anyway,for a novice there
is no shortcut through this lengthy detour; a sophisticatedtraveler might prefer to
skip this well-trodden territory and embark upon the journey at chapter14.

fast track:

chapter 14, p. 235

2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We express our
observations as numbers and record how they change with time; given sufficiently
detailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planetsagainst the celestial

[section 1.3]
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving amongthe fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions–latitudes
and longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude inthe celestial sphere
suffices to completely specify the planet’s apparent motion. Allpossible values for
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CHAPTER 2. GO WITH THE FLOW 33

Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space pointx, after a
time t, the point is atf t(x).

f (x)f (x)
t

x

positions and velocities of the planets form thephase spaceof the system. More
generally, a state of a physical system, at a given instant intime, can be represented
by a single point in an abstract space calledstate spaceor phase spaceM. As the
system changes, so does therepresentative pointin state space. We refer to the
evolution of such points asdynamics, and the functionf t which specifies where
the representative point is at timet as theevolution rule.

If there is a definite rulef that tells us how this representative point moves
in M, the system is said to be deterministic. For a deterministicdynamical
system, the evolution rule takes one point of the state spaceand maps it into
exactly one point. However, this is not always possible. Forexample, knowing the
temperature today is not enough to predict the temperature tomorrow; knowing
the value of a stock today will not determine its value tomorrow. The state
space can be enlarged, in the hope that in a sufficiently large state space it is
possible to determine an evolution rule, so we imagine that knowing the state
of the atmosphere, measured over many points over the entireplanet should be
sufficient to determine the temperature tomorrow. Even that is not quite true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so trajectories
cannot intersect. We say ‘almost’ because there might exista set of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is not defined. We may think

[chapter 11]
such sets a nuisance, but it is quite the contrary–they will enable us to partition
state space, so that the dynamics can be better understood.

Locally, the state spaceM looks likeRd, meaning thatd numbers are sufficient
to determine what will happen next. Globally, it may be a morecomplicated
manifold formed by patching together several pieces ofRd, forming a torus, a
cylinder, or some other geometric object. When we need to stress that the dimension
d of M is greater than one, we may refer to the pointx ∈ M as xi where
i = 1, 2, 3, . . . , d. The evolution rulef t : M → M tells us where a pointx is
inM after a time intervalt.

The pair (M, f ) constitute adynamical system.

The dynamical systems we will be studying are smooth. This isexpressed
mathematically by saying that the evolution rulef t can be differentiated as many
times as needed. Its action on a pointx is sometimes indicated byf (x, t) to
remind us thatf is really a function of two variables: the time and a point in state
space. Note that time is relative rather than absolute, so only the time interval
is necessary. This follows from the fact that a point in statespace completely
determines all future evolution, and it is not necessary to know anything else. The

flows - 1apr2008.tex



CHAPTER 2. GO WITH THE FLOW 34

Figure 2.2: The evolution rulef tcan be used to map
a regionMi of the state space into the regionf t(Mi).

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

Mi

t
ff (     )Mi

time parameter can be a real variable (t ∈ R), in which case the evolution is called
aflow, or an integer (t ∈ Z), in which case the evolution advances in discrete steps
in time, given byiterationof amap. Actually, the evolution parameter need not be
the physical time; for example, a time-stationary solutionof a partial differential
equation is parameterized by spatial variables. In such situations one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest themselves
through their trajectories: given an initial pointx0, the evolution rule traces out a
sequence of pointsx(t) = f t(x0), thetrajectory through the pointx0 = x(0). A

[exercise 2.1]
trajectory is parameterized by the timet and thus belongs to (f t(x0), t) ∈ M × R.
By extension, we can also talk of the evolution of a regionMi of the state space:
just apply f t to every point inMi to obtain a new regionf t(Mi), as in figure2.2.

Becausef t is a single-valued function, any point of the trajectory canbe
used to label the trajectory. If we mark the trajectory by itsinitial point x0, we
are describing it in theLagrangian coordinates. We can regard the transport
of the material point att = 0 to its current pointx(t) = f t(x0) as a coordinate
transformation from the Lagrangian coordinates to theEulerian coordinates.

The subset of pointsMx0 ⊂ M that belong to the infinite-time trajectory
of a given pointx0 is called theorbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. An orbit is adynamically invariant
notion. While “trajectory” refers to a statex(t) at time instantt, “orbit” refers to
the totality of states that can be reached fromx0, with state spaceM foliated into
a union of such orbits (eachMx0 labeled by a single point belonging to the set,
x0 = x(0) for example).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand question, and there are many
answers, chapters to follow offering some. Here is the first attempt to classify all
possible trajectories:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum periodTp

aperiodic: f t(x) , f t′ (x) for all t , t′ .

A periodic orbit (or acycle) p is the set of pointsMp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time.Periodic orbits form a

flows - 1apr2008.tex



CHAPTER 2. GO WITH THE FLOW 35

very small subset of the state space, in the same sense that rational numbers are a
set of zero measure on the unit interval.

[chapter 5]

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamicscan also preserve
higher-dimensional smooth compact invariant manifolds; most commonly encountered
are theM-dimensional tori of Hamiltonian dynamics, with notion of periodic
motion generalized to quasiperiodic (superposition ofM incommesurate frequencies)
motion on a smooth torus, and families of solutions related by a continuous symmetry.

The ancients tried to make sense of all dynamics in terms of periodic motions;
epicycles, integrable systems. The embarassing truth is that for a generic dynamical
systems almost all motions are aperiodic. So we refine the classification by dividing
aperiodic motions into two subtypes: those that wander off, and those that keep
coming back.

A point x ∈ M is called awandering point, if there exists an open neighborhood
M0 of x to which the trajectory never returns

f t(x) <M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to astransient.

Wandering points do not take part in the long-time dynamics,so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or thenon-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notionof recurrence. A point
is recurrentor non-wanderingif for any open neighborhoodM0 of x and any time
tmin there exists a later timet, such that

f t(x) ∈ M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote byΩ the non–wandering setof f , i.e., the
union of all the non-wandering points ofM. The setΩ, the non–wandering set of
f , is the key to understanding the long-time behavior of a dynamical system; all
calculations undertaken here will be carried out on non–wandering sets.

So much about individual trajectories. What about clouds ofinitial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flowis globally contracting
onto a subset ofM which we shall refer to as theattractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
foward evolution. The attractor can be a fixed point, a periodic orbit, aperiodic,
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CHAPTER 2. GO WITH THE FLOW 36

or any combination of the above. The most interesting case isthat of an aperiodic
recurrent attractor, to which we shall refer loosely as astrange attractor. We say

[example 2.3]
‘loosely’, as will soon become apparent that diagnosing andproving existence of
a genuine, card-carrying strange attractor is a highly nontrivial undertaking.

Conversely, if we can enclose the non–wandering setΩ by a connected state
space volumeM0 and then show that almost all points withinM0, but not in
Ω, eventually exitM0, we refer to the non–wandering setΩ as arepeller. An
example of a repeller is not hard to come by–the pinball game of sect.1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we havegiven up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponderflows in a little
more depth.

2.2 Flows

There is no beauty without some strangeness.

—William Blake

A flow is a continuous-time dynamical system. The evolution rulef t is a family
of mappings ofM → M parameterized byt ∈ R. Becauset represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

[exercise 2.2]

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’
[appendix H.1]

f t+s = f t ◦ f s = f t( f s) . (2.3)

The family of mappingsf t(x) thus forms a continuous (forward semi-) group.
Why ‘semi-’group? It may fail to form a group if the dynamics is not reversible,
and the rulef t(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inversef −t( f t(x)) = f 0(x) =
x , in which case the family of mappingsf t(x) does not form a group. In exceedingly
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CHAPTER 2. GO WITH THE FLOW 37

many situations of interest–for times beyond the Lyapunov time, for asymptotic
attractors, for dissipative partial differential equations, for systems with noise, for
non-invertible maps–the dynamics cannot be run backwards in time, hence, the
circumspect emphasis onsemigroups. On the other hand, there are many settings
of physical interest, where dynamics is reversible (such asfinite-dimensional Hamiltonian
flows), and where the family of evolution mapsf t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.4)

and express the time derivative of a trajectory at pointx(t),
[exercise 2.3]

dx
dτ

∣

∣

∣

∣

∣

τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) . (2.5)

as the time derivative of the evolution rule, a vector evaluated at the same point.
By considering all possible trajectories, we obtain the vector ẋ(t) at any point
x ∈ M. Thisvector fieldis a (generalized) velocity field:

v(x) = ẋ(t) . (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s method areall familiar procedures
for obtaining a set of differential equations for the vector fieldv(x) that describes
the evolution of a mechanical system. Equations of mechanics may appear different
in form from (2.6), as they are often involve higher time derivatives, but an equation
that is second or higher order in time can always be rewrittenas a set of first order
equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.6). At each point of the
state space a vector indicates the local direction in which the trajectory evolves.
The length of the vector|v(x)| is proportional to the speed at the pointx, and the
direction and length ofv(x) changes from point to point. When the state space is a
complicated manifold embedded inRd, one can no longer think of the vector field
as being embedded in the state space. Instead, we have to imagine that each point
x of state space has a different tangent planeTMx attached to it. The vector field
lives in the union of all these tangent planes, a space calledthe tangent bundle
TM.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15y(t) + x(t) − x(t)3 (2.7)

plotted in figure 2.3. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle TM.

flows - 1apr2008.tex



CHAPTER 2. GO WITH THE FLOW 38

Figure 2.3: (a) The 2-dimensional vector field
for the Duffing system (2.7), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a
trajectory, starting at the tail and ending at the
head. The longer the comet, the faster the flow
in that region. (a) (b)

Figure 2.4: Lorenz “butterfly” strange attractor. (J.
Halcrow)
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If v(xq) = 0 , (2.8)

xq is anequilibrium point(also referred to as astationary, fixed, critical, invariant,
rest, stagnationpoint, zero of the vector fieldv, or steady state- our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map), and the trajectory remains
forever stuck atxq. Otherwise the trajectory passing throughx0 at time t = 0
can be obtained by integrating the equations (2.6):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.9)

We shall consider here onlyautonomousflows, i.e., flows for which the velocity
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ
= w(y, τ) , (2.10)

can always be converted into a system where time does not appear explicitly.
[exercise 2.4]

[exercise 2.5]
To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining
x = {y, τ}, with a stationary vector field

v(x) =

[

w(y, τ)
1

]

. (2.11)

The new flowẋ = v(x) is autonomous, and the trajectoryy(τ) can be read off x(t)
by ignoring the last component ofx.
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Figure 2.5: A trajectory of the Rössler flow at time
t = 250. (G. Simon)
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Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =

















ẋ
ẏ
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(2.12)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at

[remark 2.2]

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.13)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1d unstable manifold closes into a homoclinic orbit
at ρ = 13.56. . .. Beyond that, an infinity of associated periodic orbits are generated,
until ρ = 24.74. . ., where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.4. (Continued in example 3.5.)

Example 2.3 The Rössler flow–A flow with a strange attractor: The Duffing
flow of figure 2.3 is bit of a bore–every trajectory ends up in one of the two attractive
equilibrium points. Let’s construct a flow that does not die out, but exhibits a recurrent
dynamics. Start with a harmonic oscillator

ẋ = −y , ẏ = x . (2.14)

The solutions are reit , re−it , and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x+ ay, a > 0 , (2.15)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c
by adding

ż= b+ z(x− c) , c > 0 . (2.16)
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As x crosses c, z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y− z.

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler!flow (for definitiveness, we fix the
parameters a, b, c in what follows):

ẋ = −y− z

ẏ = x+ ay

ż = b+ z(x− c) , a = b = 0.2 , c = 5.7 . (2.17)

The system is as simple as they get–it would be linear, were it not for the sole bilinear
[exercise 2.8]

term zx. Even for so ‘simple’ a system the nature of long-time solutions is far from
obvious.

There are two repelling equilibrium points (2.8):

x± =
c±
√

c2 − 4ab
2a

(a,−1, 1)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351)

(x+, y+, z+) = ( 5.6929, −28.464, 28.464) (2.18)

One is close to the origin by construction–the other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.5. As we
shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks with
time, so the flow is contracting. Trajectories that start out sufficiently close to the origin
seem to converge to a strange attractor. We say ‘seem’ as there exists no proof that

[exercise 3.5]
such an attractor is asymptotically aperiodic–it might well be that what we see is but a
long transient on a way to an attractive periodic orbit. For now, accept that figure 2.5
and similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.4) (R. Paškauskas)

fast track:

chapter 3, p. 46

2.3 Computing trajectories

On two occasions I have been asked [by members of
Parliament], ’Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?’
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, youneed to implement
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CHAPTER 2. GO WITH THE FLOW 41

some finite time-step prescription for integration of the equations of motion (2.6).
The simplest is the Euler integrator which advances the trajectory byδτ× velocity
at each time step:

xi → xi + vi(x)δτ . (2.19)

This might suffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If a ‘sophisticated’ integration routine takes days and

[exercise 2.6]
gobbles up terabits of memory, you are using brain-damaged high level software.
Try writing a few lines of your own Runge-Kutta code in some mundane everyday
language. While you absolutely need to master the requisitenumerical methods,

[exercise 2.7]
this is neither the time nor the place to expound upon them; how you learn them
is your business. And if you have developed some nice routines for solving

[exercise 2.9]
problems in this text or can point another student to some, let us know.

[exercise 2.10]

Résum é

Chaotic dynamics with a low-dimensional attractor can be visualized as a succession
of nearly periodic but unstable motions. In the same spirit,turbulence in spatially
extended systems can be described in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve,every so often we
catch a glimpse of a familiar pattern. For any finite spatial resolution and finite
time the system follows approximately a pattern belonging to a finite repertoire of
possible patterns, and the long-term dynamics can be thought of as a walk through
the space of such patterns. Recasting this image into mathematics is the subject
of this book.

Commentary

Remark 2.1 Rössler and Duffing flows. The Duffing system (2.7) arises in the study
of electronic circuits [2]. The Rössler flow (2.17) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. We shall us the Rössler and the 3-pinball (see
chapter8) systems throughout ChaosBook to motivate the notions of Poincaré sections,
return maps, symbolic dynamics, cyce expansions, etc., etc.. The Rössler flow was
introduced in ref. [3] as a set of equations describing no particular physical system, but
capturing the essence of chaos in a simplest imaginable smooth flow. Otto Rössler, a man
of classical education, was inspired in this quest by that rarely cited grandfather of chaos,
Anaxagoras (456 B.C.). This, and references to earlier workcan be found in refs. [5, 8,
11]. We recommend in particular the inimitable Abraham and Shaw illustrated classic [6]
for its beautiful sketches of the Rössler and many other flows. Timothy Jones [19] has a
number of interesting simulations on a Drexel website.
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Rössler flow is integrated in exercise2.7, its equilibria are determined in exercise2.8,
its Poincaré sections constructed in exercise3.1, and the corresponding return Poincaré
map computed in exercise3.2. Its volume contraction rate is computed in exercise4.3, its
topology investigated in exercise4.4, and its Lyapunov exponents evaluated in exercise15.4.
The shortest Rössler flow cycles are computed and tabulatedin exercise12.7.

Remark 2.2 Lorenz equation. The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [13] (but not the first - the honor goes to Dame
Cartwright [27]). Lorenz’s paper, which can be found in reprint collections refs. [14, 15],
is a pleasure to read, and is still one of the best introductions to the physics motivating
such models. For a geophysics derivation, see Rothman course notes [7]. The equations,
a set of ODEs inR3, exhibit strange attractors [28, 29, 30]. Frøyland [16] has a nice brief
discussion of Lorenz flow. Frøyland and Alfsen [17] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are included in ref. [16]. Guckenheimer-
Williams [18] and Afraimovich-Bykov-Shilnikov [19] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz equation was undertaken by
Sparrow [21]. For a physical interpretation ofρ as “Rayleigh number.” see Jackson [24]
and Seydel [25]. Lorenz truncation to 3 modes is so drastic that the model bears no relation
to the physical hydrodynamics problem that motivated it. For a detailed pictures of Lorenz
invariant manifolds consult Vol II of Jackson [24]. Lorenz attractor is a very thin fractal –
as we saw, stable manifold thinckness is of order 10−4 – but its fractal structure has been
accurately resolved by D. Viswanath [9, 10]. (Continued in remark9.1.)

Remark 2.3 Diagnosing chaos. In sect.1.3.1we have stated that a deterministic
system exhibits ‘chaos’ if its dynamics is locally unstable(positive Lyapunov exponent)
and globally mixing (positive entropy). In sect.15.3we shall define Lyapunov exponents,
and discuss their evaluation, but already at this point it would be handy to have a few
quick numerical methods to diagnose chaotic dynamics. Laskar’s frequency analysis
method [15] is useful for extracting quasi-periodic and weakly chaotic regions of state
space in Hamiltonian dynamics with many degrees of freedom.For pointers to other
numerical methods, see ref. [16].

Remark 2.4 Dynamical systems software: J.D. Meiss [13] has maintained for many
yearsSci.nonlinear FAQwhich is now in part superseded by the SIAM Dynamical Systems
websitewww.dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software list [14], with links to DSTool, xpp,
AUTO, etc.. Springer on-lineEncyclopaedia of Mathematicsmaintains links to dynamical
systems software packages oneom.springer.de/D/d130210.htm.
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The exercises that you should do haveunderlined titles . The rest (smaller type )
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceM is the set of points one gets by evolving
x ∈ M forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolutionf t is
a one-parameter semigroup, where (2.3)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter under
addition. Can you think of any other (semi-)group
replacing time?

2.3. Almost ODE’s.

(a) Consider the pointx on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ˙x = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector fieldv where the velocity is zero is a
fixed point of the dynamicsf t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’φ

ẋ = −∇φ(x)

wherex ∈ Rd, andφ is a function from that space to the
realsR.

(a) Show that the velocity of the particle is in the
direction of most rapid decrease of the function
φ.

(b) Show that all extrema ofφ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for
example, ref. [12]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.17). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the R össler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.17). How many are there?

(b) Assume thatb = a. As we shall see, some
surprisingly large, and surprisingly small numbers
arise in this system. In order to understand their
size, introduce parameters

ǫ = a/c , D = 1− 4ǫ2 , p± = (1±
√

D)/2 .

Express all the equilibria in terms of (c, ǫ,D, p±).
Expand equilibria to the first order inǫ. Note that
it makes sense because fora = b = 0.2, c = 5.7 in
(2.17), ǫ ≈ 0.03. (continued as exercise3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .
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(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise2.6.
The equation ¨x = −x with initial conditionsx(0) =
2 and ẋ = 0 has as solutionx(t) = e−t(1 + e2 t) .
Can your integrator reproduce this solution for
the intervalt ∈ [0, 10]? Check you solution by
plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ+ ẋ− |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
As initial conditions we will always use ¨x(0) =
ẋ(0) = x(0) = 0 . Can you reproduce the result
x(12)= 0.8462071873 (all digits are significant)?
Even though the equation being integrated is
chaotic, the time intervals are not long enough
for the exponential separation of trajectories to
be noticeable (the exponential growth factor is
≈ 2.4).

(d) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Classical collinear helium dynamics. In order to
apply periodic orbit theory to quantization of helium
we shall need to compute classical periodic orbits of

the helium system. In this exercise we commence their
evaluation for the collinear helium atom (7.6)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium isZ = 2. Colinear helium
has only 3 degrees of freedom and the dynamics can be
visualized as a motion in the (r1, r2), r i ≥ 0 quadrant. In
(r1, r2)-coordinates the potential is singular forr i → 0
nucleus-electron collisions. These 2-body collisions
can be regularized by rescaling the coordinates, with
details given in sect.6.3. In the transformed coordinates
(x1, x2, p1, p2) the Hamiltonian equations of motion take
the form

Ṗ1 = 2Q1













2−
P2

2

8
− Q2

2(1+
Q2

2

R4
)













Ṗ2 = 2Q2













2−
P2

1

8
− Q2

1(1+
Q2

1

R4
)













Q̇1 =
1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.20)

whereR= (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the
fourth order Runge-Kutta computer routine of
exercise2.6 (or whatever integration routine you
like). A convenient way to visualize the 3-d
state space orbit is by projecting it onto the 2-
dimensional (r1(t), r2(t)) plane. (continued as
exercise3.4)

(Gregor Tanner, Per Rosenqvist)
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[2.3] O. Rössler,Phys. Lett.57A, 397 (1976).
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