Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

—T.D. Lee

(R. Mainieri, P. Cvitanovic and E.A. Spiegel)

aim is narrow; we keep the exposition focused on preregsidid the

applications to be developed in this text. We assume thatehder
is familiar with dynamics on the level of the introductoryxt® mentioned in
remark1.1, and concentrate here on developing intuition about whanamtical
system can do. It will be a coarse brush sketch—a full desenipf all possible
behaviors of dynamical systems is beyond human ken. Anyfeag, novice there
is no shortcut through this lengthy detour; a sophisticataxeler might prefer to
skip this well-trodden territory and embark upon the joyraechapterl4.

fast track:
W chapter 14, p. 235

WE sTART oUT With a recapitulation of the basic notions of dynamics. Our

2.1 Dynamical systems

In a dynamical system we observe the world as a function &.tie express ou
observations as numbers and record how they change withdimen sdficiently
detailed information and understanding of the underlyiagiral laws, we see the
future in the present as in a mirror. The motion of the plaagtsnst the celestial
firmament provides an example. Against the daily motion efdtars from East
to West, the planets distinguish themselves by moving antbedixed stars.
Ancients discovered that by knowing a sequence of planeistipns—latitudes
and longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitudeercelestial sphere
suffices to completely specify the planet's apparent motionpédisible values for
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Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space poigtafter a  x
timet, the point is atf'(x).

positions and velocities of the planets form itease spacef the system. More
generally, a state of a physical system, at a given instaimhi& can be represented
by a single point in an abstract space calitate spacer phase spacé. As the
system changes, so does tepresentative poinin state space. We refer to the
evolution of such points adynamics and the functionf' which specifies where
the representative point is at tihas theevolution rule

If there is a definite rulef that tells us how this representative point moves
in M, the system is said to be deterministic. = For a determintdgicamical
system, the evolution rule takes one point of the state spademaps it into
exactly one point. However, this is not always possible.dxample, knowing the
temperature today is not enough to predict the temperatumerrow; knowing
the value of a stock today will not determine its value torostr The state
space can be enlarged, in the hope that in ficsently large state space it is
possible to determine an evolution rule, so we imagine tiatng the state
of the atmosphere, measured over many points over the gfinet should be
suficient to determine the temperature tomorrow. Even thattigjoite true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unicuedso trajectories
cannot intersect. We say ‘almost’ because there might exgst of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is ndingel. We may think
such sets a nuisance, but it is quite the contrary—they wibée us to partition
state space, so that the dynamics can be better understood.

Locally, the state spackt looks likeRY, meaning thatl numbers are sficient
to determine what will happen next. Globally, it may be a meooenplicated
manifold formed by patching together several piece®&fforming a torus, a
cylinder, or some other geometric object. When we needégsthat the dimension
d of M is greater than one, we may refer to the pamte M as x where
i =1,2,3,...,d. The evolution rulef' : M — M tells us where a poink is
in M after a time intervat.

The pair (M, f) constitute adynamical system

The dynamical systems we will be studying are smooth. Thexfgessed
mathematically by saying that the evolution rifecan be dfferentiated as many
times as needed. Its action on a points sometimes indicated by(x,t) to
remind us thaf is really a function of two variables: the time and a pointtate
space. Note that time is relative rather than absolute, §otba time interval
is necessary. This follows from the fact that a point in stgace completely
determines all future evolution, and it is not necessaryntmkanything else. The

flows - 1apr2008.tex

[chapter 11]



CHAPTER 2. GO WITH THE FLOW 34

Figure 2.2: The evolution rulef'can be used to map (Mi)
a regionM; of the state space into the regidi{{M;).

time parameter can be a real varialile R), in which case the evolution is called
aflow, or an integert(e Z), in which case the evolution advances in discrete steps
in time, given byiteration of amap Actually, the evolution parameter need not be
the physical time; for example, a time-stationary solutibra partial diferential
equation is parameterized by spatial variables. In suctatsiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy franifest themselves
through their trajectories: given an initial poixg, the evolution rule traces out a
sequence of point(t) = f'(xo), thetrajectory through the poinky = x(0).
trajectory is parameterized by the tinand thus belongs tof{(xo), t) € M x R.
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori'(M;), as in figure2.2

[exercise 2.1]

Becausef! is a single-valued function, any point of the trajectory dzn
used to label the trajectory. If we mark the trajectory byirigial point X, we
are describing it in thd.agrangian coordinates We can regard the transport
of the material point at = 0 to its current poinx(t) = f!(xo) as a coordinate
transformation from the Lagrangian coordinates toEherian coordinates

The subset of points\ly, c M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of Xo; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. An orbit idyaamically invariant
notion. While “trajectory” refers to a stat€t) at time instant, “orbit” refers to
the totality of states that can be reached frgnwith state spacé foliated into
a union of such orbits (eachy, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 Aclassification of possible motions?

What are the possible trajectories? This is a grand quesiiwh there are many
answers, chapters to followffering some. Here is the first attempt to classify all
possible trajectories:

stationary: f!(x) = x forall t
periodic:  f'(x) = f*Te(x) for a given minimum period,

aperiodic: fi(x) # f'(x)  forallt#t .

A periodic orbit (or acyclg pis the set of points\, ¢ M swept out by a
trajectory that returns to the initial point in a finite timPeriodic orbits form a
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very small subset of the state space, in the same sensetthalaumbers are a

set of zero measure on the unit interval.
[chapter 5]

Periodic orbits and equilibrium points are the simplestneples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynarcégs also preserve
higher-dimensional smooth compact invariant manifoldsshcommonly encountered
are theM-dimensional tori of Hamiltonian dynamics, with notion oérpdic
motion generalized to quasiperiodic (superpositioMahcommesurate frequencies)
motion on a smooth torus, and families of solutions relagea tontinuous symmetry.

The ancients tried to make sense of all dynamics in termsrafgtie motions;
epicycles, integrable systems. The embarassing truthti$dha generic dynamical
systems almost all motions are aperiodic. So we refine tissiéilzation by dividing
aperiodic motions into two subtypes: those that wandgramd those that keep
coming back.

Apointx € Mis called avandering pointif there exists an open neighborhood
Mo of xto which the trajectory never returns

i) e Mo  forall t>tyin- (2.1)

In physics literature, the dynamics of such state is oftéerred to agransient

Wandering points do not take part in the long-time dynangosjour first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set

For times much longer than a typical ‘turnover’ time, it maleznse to relax
the notion of exact periodicity, and replace it by the notibnecurrence A point
is recurrentor non-wanderingf for any open neighborhood, of x and any time
tmin there exists a later timig such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teemthe neighborhood
M infinitely often. We shall denote b the non—wandering setf f, i.e., the
union of all the non-wandering points #fl. The set, the non—wandering set of
f, is the key to understanding the long-time behavior of a dyinal system; all
calculations undertaken here will be carried out on non-deeng sets.

So much about individual trajectories. What about cloudsitiil points? If
there exists a connected state space volume that mapssdatbunder forward
evolution (and you can prove that by the method of Lyapunactionals, or
several other methods available in the literature), the ftoglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct dibgsets, each with
its own basin of attraction the set of all points that fall into the attractor under
foward evolution. The attractor can be a fixed point, a péciadbit, aperiodic,
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or any combination of the above. The most interesting cattetof an aperiodic
recurrent attractor, to which we shall refer loosely asrange attractor We say
‘loosely’, as will soon become apparent that diagnosing @oging existence of[
a genuine, card-carrying strange attractor is a highlymaalt undertaking.

example 2.3]

Conversely, if we can enclose the non-wanderingsby a connected state
space volumeMp and then show that almost all points withivip, but not in
Q, eventually exitMo, we refer to the non—-wandering d@tas arepeller. An
example of a repeller is not hard to come by-the pinball gafreect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are segtanal that
almost all non-wandering points are aperiodic, that we Igaven up the ancients’
fixation on periodic motions. Nothing could be further fromth. As longer and
longer cycles approximate more and more accurately fingmsats of aperiodic
trajectories, we shall establish control over non—-wamdesiets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set ana lpetter
grip on what chaotic motion might look like, we need to ponfilews in a little
more depth.

2.2 Flows o o
!‘
There is no beauty without some strangeness.
—William Blake

A flowis a continuous-time dynamical system. The evolution fiils a family
of mappings ofM — M parameterized by € R. Becausd represents a time
interval, any family of mappings that forms an evolutiorerahust satisfy:

[exercise 2.2]
(@) f°(x) = x (in O time there is no motion)
(b) fY(fY(x) = f*'(x) (the evolution law is the same at all times)
(c) the mappingX,t) — fi(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © :’ !
[appendix H.1]

55 = flo £S = f(f9). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-"group? It may fail to form a group if the dynamicsniot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge'(f{(x)) = fO(x) =

X, in which case the family of mapping$(x) does not form a group. In exceedingly
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many situations of interest—for times beyond the Lyapumme t for asymptotic
attractors, for dissipative partialftiérential equations, for systems with noise, for
non-invertible maps—the dynamics cannot be run backwardisnie, hence, the
circumspect emphasis @@mgroups. On the other hand, there are many settings

of physical interest, where dynamics is reversible (sudmés-dimensional Hamiltonian
flows), and where the family of evolution mapsdoes form a group.

For infinitesimal times, flows can be defined byfeliential equations. We
write a trajectory as

X(t+1) = f7(x0) = f(f(x0,1).7) (2.4)
and express the time derivative of a trajectory at pa{tjt [exercise 2.3
dx .
| = (0.0, Dleg = X (25)
T |7=0

as the time derivative of the evolution rule, a vector evi@dat the same point.
By considering all possible trajectories, we obtain thetmeg(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

v(X) = X(1). (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s methodediramiliar procedures
for obtaining a set of dierential equations for the vector fielx) that describes
the evolution of a mechanical system. Equations of mechamay appear élierent

in form from (2.6), as they are often involve higher time derivatives, butguretion
that is second or higher order in time can always be rewrétea set of first order
equations.

We are concerned here with a much larger world of general floveshanical
or not, all defined by a time-independent vector figlds(. At each point of the
state space a vector indicates the local direction in wHhiehtrtajectory evolves.
The length of the vectdw(X)| is proportional to the speed at the poigtand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedid, one can no longer think of the vector field
as being embedded in the state space. Instead, we have toéntlagt each point
x of state space has afidirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctilethngent bundle
M.

Example 2.1 A 2-dimensional vector field — Vv(X): A simple example of a flow is
afforded by the unforced Duffing system

Xt =y
y(t) —0.15y(t) + x(t) — x(t)° (2.7)

plotted in figure 2.3. The velocity vectors are drawn superimposed over the configuration
coordinates (X(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.
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Figure 2.3: (a) The 2-dimensional vector field
for the Dufing system 2.7), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a
trajectory, starting at the tail and ending at the
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Figure 2.4: Lorenz “butterfly” strange attractor. (J. _020 ~10 0 0 20
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Xq is anequilibrium point(also referred to asstationary fixed critical, invariant,
rest stagnationpoint, zero of the vector fieldv, or steady state our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map), and the tragtory remains
forever stuck atx;. Otherwise the trajectory passing throughat timet = O
can be obtained by integrating the equatidh$)(

t
X(t) = 11(x0) = %o + fo drvx@),  X0)=%. 2.9)

We shall consider here onutonomouslows, i.e., flows for which the velocity
field v; is stationary not explicitly dependent on time. A non-autonomous system

Yy o), (2.10)
2

can always be converted into a system where time does noaiapgglicitly.
To do so, extend (‘suspend’) state space tode ()-dimensional by defining
x = {y, 7}, with a stationary vector field

[exercise 2.4]
[exercise 2.5]

v(X) = [ W({’ 7 ] . (2.11)

The new flowx = v(x) is autonomous, and the trajectorft) can be read o x(t)
by ignoring the last component &f
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Figure 2.5: A trajectory of the Rossler flow at time
t=250. (G. Simon)

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X oly-x
X=v(X)=| VY |=| px-y-xz (2.12)
z Xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ, = (0, 0, 0) at the
origin is attractive. Atp = 1 it undergoes a pitchfork bifurcation into a pair of equilibria

at
[remark 2.2]

XEQL2 = (i \/b(p - 1), + \/b(p - 1),p - 1) s (213)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQq, 1d unstable manifold closes into a homoclinic orbit
atp = 1356.... Beyond that, an infinity of associated periodic orbits are generated,
untilp = 24.74. .., where EQ, , undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.4. (Continued in example 3.5.)

Example 2.3 The Rdssler flow-A flow with a strange attractor: The Duffing
flow of figure 2.3 is bit of a bore—every trajectory ends up in one of the two attractive
equilibrium points. Let’s construct a flow that does not die out, but exhibits a recurrent
dynamics. Start with a harmonic oscillator

X=-y, y=X. (2.14)

The solutions are re', re, and the whole x-y plane rotates with constant angular
velocity 8 = 1, period T = 2. Now make the system unstable by adding

X=-y, y=X+ay, a>0, (2.15)

or, in radial coordinates, t = arsir? 6, 0 = 1+ (a/2) sin . The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, kick it into 3rd dimension when X reaches some value ¢
by adding

z=b+2x-0), c>0. (2.16)
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As X crosses ¢, z shoots upwards exponentially, z ~ ¥ In order to bring it back,
start decreasing x by modifying its equation to

X=-y-z.

Large z drives the trajectory toward x = 0; there the exponential contraction by et
kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Rossler!flow (for definitiveness, we fix the
parameters a, b, ¢ in what follows):

= -y-z
X+ ay
b+zx-c), a=b=02, c=57. (2.17)

z

The system is as simple as they get—it would be linear, were it not for the sole bj éngflcrise 28]
term zx Even for so ‘simple’ a system the nature of long-time solutions is far from™ ="

obvious.
There are two repelling equilibrium points (2.8):

c+ V2 - 4ab
+ T(& -1,1)
(x.,y_.z) = (0.007Q -0.0351, 0.0351)
(Xe¥erz) = (5.6929 —28464 28464) (2.18)

Oneis close to the origin by construction—the other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.5.  As we
shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks with
time, so the flow is contracting.  Trajectories that start out sulfficiently close to the origin
seem to converge to a strange attractor. We say ‘seem’ as there exists no procff that
such an attractor is asymptotically aperiodic—it might well be that what we see is Bt a>° 39
long transient on a way to an attractive periodic orbit. For now, accept that figure 2.5
and similar figures in what follows are examples of ‘strange attractors.’” (continued in
exercise 2.8 and example 3.4) (R. Paskauskas)

W fast track:
chapter 3, p. 46

2.3 Computing trajectories

N

On two occasions | have been asked [by members o
Parliament], 'Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?’
| am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or laternged to implement
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some finite time-step prescription for integration of theagpns of motionZ.6).
The simplest is the Euler integrator which advances thedtajy bysr x velocity
at each time step:

X — X + Vi(X)oT. (2.19)

This might siffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are marsilext reference texts
and computer programs that can help you learn how to soffereintial equations
numerically using sophisticated numerical tools, suchsasigo-spectral methods

or implicit methods.  If a ‘sophisticated’ integration ring takes days an
gobbles up terabits of memory, you are using brain-damaggdlével software.
Try writing a few lines of your own Runge-Kutta code in somendane everyday
language. While you absolutely need to master the requisiteerical methods
this is neither the time nor the place to expound upon themw;yau learn them
is your business. And if you have developed some nice rautioe solving
problems in this text or can point another student to soneisi&now.

exercise 2.6]

'[exercise 2.7]

[exercise 2.9]
[exercise 2.10]

Résumé

Chaotic dynamics with a low-dimensional attractor can Bealized as a succession
of nearly periodic but unstable motions. In the same spirfhulence in spatially
extended systems can be described in terms of recurremtspaporal patterns.
Pictorially, dynamics drives a given spatially extendestssn through a repertoire
of unstable patterns; as we watch a turbulent system evebary so often we
catch a glimpse of a familiar pattern. For any finite spatalotution and finite
time the system follows approximately a pattern belonging finite repertoire of
possible patterns, and the long-term dynamics can be thofigk a walk through
the space of such patterns. Recasting this image into matienis the subject

of this book.

Commentary

Remark 2.1 Réssler and Duffing flows. The Dufing systemZ2.7) arises in the study
of electronic circuits}]. The Rossler flowZ.17) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. We shall us the BOasid the 3-pinball (see
chapter8) systems throughout ChaosBook to motivate the notions ofdacé sections,
return maps, symbolic dynamics, cyce expansions, etc., €fbe Rossler flow was
introduced in ref. §] as a set of equations describing no particular physicaesysbut
capturing the essence of chaos in a simplest imaginabletbrfloa. Otto Rdssler, a man
of classical education, was inspired in this quest by thayaited grandfather of chaos,
Anaxagoras (456 B.C.). This, and references to earlier warkbe found in refs.5 8,
11]. We recommend in particular the inimitable Abraham andvsitlastrated classic]
for its beautiful sketches of the Rossler and many otherdlolimothy Jonesi9] has a
number of interesting simulations on a Drexel website.
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Rossler flow is integrated in exercig¢, its equilibria are determined in exercids,
its Poincaré sections constructed in exer@ise and the corresponding return Poincaré
map computed in exercige?2. Its volume contraction rate is computed in exeréis its
topology investigated in exercige4, and its Lyapunov exponents evaluated in exertisé
The shortest Rossler flow cycles are computed and tabulatdrcisel2.7.

Remark 2.2 Lorenz equation.  The Lorenz equation2(12 is the most celebrated
early illustration of “deterministic chaos’Lf] (but not the first - the honor goes to Dame
Cartwright [27]). Lorenz’s paper, which can be found in reprint collectasfs. [L4, 15],

is a pleasure to read, and is still one of the best introdostto the physics motivating
such models. For a geophysics derivation, see Rothmaneaotss []. The equations,
a set of ODEs ifR3, exhibit strange attractor§§, 29, 30]. Frgyland [L€] has a nice brief
discussion of Lorenz flow. Frgyland and Alfsen/] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are ihetlin ref. [L6]. Guckenheimer-
Williams [18] and Afraimovich-Bykov-Shilnikov [ 9] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz éguatas undertaken by
Sparrow P1]. For a physical interpretation gf as “Rayleigh number.” see Jacksan]
and Seydel]5]. Lorenz truncation to 3 modes is so drastic that the modaidreo relation
to the physical hydrodynamics problem that motivated it. &detailed pictures of Lorenz
invariant manifolds consult Vol Il of Jacksofi4]. Lorenz attractor is a very thin fractal —
as we saw, stable manifold thinckness is of order10but its fractal structure has been
accurately resolved by D. Viswanatf [L0)]. (Continued in remark.1)

Remark 2.3 Diagnosing chaos. In sect.1.3.1we have stated that a deterministic
system exhibits ‘chaos’ if its dynamics is locally unstafpesitive Lyapunov exponent)
and globally mixing (positive entropy). In sed6.3we shall define Lyapunov exponents,
and discuss their evaluation, but already at this point ildkde handy to have a few
quick numerical methods to diagnose chaotic dynamics. drsskequency analysis
method [L5] is useful for extracting quasi-periodic and weakly chaoggions of state
space in Hamiltonian dynamics with many degrees of freed&or. pointers to other
numerical methods, see ref.].

Remark 2.4 Dynamical systems software: J.D. Meiss [.3] has maintained for many
yearsSci.nonlinear FAQvhich is now in part superseded by the SIAM Dynamical Systems
websitewww. dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software lisi,[ with links to DSTool, xpp,
AUTO, etc.. Springer on-linEncyclopaedia of Mathematiesaintains links to dynamical
systems software packages enm.springer.d®/d130210.htm
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The exercises that you should do hawvelerlined titles . The rest§maller type )
are optional. Dificult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceéM is the set of points one gets by evolving
x € M forwards and backwards in time:

Cx={yeM: f(x)=y forteR}.

2.6.
Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group.  The trajectory evolutiorf! is
a one-parameter semigroup, whe2e3(

ft+s - fl o fS.

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter under
addition. Can you think of any other (semi-)group

replacing time? 2.7.

2.3. Almost ODE's.

(a) Consider the poink on R evolving according

x = €*. Is this an ordinary dferential equation? 2 8.

(b) Isx = x(x(t)) an ordinary diferential equation?
(c) What abouk = x(t + 1) ?
2.4. All equilibrium points are fixed points. Show that

a point of a vector field where the velocity is zero is a
fixed point of the dynamicé'.

2.5. Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potentiakp

X=-V¢(X)

wherex € RY, andg is a function from that space to the

realsR. 2.9.

(a) Show that the velocity of the particle is in the
direction of most rapid decrease of the function

¢.
(b) Show that all extrema af are fixed points of the
flow.
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(c) Show that it takes an infinite amount of time
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gra
systems.

6. Runge-Kutta integration. Implement the fourt

order Runge-Kutta integration formula (see,
example, ref.12]) for X = v(x):
ki k
Xns1 = xn+€1+§2+%+%+0(675)
ki = 6tv(Xn), ko=6TV(X0+ke/2)
ks = 67V(Xn + ka/2)
Ky 6T V(%0 + k) .

If you already know your Runge-Kutta, program v
you believe to be a better numerical integration rot
and explain what is better about it.

Rossler flow.  Use the result of exercis26 or som
other integration routine to integrate numerically
Rossler flow 2.17). Does the result look like a ‘strar
attractor'?

Equilibria of the R 0ssler flow.

(a) Find all equilibrium points X;,Yq, Z;) of the
Rossler systen2(17). How many are there?

(b) Assume thath = a. As we shall see, sol
surprisingly large, and surprisingly small num!|
arise in this system. In order to understand
size, introduce parameters

e=ajc, D=1-4¢, p* = (1+ VD)/2.

Express all the equilibria in terms o, €, D, p*)
Expand equilibria to the first order in Note the
it makes sense because fo= b= 0.2,c= 5.7 ir
(2.17), e = 0.03. (continued as exerciSel)

(Rytis Paskausk:

Can you integrate me? Integrating equatio
numerically is not for the faint of heart. It is not alw
possible to establish that a set of nonlinear ord
differential equations has a solution for all times
there are many cases were the solution only exis
a limited time interval, as, for example, for the equz
x=x2, x(0)=1.
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http://eom.springer.de/D/d130210.htm
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(a) For what times do solutions of the helium system. In this exercise we commence their
. evaluation for the collinear helium atorm.@)
X = X(X(1)

wolo 1, 2 2 1
exist? Do you need a numerical routine to answer = 5Pt 5P norn + 4y
this question?

The nuclear charge for heliums= 2. Colinear helium

(b) Let's test the integrator you wrote in exercisé. has only 3 degrees of freedom and the dynamics can be
The equatiorx = —x with initial conditionsx(0) = visualized as a motion in they(r2), r; > 0 quadrant. In
2 andx = 0 has as solution(t) = e'(1 + €'). (r1.r2)-coordinates the potential is singular fior— 0
Can your integrator reproduce this solution for nucleus-electron collisions. These 2-body collisions
the intervalt € [0,10]? Check you solution by can be regularized by rescaling the coordinates, with
plotting the error as compared to the exactresult.  etails given in secB.3. In the transformed coordinates
(c) Now we will try something a little harder. The (X1, X2, P1, P2) the Hamiltonian equations of motion take
equation is going to be third order the form
2 2
% +0.6%+X—|X+1=0, P = le[z_%_Qg(“ﬁ;)}
which can be checked-numerically—to be chaotic. . p2 @
As initial conditions we will always use&(0) = P, = 2Q; [2— El - QL+ ﬁ} ]
X(0) = x(0) = 0. Can you reproduce the result
x(12) = 0.8462071873 (all digits are significant)? & = Ip2. G- lp2. (2.20)
Even though the equation being integrated is 4 4
chaotic, the time intervals are not long enough —_ (o2 211/2
for the exponential separation of trajectories to whereR = (Qr + Q)"
be noticeable (the exponential growth factor is (a) Integrate the equations of motion by the
~ 2.4). fourth order Runge-Kutta computer routine of
(d) Determine the time interval for which the solution exercise2.6 (or whatever integration routine you
of X = X2, x(0) = 1 exists. like). A convenient way to visualize the &-
state space orbit is by projecting it onto the 2-
dimensional K4(t), ro(t)) plane. (continued as
2.10. Classical collinear helium dynamics.  In order to exercises.4)
apply periodic orbit theory to quantization of helium
we shall need to compute classical periodic orbits of (Gregor Tanner, Per Rosenqvist)
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