Chapter 9

World In a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

the reflection symmetries of various potentials. As we st here and

in chapterl9, symmetries simplify the dynamics in a rather beautiful way
If dynamics is invariant under a set of discrete symmeiBethe state spacal
is tiled by a set of symmetry-related tiles, and the dynamics can dhecesl to
dynamics within one such tile, tHendamental domaiM/G. If the symmetry
is continuous the dynamics is reduced to a lower-dimenkidaaymmetrized
systemM/G, with “ignorable” coordinates eliminated (but not forgot). In
either case families of symmetry-related full state spaates are replaced by
fewer and often much shorter “relative” cycles. In preseata symmetry the
notion of a prime periodic orbit has to be reexamined: it aeed by the notion
of arelative periodic orbit the shortest segment of the full state space cycle which
tiles the cycle under the action of the group. Furthermdre,group operations
that relate distinct tiles do double duty as letters of arhaliet which assigns
symbolic itineraries to trajectories.

DYNAMICAL sysTEMs often come equipped with discrete symmetries, such as

Familiarity with basic group-theoretic notions is assunweith details relegated
to appendixH.1l. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly @ = D; example9.1and exampl®.2, and
Cay = D3 example9.3, backtrack as needed.

Our hymn to symmetry is a symphony in two movements: In thiaptbr
we look at individual orbits, and the ways they are inteteglaby symmetries.
This sets the stage for a discussion of how symmetrBectaglobal densities
of trajectories, and the factorization of spectral deteants to be undertaken in
chapterl9.
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CHAPTER 9. WORLD IN A MIRROR 129

9.1 Discrete symmetries

| TN

We show that a symmetry equates multiplets of equivaleritorb

We start by defining a finite (discrete) group, its state spapessentations,
and what we mean by symmetry(invariance or equivariancg of a dynamical
system.

Definition: A finite group consists of a set of elements

G={e02....00/ (9.1)
and a group multiplication rulg; o g; (often abbreviated ag;g;), satisfying

1. Closure: Ifgi,gj € G, thengj o g € G
2. Associativity:gk o (gj © i) = (9k © gj) © G
3. Identityee goe=eog=gforallge G

4. Inverseg!: For everyg € G, there exists a unique element
h=g?'eGsuchthahog=goh=e

|G|, the number of elements, is called the&er of the group.

Definition: Coordinate transformations. An activelinear coordinate transformation
X — Tx corresponds to a non-singulad > d] matrix T that shifts the vector

X € M into another vectolTx € M. The correspondingassivecoordinate
transformationf(x) — T~1f(x) changes the coordinate system with respect to
which the vectorf(x) € M is measured. Together, a passive and active coordinate
transformations yield the map in the transformed cooréiat

f(x) = THH(TX). (9.2)

Linear action of a discrete group elementg on statesx € M is given by a
finite non-singular d xd] matrix g, the linearrepresentatiorof elementg € G.
In what follows we shall indicate by bold fagethe matrix representation of the
action of group elemerg € G on the state space vectors M.

If the coordinate transformatianbelongs to a linear non-singular representation
of a discrete (finite) grouf®, for any elemeng) € G, there exists a numben < |G|
such that

nggogo“.og:e — |detg|:1 (93)

m times
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CHAPTER 9. WORLD IN A MIRROR 130

As the modulus of its determinant is unity, dgs anmth root of 1.

A group is asymmetryof a dynamics if for every solutiorf(x) € M and
ge G,y =gf(x)is also a solution:

Definition: Symmetry of a dynamical system. A dynamical system X, f)

is invariant (or G-equivarianj under a symmetry grou@® if the “equations of
motion” f : M — M (a discrete time magp, or the continuous flow!) from the
d-dimensional manifold\ into itself commute with all actions @5,

f(gx) = gf(x). (9.4)

Another way to state this is that the “law of motion” is invat, i.e., retains its
form in any symmetry-group related coordinate frarfde)

f(x) = g7 (99, (9.5)

for any statex e M andanyfinite non-singular ixd] matrix representatiog of
element € G.

Why “equivariant™? A functiorh(x) is said to beG-invariantif h(x) = h(gx)
for all g € G. The mapf : M — M maps vector into a vector, hence a slightly
different invariance conditiof(x) = g~ f(gx). It is obvious from the context, but
for verbal emphasis some like to distinguish the two cases/guivariant. The
key result of the representation theory of invariant fumsiis:

Hilbert-Weyl theorem. For a compact grouf® there exist a finité&-invariant
homogenous polynomial bagis, U, . . ., Uy} such that ang-invariant polynomial
can be written as a multinomial

h(X) = p(ua(x), U2(x), ..., Um(x)) . (9.6)

In practice, explicit construction of such basis does netrseasy, and we will not
take this path except for a few simple low-dimensional ca®és prefer to apply
the symmetry to the system as given, rather than undertakees ©f nonlinear
coordinate transformations that the theorem suggests.

For a generic ergodic orbit!(x) the trajectory and any of its images under
action ofg € G are distinct with probability onef'(x) n gf'(x) = 0 for all t, t'.
For compact invariant sets, such as fixed points and per@dits, especially the
short ones, the situation is veryfi@rent.
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CHAPTER 9. WORLD IN A MIRROR 131

9.1.1 Isotropy subgroups

The subset of pointsVly, ¢ M that belong to the infinite-time trajectory of a
given pointxg is called theorbit (or asolution) of xg. An orbit is adynamically
invariant notion: it refers to the totality of states that can be reddhem xg, with
the full state spac# foliated into a union of such orbits. We label a generic orbit
My, by any point belonging to it = X(0) for example. A generic orbit might be
ergodic, unstable and essentially uncontrollable. Treteggy of this monograph
is to populate the state space by a hierarchgamhpact invariant setequilibria,
periodic orbits, invariant tori,..), each computable in a finite time. Orbits which
are compact invariant sets we label by whatever alphabetndectinvenient in
a particular applicationEQ = Xeq = Meq for an equilibrium,p = M, for a
periodic orbit, etc..

The set of pointgx generated by all actiorgge G of the groupG is called the
group orbitof x e M. If G is a symmetry, intrinsic properties of an equilibrium
(such as Floquet exponents) or a cygdperiod, Floquet multipliers) and its
image under a symmetry transformatigne G are equal. A symmetry thus
reduces the number of dynamically distinct solutiokt, of the system. So
we also need to determine the symmetry cfadution as opposed to9(5), the
symmetry of thesystem

Definition: Isotropy subgroup. Letp = My c M be an orbit of the system. A
set of group actions which maps an orbit into itself,

Gp=1{0CG:gMp = My}, (9.7)

is called anisotropy subgroupmf the solutionM,. We shall denote by, the
maximalisotropysubgroup ofMp. For a discrete subgroup

Gp={eby,bs,...,bn} CG, (9.8)

of orderh = |Gp|, group elements (isotropies) map orbit points into orbinf®
reached at dierent times. For continuous symmetries the isotropy suip@,
can be any continuous or discrete subgrouf of

LetH = {ge by, bs,...,by} € G be a subgroup of orddr = |[H|. The set of
h elementdc, chy, chs, ..., chy}, c € G but not inH, is called leftcoset cH For
a given subgroupd the group elements are partitioned imdoandm — 1 cosets,
wherem = |G|/|H|. The cosets cannot be subgroups, since they do not inclede th
identity element.

9.1.2 Conjugate elements, classes and orbit multiplicity

If Gy, is the isotropy subgroup of orbi,, elements of the coset spage G/Gp
generate then— 1 distinct copies o\, so for discrete groups the multiplicity of
an equilibrium or a cyclg is mp = |G|/|Gp|.
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CHAPTER 9. WORLD IN A MIRROR 132

An elementb € G is conjugateto a if b = cac wherec is some other
group element. |Ib andc are both conjugate t&, they are conjugate to each other.
Application of all conjugations separates the set of grdements into mutually
not-conjugate subsets callelhsses The identitye is always in the clasge} of its
own. This is the only class which is a subgroup, all othersgadack the identity
element. Physical importance of classes is clear frérf),(the way coordinate
transformations act on mappings: action of elements ofssckay reflections, or
discrete rotations) is equivalent up to a redefinition of¢berdinate frame. We
saw above that splitting of a group into an isotropy subgrou, andm - 1
cosetscGy, relates a solutionM, to m— 1 other distinct solutionsM,,. Clearly
all of them have equivalent isotropies: the precise staténisethat the isotropy
subgroup of orbit pis conjugate to the isotropy subgroupGep = ¢ Gy c L.

The next step is the key step; if a set of solutions is equitddy symmetry
(a circle, let's say), we would like to represent it by a sengblution (shrink the
circle to a point).

Definition: Invariant subgroup. A subgroupH < G is aninvariant subgroup
or normal divisorif it consists of complete classes. Class is complete if no
conjugation takes an element of the class outi of

H dividesG into H andm — 1 cosets, each of ord@id|. Think of action of
H within each subset as identifying ifid| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group GH of G, with respect
to thenormal divisor(or invariant subgroupM. Its order ism = |G|/|H|, and its
multiplication table can be worked out from tk&multiplication table class by
class, with the subgrould playing the role of identityG/H is homeomorphito
G, with |[H| elements in a class @ represented by a single elementGyH.

So far we have discussed the structure of a group as an dbstitéig. Now
we switch gears to what we really need this for: describe ttiera of the group
on the state space of a dynamical system of interest.

Definition: Fixed-point subspace. The fixed-point subspace of a given subgroup
H € G, G a symmetry of dynamics, is the set state space pointpeefit-wise
invariant under any subgroup action

Fix(H) = {xe M:hx= xforallhe H}. (9.9)
A typical point in FixH) moves with time, but remains withifi(Fix(H)) <
Fix(H) for all times. This suggests a systematic approach to sgetompact

invariant solutions. The larger the symmetry subgroupstheller Fix{H), easing
the numerical searches, so start with the largest subgidupst.

Definition: Invariant subspace. M, c M s aninvariant subspace if

{M, :gxe M, forallge Gandxe M,}. (9.10)
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CHAPTER 9. WORLD IN A MIRROR 133

{0} and M are always invariant subspaces. So is anyH)x{hich is point-wise
invariant under action db. We can often decompose the state space into smaller
invariant subspaces, with group acting within each “chusdgarately:

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

As a first, coarse attempt at classification of orbits by tegmmetries, we
take note three types of equilibria or cycles: asymmetrisymmetric equilibria
or cyclessbuilt by repeats of relative cycles &nd boundary equilibria.

Asymmetric cycles: An equilibrium or periodic orbit is not symmetric {iy} N
{gxa} = 0, where{x,} is the set of periodic points belonging to the cyaleThus

g € G generatdG| distinct orbits with the same number of points and the same
stability properties.

Symmetric cycles: A cycle s is symmetric(or self-dua) if it has a non-trivial
isotropy subgroup, i.e., operating withe G, c G on the set of cycle points
reproduces the seyy € G, acts a shift in time, mapping the cycle poit M,
into fTe/Col(x)

Boundary solutions: An equilibrium x4 or a larger compact invariant solution in
a fixed-point subspace F&{, gxq = Xq for all g € G lies on the boundary of
domains related by action of the symmetry group. A soluttmat ts point-wise
invariant under all group operations has multiplicity 1.

A string of unmotivated definitions (or an unmotivated deiom of strings)
has a way of making trite mysterious, so let's switch geaevetbp a feeling for
why they are needed by first working out the simplest, éxample with a single
reflection symmetry.

Example 9.1 Group D; - a reflection symmetric 1d map: Consider a 1d map f
with reflection symmetry f(—-x) = —f(X). An example is the bimodal “sawtooth” map
of figure 9.1, piecewise-linear on the state space M = [-1, 1] split into three regions
M = {M_, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C, R} corresponding to an admissible trajectory. Denote the reflection operation
by Rx= —x. The 2-element group {e, R} goes by many names - here we shall refer to it
as C,, the group of rotations in the plane by angle nr, or D1, dihedral group with a single
reflection. The symmetry invariance of the map implies that if {X,} is a trajectory, than
also {Rx,} is a trajectory because Rx,;1 = Rf(xp) = f(RX) .

Asymmetric cycles:R generates a reflection of the orbit with the same number of points
and the same stability properties, see figure 9.1 (c).

Symmetric cycles:A cycle s is symmetric (or self-dual) if operating with R on the set of
cycle points reproduces the set. The period of a symmetric cycle is even (ns = 2ng), and
the mirror image of the Xs cycle point is reached by traversing the irreducible segment
§ (relative periodic orbit) of length ns, f™(xs) = RXs, see figure 9.1 (b).

Boundary cycles: In the example at hand there is only one cycle which is_neither
symmetric nor antisymmetric, but lies on the boundary Fix(G): the fixed point C at the
origin.
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CHAPTER 9. WORLD IN A MIRROR 134

f(x) f(x) f(x)
R —
CR
fL fC fR S
Figure 9.1: The bimodal Ulam sawtooth map with = %
the D; symmetry f(-x) = —f(x). (a) Boundary C X 2 X
fixed pointC, asymmetric fixed points pajt., R}. IR o
(b) Symmetric Ziycleﬁ. (c) Asymmetric 2- L [~ LC
cycles pair{LC,CR}. Continued in figure9.6).
(Yueheng Lan) (a) (b) (C)

We shall continue analysis of this system in example 9.4, and work out the
symbolic dynamics of such reflection symmetric systems in example 11.2.

As reflection symmetry is the only discrete symmetry that p ofdhe interval
can have, this example completes the group-theoretic sinaly +d maps.

For 3d flows three types of discrete symmetry groups of order 2 cae:ar

reflections:o(x,y,2 = (XY,-2

rotations:R(x,y,2 = (-X-V,2
inversions:P(x,y,2) = (=% -Yy,-2) (9.11)
Example 9.2 Desymmetrization of Lorenz flow: (Continuation of example 4.7.)

Lorenz equation (2.12) is invariant under the action of dihedral group D1 = {e, R}, where
R is [x, y]-plane rotation by n about the z-axis:

(X¥,2 = R(XY.2 = (-X.-Y.2). (9.12)

R? = 1 condition decomposes the state space into two linearly irreducible subspaces
M= M+ ® M, the z-axis M* and the [X,y] plane M~, with projection operators onto
the two subspaces given by

1 000 100
P*=Z(1+R=|0 0 0|, P=1-R=|0 1 0. (9.13)
2 00 1 0 0 0

As the flow is Dy-invariant, so is its linearization x = AX. Evaluated at EQy, A commutes
with R, and, as we have already seen in example 4.6, the EQ, stability matrix decomposes
into [Xx,y] and z blocks.

The 1-d M* subspace is the fixed-point subspace of Dy, with the z-axis points
left point-wise invariant under the group action

Fix(D1) = {xe M* :gx=xforge {e R}}. (9.14)
A point X(t) in Fix(G) moves with time, but remains within x(t) C Fix(G) for all times;
the subspace M* = Fix(G) is flow invariant. In case at hand this jargon is a bit of an
overkill: clearly for (x,y) = (0O, 0) the full state space Lorenz equation (2.12) is reduced

to the exponential contraction to the EQ, equilibrium,

7=-bz. (9.15)
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CHAPTER 9. WORLD IN A M 35

Figure 9.2: (a) Lorenz attractor plotted
[X,y,Z], the doubled-polar angle coordin:
(9.16, with points related byr-rotation in th
[x y] plane identified. Stable eigenvectorstEf),
e® and e, along thez axis ©.15. Unstabl
manifold orbitW“(EQ,) (green) is a continuati
of the unstablee® of EQ,. (b) Blow-up ¢
the region neaEQ,: The unstable eigenplane
EQ, is defined by Re® and Ime®, the stab
eigenvectoe®. The descent of thEQ, unstabl
manifold (green) defines the innermost edge ¢
strange attractor. As it is clear from (a), it ¢
defines its outermost edge. (E. Siminos)

Im &)

However, for flows in higher-dimensional state spaces the flow-invariant M* subspace
can itself be high-dimensional, with interesting dynamics of its own. Even in this
simple case this subspace plays an important role as a topological obstruction, with
the number of winds of a trajectory around it providing a natural symbolic dynamics.

The M~ subspace is, however, not flow-invariant, as the nonlinear terms z =
Xy—bzin the Lorenz equation (2.12) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) # O state space M. The R symmetry is nevertheless very useful.

By taking as a Poincaré section any R-invariant, infinite-extent, non-self-intersecting
surface that contains the z axis, the state space is divided into a half-space fundamental
domain M = M/D; and its 180 rotation RM. An example is afforded by the ¥ plane
section of the Lorenz flow in figure 3.7. Take the fundamental domain M to be the half-
space between the viewer and . Then the full Lorenz flow is captured by re-injecting
back into M any trajectory that exits it, by a rotation of = around the z axis.

As any such R-invariant section does the job, a choice of a “fundamental domain”
is largely mater of taste. For purposes of visualization it is convenient to make instead
the double-cover nature of the full state space by M explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (X, y) in polar coordinates (X,y) =
(r cose, r sinf), and then plotting the flow in the “doubled-polar angle representation:”

(xX,Y) (r cos @, r sin 29)

(& = y?)/r, 2xy/r), (9.16)

as in figure 9.2 (a). In this representation the M = M/D; fundamental domain flow is
a smooth, continuous flow, with (any choice of) the fundamental domain stretched out
to seamlessly cover the entire [X',y'] plane.

We emphasize: such nonlinear coordinate transformations are not required to
implement the symmetry quotienting M/G, unless there are computational gains in
a nonlinear coordinate change suggested by the symmetry. We offer them here only
as a visualization aid that might help the reader disentangle 2-d projections of higher-
dimensional flows. All numerical calculations are usually carried in the initial, full state
space formulation of a flow, with symmetry-related points identified by linear symmetry
transformations. (Continued in example 10.5.)

(E. Siminos and J. Halcrow)

We now turn to discussion of a general discrete symmetrymynaith elements
that do not commute, and illustrate it by the 3-disk game pball, example9.3
and exampl®.5.
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CHAPTER 9. WORLD IN A MIRROR 136

Figure 9.3: The symmetries of three disks on
an equilateral triangle. The fundamental domain
indicated by the shaded wedge.

F in depth:
3 appendix H, p. 706

9.2 Relative periodic orbits o

X

We show that a symmetry reduces computation of periodidibi repeats of
shorter, “relative periodic orbit” segments.

Invariance of a flow under a symmetry means that the symmiatage of a
cycle is again a cycle, with the same period and stabilitye fiaw orbit may be
topologically distinct (in which case it contributes to tmelltiplicity of the cycle)
or it may be the same cycle.

A cycle is symmetricunder symmetry operatiog if g acts on it as a shift
in time, advancing the starting point to the starting poihtgymmetry related
segment. A symmetric cycl@ can thus be subdivided inta, repeats of a
irreducible segmentprime” in the sense that the full state space cycle is aaepe
of it. Thus in presence of a symmetry the notion of a periodhitas replaced
by the notion of the shortest segment of the full state spgcke evhich tiles the
cycle under the action of the group. In what follows we retethis segment as a
relative periodic orbit

Relative periodic orbits (oequvariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X)) =gx(t+T) 9.17)

for a fixedrelative period Tand a fixed group actiog € G. This group action is
referred to as a “phase,” or a “shift.” For a discrete groug®$) g™ = efor some
finite m, so the corresponding full state space orbit is periodit wériodmT.

The period of the full orbit is given by tha, x (period of the relative periodic
orbit), and thath Floquet multiplierA,; is given byAT‘i’ of the relative periodic
orbit. The elements of the quotient spdice G/Gp, generate the copidsp, so the
multiplicity of the full state space cyclgis mp = |G|/|Gp|.

discrete - 20apr2008.tex
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Figure 9.4: The 3-disk pinball cycles: (al2,
13, 23, 123. Cycle132 turns clockwise. (b)

Cycle1232; the symmetry relatet213 andi323

not drawn. (c)12323; 12123, 12132, 12313,
13131 andl3232 not drawn. (d) The fundamental(a)
domain, i.e., the /6th wedge indicated in (a),
consisting of a section of a disk, two segments
of symmetry axes acting as straight mirror walls,
and the escape gap to the left. The above 14 full-
space cycles restricted to the fundamental domain
reduced to the two fixed poin®, 1, 2-cycle10,

and 5-cycled0111 (not drawn). (d)

(b)

We now illustrate these ideas with the example of se&. symmetries of a
3-disk game of pinball.

Example 9.3 Cz, = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.3 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group S3; however, it is
more instructive to think of this group geometrically, as Cs, (dihedral group D3), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {012, 023, 013}, and two rotations by 2r/3 and 4rn/3 denoted {C, C?}. Applying an
element (identity, rotation by +2r/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, 12, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132 figure 9.5 (a). Cycles 12, 23, and 13 in figure 9.4 (a)
are related to each other by rotation by +2r/3, or, equivalently, by a relabeling of the
disks.

[exercise 9.6]
The subgroups of D3 are D1 = {e, o}, consisting of the identity and any one of
the reflections, of order 2, and C5 = {e, C, C2}, of order 3, so possible cycle multiplicities
are |G|/|Gy| = 2, 3 or 6.

The Cg subgroup G, = {e,C,C?} invariance is exemplified by 2 cycles 123 and
132 which are invariant under rotations by 2x/3 and 4r/3, but are mapped into each
other by any reflection, figure 9.5 (b), and the multiplicity is |G|/|Gy| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213 This
cycle is invariant under reflection 0,3{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, 023}, with multiplicity is mp = |G|/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 23 rotations, figure 9.5 (c).

A cycle of no symmetry, such as 12123 has G = {e} and contributes in all six
copies (the remaining cycles in the class are 12132 12313 12323 13132and 132332,
figure 9.5 (a).

Besides the above discrete symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and

121212323= 31321212 1Iwhich have the same periods and stabilities, but are related
by no space symmetry, see figure 9.5 (d). Continued in example 9.5.
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o 121212313 121313132
Figure 9.5: Cycle 121212313 has multiplicity

6; shown here is121313132= 053121212313.
However,121231313 which has the same stability
and period is related tdl21313132 by time
reversal, but not by angs, symmetry.

9.3 Domain for fundamentalists

So far we have used symmetry tfiext a reduction in the number of independef®
cycles in cycle expansions. The next step achieves much: more

1. Discrete symmetries can be used to restrict all comuisto undamental
domain the M/G quotiented subspace of the full state spade

2. Discrete symmetry tessellates the state space intoscopie fundamental
domain, and thus induces a natural partition of state speue state space
is completely tiled by a fundamental domain and its symroétniages.

3. Cycle multiplicities induced by the symmetry are remolgdesymmetrizatign
reduction of the full dynamics to the dynamics ofuadamental domain
Each symmetry-related set of global cycjesorresponds to precisely one
fundamental domain (or relative) cycfe Tonversely, each fundamental
domain cycleptraces out a segment of the global cy@ewith the end
point of the cyclepmapped into the irreducible segmentmoivith the group
elemenths. The relative periodic orbits in the full space, folded batto
the fundamental domain, are periodic orbits.

4. The group elemen@ = {e, g, .. ., g} Which map the fundamental domain

Minto its copiegM, serve also as letters of a symbolic dynamics alphabet.

If the dynamics is invariant under a discrete symmetry, tagsspaceVl can
be completely tiled by the fundamental domavt and its imagesMa = aM,
My =bM, ... under the action of the symmetry groGp= {e,a, b, ...},

M=MUMaUMp---UMg =MUaMUbM--- . (9.18)

Now we can use the invariance conditich4) to move the starting poirnt
into the fundamental domair = aX, and then use the relatiar’b = h™! to
also relate the endpointto its image in the fundamental domain. While the
global trajectory runs over the full spadd, the restricted trajectory is brought
back into the fundamental domaiv any time it exits into an adjoining tile; the
two trajectories are related by the symmetry operatiamhich maps the global
endpoint into its fundamental domain image.
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Figure 9.6: The bimodal Ulam sawtooth map of f(x)
figure 9.1 with the D; symmetry f(-x) = —f(x)
restricted to the fundamental domainf(x) is
indicated by the thin line, and fundamental domain
map f(X) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed
point pair {L,R} is reduced to the fixed poirg,

and the full state space symmetric 2-cytlR is

reduced to the fixed poir&. (b) The asymmetric
2-cycle pair{LC,CR) is reduced to 2-cycl82. (c)

All fundamental domain fixed points and 2-cycles.
P g (a) (b)

(Yueheng Lan)

Example 9.4 Group D; and reduction to the fundamental domain. Consider

again the reflection-symmetric bimodal Ulam sawtooth map f(—x) = —f(X) of example 9.1,

with symmetry group D1 = {e,R}. The state space M = [-1, 1] can be tiled by half-line

= [0,1], and RM = [~1,0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain % € M = [0, 1]; every time
a trajectory leaves this interval, it is mapped back using R.

In figure 9.6 the fundamental domain map f (X) is obtained by reflecting x < 0O
segments of the global map f(X) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M= [0, 1] split into three regions M= {Mo, Ml, Mz} which we
label with a 3-letter alphabet A =1{0,1,2). The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the “desymmetrized” dynamics is quite different -
the multiplicity of every periodic orbit is now 1, and relative periodic orbits of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 9.6

In (a) the boundary fixed point C is also the fixed point 0. In this case the set
of points invariant under group action of D1, MARM, is just this fixed point x = O, the
reflection symmetry point.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR! is reduced to the 2-cycle O1. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.6 (c).

Example 9.5 3-disk game of pinball in the fundamental domain

If the dynamics is symmetric under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk— disk
increments g;, where g is the discrete group element that maps disk i—1 into disk i.
For 3-disk system g; is either reflection o back to initial disk (symbol ‘0’) or rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,

a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 9.4(d)). A set of orbits related in the full space by discrete symmetries
maps onto a single fundamental domain orbit. The reduction to the fundamental domain

desymmetrizes the dynamics and removes all global discrete symmetry-induced degeneracies:

rotationally symmetric global orbits (such as the 3-cycles 123 and 132) have multiplicity
2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have multiplicity 3,
and global orbits with no symmetry are 6-fold degenerate. Table 11.1 lists some of
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Figure 9.7: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental
domain 3-cycled01. (b)

the shortest binary symbols strings, together with the corresponding full 3-disk symbol
sequences and orbit symmetries. Some examples of such orbits are shown in figures 9.5
and 9.7. Continued in example 11.3.

9.4 Continuous symmetries

[...] which is an expression of consecration of “angulz (D%
momentum.”

— Mason A. Porter’s student

What if the “law of motion” retains its formd.5) in a family of coordinate frames
f(x) = g 1f(gx) related by a group ofontinuoussymmetries? The notion of
“fundamental domain” is of no use here. Instead, as we skall sontinuous
symmetries reduce dynamics to a desymmetrized system ef ldiwmensionality,
by elimination of “ignorable” coordinates.

Definition: A Lie group is a topological grou such that (1)G has the
structure of a smooth fierential manifold. (2) The composition m&x G —
G : (g ,h) — gh™tis smooth.

By “smooth” in this text we always medtf° differentiable. If you are mystified

by the above definition, don’t be. Just think “aha, like thi&ation groupS Q(3)?”
If action of every elemeng of a groupG commutes with the flonx ‘= v(X),

X() = f'(x0),
v(x) =v(@),  gfi(x) = f'(gxo), (9.19)

the dynamics is said to bevariant or equivariantunderG.
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Let G be a groupM a set, angM — M a group action. For any € M,
the orbit My of xis the set of all group actions

My ={gx|ge G} c M.

For a given state space poithe group ofN continuous transformations together
with the time translation sweeps out a smodth+{)-dimensional manifold of
equivalent orbits. The time evolution itself is a nonconpagparameter Lie
group; however, for solutionp for which the N-dimensional group manifold is
periodic in timeTy, the orbit of x, is a compactinvariant manifold M,. The
simplest example is thél = O case, where the invariant manifolé, is the
1d-torus traced out by the periodic trajectory. Thus the timeligion and the
Lie group continuous symmetries can be considered on the $aating, and
the closure of the set of compact unstable invariant maisfol, is the non—
wandering sef) of dynamics in presence of a continuous global symmetry (see
sect.2.1.7).

The desymmetrized state space is the quotient spé&@8. The reduction to
M/G amounts to a change of coordinates where the “ignorablest{t}loy, - - -, On}
parametrizeN+1 time and group translations can be separated out. A simple
example is the “rectification” of the harmonic oscillator Bychange to polar
coordinates, example L

9.4.1 Lie groups for pedestrians

All the group theory that you shall need here is in principtentained in the
Peter-Weyl theoremand its corollaries: A compact Lie group is completely
reducible, its representations are fully reducible, evagnpact Lie group is a
closed subgroup dfJ(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Instead of writing yet another tome on group theory, in wdbivs we serve
group theoretic nuggets on need-to-know basis, followingel-trod pedestrian
route through a series of examples of familiar bits of grdugoty and Fourier
analysis (but take a modicum of high, cyclist road in the pErper).

Consider infinitesimal transformations of forgn= 1 + iD, |Dg| < 1,i.e.,the
transformations connected to the identity (in general, i8e aeed to combine
this with dfects of invariance under discrete coordinate transfoonatialready
discussed abovelnitary transformations ex{;T;) are generated by sequences
of infinitesimal transformations of form

ga° =~ 62 +is6(T)2  6eRN, T, hermitian.

whereT;, the generatorsof infinitesimal transformations, are a set of linearly
independentd x d] hermitian matrices. In terms of the generatdis a tensor
habm"'C is invariant if T; “annihilate” it, i.e.,Ti - h = 0:

(M@ & + (TR hyy & = (TS h, € +... = 0. (9.20)
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Example 9.6 Lie algebra. As one does not want the symmetry rules to change at
every step, the generators Ti, i = 1,2, ..., N, are themselves invariant tensors:

(T)f =g gir (Ti) 5. (9.21)

where g;j = [e“"kck]ij is the adjoint [Nx N] matrix representation of g € G. The [dxd]
matrices T; are in general non-commuting, and from (9.20) it follows that they close
N-element Lie algebra

TiTj = TjTi = iCix Tk i,j,k=12.,N,

where the fully antisymmetric adjoint representation generators [C];; = Cij are known
as the structure constants.

exercisel4.10

Example 9.7 Group SQQ2). S Q_2) is the group of rotations in a plane, smoothly
connected to the unit element (i.e. the inversion (x,y) — (=X, —Y) is excluded). A group
element can be parameterized by angle 6, and its action on smooth periodic functions
is generated by

_ AfT _ 9
g(e) - el > T - Id9 ’
g(0) rotates a periodic function u(@ + 2r) = u(d) by @ mod 2r:
g(Ou(@) = u(@ +0)

The multiplication law is g(6)g(8") = 9(6 + ). If the group G actions consists of N such
rotations which commute, for example a N-dimensional box with periodic boundary
conditions, the group G is an Abelian group that acts on a torus TN.

9.4.2 Relative periodic orbits

Consider a flow invariant under a global continuous symmtiy group)G. A
relative periodic orbijp is an orbit in state spackl which exactly recurs

Xp(t) = gpXp(t + Tp), Xp(t) € M, (9.22)

for a fixedrelative period T, and a fixed group actiog, € G that “rotates” the
endpointxp(Tp) back into the initial poinix,(0). The group actiomyy, is referred
to as a “phase,” or a “shift.”

Example 9.8 Continuous symmetries of the plane Couette flow. The Navier-
Stokes plane Couette flow defined as a flow between two countermoving planes, in a
box periodic in streamwise and spanwise directions, a relative periodic solution is a
solution that recurs at time T, with exactly the same disposition of velocity fields over
the entire box, but shifted by a 2-dimensional (streamwise,spanwise) translation gp.
The S Q(2) x S Q2) continuous symmetry acts on a 2-torus T2.
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For dynamical systems with continuous symmetries parasgi®,, - - -, On}
are real numbers, ratiag6; are almost never rational, and relative periodic orbits
are almost never eventually periodic. As almost any sucih@xplores ergodically
the manifold swept by action @xt, they are sometimes referred to as “quasiperiodic.
However, a relative periodic orbit can be pre-periodic ifsitinvariant under a
discrete symmetry: 1§™ = 1 is of finite ordemn, then the corresponding orbit is
periodic with periodmT,. If g is not of a finite order, the orbit is periodic only
after the action 0§, as in 0.22.

In either discrete or continuous symmetry case, we refenaamtbits M, in
M satisfying 0.22) asrelative periodic orbits Morally, as it will be shown in
chapterl9, they are the true “prime” orbits, i.e., the shortest segsérat under
action ofG tile the entire invariant submanifold$t,,.

9.5 Stability .

X

A infinitesimal symmetry group transformation maps a trggcin a nearby
equivalent trajectory, so we expect the initial point peyations along to group
manifold to be marginal, with unit eigenvalue. The argumierakin to @.7),
the proof of marginality of perturbations along a periodibib In presence of
an N-dimensional Lie symmetry grouf®, further N eigenvalues equal unity.
Consider two nearby initial points separated byNudimensional infinitesimal
group transformatiodd: 6Xy = g(66)xo — Xo = 166 - T Xp. By the commutativity of
the group with the flowg(s6) f'(x0) = f1(g(66)%o). Expanding both sides, keeping
the leading term i@, and using the definition of the fundamental matexg],
we observe thal'(xo) transports thé\-dimensional tangent vector framexatto
the rotated tangent vector framexét) at timet:

ox(t) = g(6)J'(%0) 6% - (9.23)

For relative periodic orbitgpx(Tp) = Xx(0), at any point along cycle the
group tangent vector x(t) is an eigenvector of the fundamental matdiy(x) =
ngTp(x) with an eigenvalue of unit magnitude,

JTP(X) X0 = g(O) TX(1), X€Ep. (9.24)

Two successive points along the cycle separatedixpyave the same separation
after a completed perio@k(T,) = gpdXo, hence eigenvalue of magnitude 1.

9.5.1 Boundary orbits

Peculiar éects arise for orbits that run on a symmetry lines that baadendamental
domain. The state space transformatios e leaves invariant sets dfoundary
points; for example, under reflectian across a symmetry axis, the axis itself
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remains invariant. Some care need to be exercised in tgethgrinvariant “boundary”
setM = MN Man Mp--- N Mg. The properties of boundary periodic orbits
that belong to such pointwise invariant sets will requiraétabthinking.

In our 3-disk example, no such orbits are possible, but thést én other
systems, such as in the bounded region of the Hénon-Heitesifal (remarlo.3)
and in - maps of exampl®.1 For the symmetrical 4-disk billiard, there are in
principle two kinds of such orbits, one kind bouncing backl #orth between
two diagonally opposed disks and the other kind moving albwegother axis of
reflection symmetry; the latter exists for bounded systenitg d/Nhile for low-
dimensional state spaces there are typically relatively feundary orbits, they
tend to be among the shortest orbits, and they play a keymalgriamics.

While such boundary orbits are invariant under some synyrmierations,
their neighborhoods are not. Thifects the fundamental matri, of the orbit
and its Floquet multipliers.

Here we have used a particularly simple direct product siracof a global
symmetry that commutes with the flow to reduce the dynamica sgmmetry
reduced d—1 —N)-dimensional state spadd/G.

Résum é

In sect.2.1.1we made a lame attempt to classify “all possible motions:}y (1
equilibria, (2) periodic orbits, (3) everything else. Noweocan discern in the
fog of dynamics outline of a more serious classification -gldime dynamics
takes place on the closure of a set of all invariant compaist geeserved by
the dynamics, and those are: (1) O-dimensional equilibg (2) 1-dimensional
periodic orbitsM, (3) global symmetry induceN-dimensional relative equilibria
M, (4) (N+1)-dimensional relative periodic orbitsp, (5) terra incognita. We
have some inklings of the “terra incognita:” for examplemgyectic symmetry
induces existence of KAM-tori, and in general dynamicdiisgs we are encountering
more and more examples pértially hyperbolic invariant torj isolated tori that
are consequences of dynamics, not of a global symmetry, dichveannot be
represented by a single relative periodic orbit, but re-jainumerical computation
of full (N+1)-dimensional compact invariant sets and their infinitaahsional
linearized fundamental matrices, marginal M+1) dimensions, and hyperbolic
in the rest.

The main result of this chapter can be stated as follows: yireardhical system
(M, f) has a symmetr¢, the symmetry should be deployed to “quotient” the state
spaceM/G, i.e., identify allx € M related by the symmetry.

(1) In presence of a discrete symme@y associated with each full state space
cycle p is a maximal isotropy subgrou, € G of order 1< |G| < |G|, whose
elements leavg invariant. The isotropy subgroup, acts onp as time shift, tiling

it with |Gp| copies of its shortest invariant segment, the relativeopiasiorbit .
The elements of the coskte G/G,, generaten, = |G|/|Gy| distinct copies ofp.

discrete - 20apr2008.tex



CHAPTER 9. WORLD IN A MIRROR 145

This reduction to the fundamental domai = M/G simplifies symbolic
dynamics and eliminates symmetry-induced degeneracash€& short orbits the
labor saving is dramatic. For example, for the 3-disk gampiball there are
256 periodic points of length 8, but reduction to the fundatakdomain non-
degenerate prime cycles reduces the number of the disffgscof length 8 to
30.

Amusingly, in this extension of “periodic orbit” theory fiounstable 1-dimensional
closed orbits to unstableN(+ 1)-dimensional compact manifold$(,, invariant
under continuous symmetries, there are either no or priopaity few periodic
orbits. Likelihood of finding a periodic orbit izera One expects some only
if in addition to a continuous symmetry one has a discretensgtry, or the
particular invariant compact manifolH;, is invariant under a discrete subgroup
of the continuous symmetry. Relative periodic orbits areadt never eventually
periodic, i.e., they almost never lie on periodic trajeigsiin the full state space,
unless forced to do so by a discrete symmetry, so looking éoiodic orbits in
systems with continuous symmetries is a fool’s errand.

Atypical as they are (no chaotic solution will be confined ltede discrete
subspaces) they are important for periodic orbit theorthae the shortest orbits
dominate.

We feel your pain, but trust us: once you grasp the relatiawéen the full
state spaceéM and the desymmetrize@-quotientedM/G, you will find the life
as a fundamentalist so much simpler that you will never retaryour full state
space confused ways of yesteryear.

Commentary

Remark 9.1 Symmetries of the Lorenz equation: (Continued fromremarR.2) After
having studied exampl®.2 you will appreciate whyChaosBook.org starts out with

the symmetry-less Rossler flok.(7), instead of the better known Lorenz flo®.{2
(indeed, getting rid of symmetry was one of Rossler’s naitons). He threw the baby
out with the water; for Lorenz flow dimensionalities of s&bhstable manifolds make
possible a robust heteroclinic connection absent fronsiRo8ow, with unstable manifolds

of an equilibrium flowing into the stable manifold of anotleguilibria. How such connections
are forced upon us is best grasped by perusing the chaptefi@idroclinic tangles” of

the inimitable Abraham and Shaw illustrated classif][ Their beautiful hand-drawn
sketches elucidate the origin of heteroclinic connectioriie Lorenz flow (and its high-
dimensional Navier-Stokes relatives) better than any adersimulation. Miranda and
Stone P& were first to quotient th®; symmetry and explicitly construct the desymmetrized,
“proto-Lorenz system,” by a nonlinear coordinate transfation into the Hilbert-Weyl
polynomial basis invariant under the action of the symmengup [33]. For in-depth
discussion of symmetry-reduced (“images”) and symmextgreded (“covers”) topology,
symbolic dynamics, periodic orbits, invariant polynonfialses etc., of Lorenz, Rossler
and many other low-dimensional systems there is no betteremce than the Gilmore
and Letellier monograph’p, 31]. They interpret the proto-Lorenz and its “double cover”
Lorenz as “intensities” being the squares of “amplitudasd call quotiented flows such

as (Lorenz)D; “images.” Our “doubled-polar angle” visualization figut8.7is a proto-
Lorenz in disguise, with the fierence: we integrate the flow and construct Poincaré
sections and return maps in the Loreraj Z] coordinates, without any nonlinear coordinate
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transformations. The Poincaré return map figude8is reminiscent in shape both of
the one given by Lorenz in his original paper, and the ondegaoin a radial coordinate
by Gilmore and Letellier. Nevertheless, it is profoundlffelient: our return maps are
from unstable manifold- itself [4], and thus intrinsic and coordinate independent. This
is necessary in high-dimensional flows to avoid problem$ siscdouble-valuedness of
return map projections on arbitrarydlcoordinates encountered already in the Rossler
example. More importantly, as we know the embedding of tretalble manifold into the
full state space, a cycle point of our return nmisp regardless of the length of the cycle -
the cycle point in the full state space, so no additional evaearches are needed.

Remark 9.2 Examples of systems with discrete symmetries. One has &; symmetry
in the Lorenz system (rematk?2), the Ising model, and in the-@ anisotropic Kepler
potential {4, 18, 19], a D3 = C3, symmetry in HEnon-Heiles type potentials [, 7, 3],
aD4 = C4 Symmetry in quartic oscillators![ 5], in the purex?y? potential [, 7] and in
hydrogen in a magnetic fiel@&], and aD, = Cy, = V4 = C, xC, symmetry in the stadium
billiard [9]. A very nice application of desymmetrization is carried wuref. [10].

Remark 9.3 Hénon-Heiles potential. An example of a system with; = C3, symmetry
is provided by the motion of a particle in the Henon-Heilesamtial [5]

V(r,6) = %rz + %rs sin(3) .

Our 3-disk coding is indficient for this system because of the existence of elliplanids
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahéamain, they require the
special treatment] discussed in secf.5.1

Remark 9.4 Cycles and symmetries. We conclude this section with a few comments
about the role of symmetries in actual extraction of cydleshe N-disk billiard example,

a fundamental domain is a sliver of thiedisk configuration space delineated by a pair of
adjoining symmetry axes. The flow may further be reduced &iwm map on a Poincaré
surface of section. While in principle any Poincaré swfa€ section will do, a natural
choice in the present context are crossings of symmetry, agesexamplé.6.

In actual numerical integrations only the last crossing siymmetry line needs to
be determined. The cycle is run in global coordinates andtbep elements associated
with the crossings of symmetry lines are recorded; intégmas terminated when the orbit
closes in the fundamental domain. Periodic orbits with trénal symmetry subgroups
are particularly easy to find since their points lie on cnogsiof symmetry lines, see
example7.6.
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Exercises
9.1. 3-disk fundamental domain symbolic dynamics. The 10-cycle is drawn in figurel1.2 The unstable

9.2.

9.3.

9.4.

domain, and interpretthe symb@@s 1} by relatingthem 9.5,

to topologically distinct types of collisions. Compare
with table 11.1 Then try to sketch the location of
periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the

configuration space longer cycles look like a hopelesg'ﬁ'

jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration

space coordinates, or any other subset of state space

coordinates which does not respect the topological
organization of the flow.

Reduction of 3-disk symbolic dynamics to binary.

(a) Verify that the 3-disk cycles

{12,13,23,{123,132, {1213+ 2 perms},
{121232 313+ 5 perms}, {121 323 2 perms},

correspond to the fundamental domain cy€lgk,

01,001,011, - - respectively.

(b) Check the reduction for short cycles in takle 1
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figuge.

(c) Optional: Can you see how the group elements
listed in tablell.1relate irreducible segments to
the fundamental domain periodic orbits?

Fundamental domain fixed points. Use the formula
(8.11) for billiard fundamental matrix to compute the
periodsT, and the expanding eigenvalugs, of the
fundamental domai@ (the 2-cycle of the complete 3-
disk space) and (the 3-cycle of the complete 3-disk
space) fixed points:

0:| R-2 R-1+RVI-2/R (g 25
1- 2R 2R
L|R-V3 -Z+1-Z1-V3R

We have set the disk radius&o= 1.
Fundamental domain 2-cycle. Verify that for the10-

eigenvalue\ o follows from (7.22.

A test of your pinball simulator: 10-cycle. Test
your exercise3.3 pinball simulator stability evaluation
by checking numerically the exact analyti®-cycle
stability formula 9.26).

The group Ca,. We will compute a few of the
properties of the grougsy,, the group of symmetries
of an equilateral triangle

2 3

(a) For this exercise, get yourself a good textbook,
a book like Hamermeshl}] or Tinkham [L1],
and read up on classes and characters. All
discrete groups are isomorphic to a permutation
group or one of its subgroups, and elements
of the permutation group can be expressed as
cycles. Express the elements of the gr@isp as
cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2 and 2 to 3 and 3
to 1.

(b) Find the subgroups of the gro@a,.

(c) Findthe classes @3, and the number of elements
in them.

(d) There are three irreducible representations for the
group. Two are one dimensional and the other one
of multiplicity 2 is formed by [2<2] matrices of
the form

[ cosd  sind

—-sing cosd

Find the matrices for all six group elements.

(e) Use your representation to find the character table
for the group.

cycle the cycle length and the trace of the fundamental- /- Lorenz system in polar coordinates: group theory.

matrix are given by

2yR2- V3R+1-2,

Lio =
trdio = Awppo+1/Aqp (9.26)
2
= 2Lyer24 s bt D
2 V3Rr/2-1
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Use (6.7), (6.9 to rewrite the Lorenz equation

X oly-x)
X:v(x):[y = px—y—xz}
z Xy — bz

in polar coordinates r(#, 2),
(r cosd, r sing).

where &, y) =



EXERCISES

1. Show that in the polar coordinates Lorentz flow

takes form
Po= %(—0’—1+(0’+p—z)sin29
+(1 - o) cos @)
0 = %(—0'+p—z+(0'—1)sin29
+(o+p—2)cos?)
z = —bz+§sin29. (9.27)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically
special about the subspace on which the inverse
not exist?

3. Showthatthisis the (Lorend4); quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the &, y) plane.

4. Show that a periodic orbit of the Lorenz flow in
polar representation is either a periodic orbit or a
relative periodic orbit9.17) of the Lorenz flow in
the (x,y, 2) representation.

5. Argue that if the dynamics is invariant under a
rational rotationR;mv(X) = V(RymX) = v(X),
a discrete subgrougy of SQ2) in the ,y)-
plane, the only non-zero Fourier components of
equations of motion ar&j, # 0, j =1,2,---. The
Fourier representation is then the quotient map of
the dynamicsM/Ch,.

By going to polar coordinates we have quotiented out the
n-rotation &, y, 2) — (=X, -y, 2 symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.8. Lorenz system in polar coordinates: dynamics.
(Continuation of exercis®.7.)

1. Show that9.27) has two equilibria:

(ro,20) = (0,0), 6o undefined
(r,01,z1) = (v2b(p - 1), 7/4,p {A28)

2. Verify numerically that the eigenvalues and
eigenvectors of the two equilibria are:
EQ, = (0,12 27) equilibrium: (and itsR-
rotation relatedEQ, partner) has one stable real
eigenvaluetl™ = -13.854578, and the unstable
complex conjugate pain®® = ;4@ + jw@ =
0.093956+ i110.194505. The unstable eigenplane
is defined by eigenvectors
Ree® = (-0.4955-0.201Q —0.8450) Ime® =
(0.5325 -0.84640)
with periodT = 27/w® = 0.6163306,
radial expansion multipliek, = exp(2u@/w®) =
1.059617,
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and the contracting multiplier Ac =
exp(2ru®/w?) ~ 1.95686<10* along the stable
eigenvector oEQy,

e® = (0.8557, —0.3298 -0.3988).

EQ = (0,0,0) equilibrium: The stable
eigenvectoe® = (0,0, 1) of EQ,, has contraction
rate A® = —b = -2.666.... The other stable
eigenvector is

e = (-0.244001-0.9697750), with
contracting eigenvalug® = -228277. The
unstable eigenvector

e® = (-0.6530490.7573160) has eigenvalue
A® =118277.

. Plot the Lorenz strange attractor both in the

original form figure2.4 and in the doubled-polar
coordinates (expand the angles [0, x] to 20 €

[0, 2]) for the Lorenz parameter values = 10,

b = 8/3,p = 28. Topologically, does it resemble
the Lorenz butterfly, the Rossler attractor, or
neither? The Poincaré section of the Lorenz
flow fixed by thezaxis and the equilibrium in
the doubled polar angle representation, and the
corresponding Poincaré return magp, &, + 1) are
plotted in figurel0.7.

20

20

Figure: The Poincaré return mas,, s,1) for the
EQq, lower Poincaré section of figurd.7(b). (J.
Halcrow)

. Construct the above Poincaré return map

(s, Se1), Wheres is arc-length measured along
the unstable manifold oEQ,. Elucidate its
relation to the Poincaré return map of figur@ 8

. Show that if a periodic orbit of the polar

representation Lorenz is also periodic orbit of the
Lorenz flow, their stability eigenvalues are the
same. How do the stability eigenvalues of relative
periodic orbits of the representations relate to each
other?

. What does the volume contraction formuia3?)

look like now? Interpret.



REFERENCES

9.9. Proto-Lorenz system. Here we quotient
out the D; symmetry by constructing an explicit

“intensity” representation of the desymmetrized Lorenz 2.

flow, following Miranda and Stone’f].

45;
40! N
35|
3ot \l/

5

=2 25;
20
15}
10t

The Lorenz attractor
representation $.19. The points related by byt-
rotation about the z-axis are identified. (J. Halcrow)

Figure: in proto-Lorenz

1. Rewrite the Lorenz equatior2.(l2 in terms of

variables 9

(u,v,2) = (¢ - y2,2xy,2), (9.29)

show that it takes form
u
{ % } = [ r-o)Ju—(oc+1v+(r+o0)N—-uz-u
z v/2-bz
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N = VuZ+\2.

Show that this is the (Loren4); quotient map for
the Lorenz flow, i.e., that it identifies points related
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