Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

the reflection symmetries of various potentials. As we sstadlwv here and

in chapterl9, symmetries simplify the dynamics in a rather beautiful way
If dynamics is invariant under a set of discrete symmeBethe state spacA
is tiled by a set of symmetry-related tiles, and the dynamics can dhecesl to
dynamics within one such tile, tHandamental domaim/G. If the symmetry
is continuous the dynamics is reduced to a lower-dimensideaymmetrized
systemM/G, with “ignorable” coordinates eliminated (but not forgot). In
either case families of symmetry-related full state spaades are replaced by
fewer and often much shorter “relative” cycles. In preseota symmetry the
notion of a prime periodic orbit has to be reexamined: it [aeed by the notion
of arelative periodic orbit the shortest segment of the full state space cycle which
tiles the cycle under the action of the group. Furthermdre,group operations
that relate distinct tiles do double duty as letters of arhaliigt which assigns
symbolic itineraries to trajectories.

DYNAM[CAL systems often come equipped with discrete symmetries, such as

Familiarity with basic group-theoretic notions is assupweith details relegated
to appendixH.1. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly @ = D; example9.1and examplé®.2, and
C3, = D3 example9.3, backtrack as needed.

Our hymn to symmetry is a symphony in two movements: In thigptér
we look at individual orbits, and the ways they are inteteelaby symmetries.
This sets the stage for a discussion of how symmetrigectaglobal densities
of trajectories, and the factorization of spectral deteamts to be undertaken in
chapterl9.
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9.1 Discrete symmetries 5
XX
We show that a symmetry equates multiplets of equivalentsorb

We start by defining a finite (discrete) group, its state spapeesentations,

and what we mean by symmetry(invariance or equivariancg of a dynamical
system.

Definition: A finite group consists of a set of elements
G={eg....gq (9.1)
and a group multiplication rulg; o g; (often abbreviated agg;), satisfying

. Closure: Ifg;, gj € G, thengj o g; € G
. Associativity:gx o (gj © gi) = (Gk © gj) © Gi
. Identitye: goe=eog=gforallge G

AW N P

. Inverseg*l: For everyg € G, there exists a unique element
h=gleGsuchthahog=goh=e.

|Gl, the number of elements, is called theler of the group.

Definition: Coordinate transformations. An activelinear coordinate transformation
X — Tx corresponds to a non-singulad  d] matrix T that shifts the vector

X € M into another vectofx € M. The correspondingassivecoordinate
transformationf(x) — T~1f(x) changes the coordinate system with respect to
which the vectorf(x) € M is measured. Together, a passive and active coordinate
transformations yield the map in the transformed cooréiiat

f(x) = TH(Tx). 9.2)

Linear action of a discrete group elementg on statesx € M is given by a
finite non-singular dx d] matrix g, the linearrepresentatiorof elementg € G.
In what follows we shall indicate by bold faggthe matrix representation of the
action of group elemerg € G on the state space vectots M.

If the coordinate transformatiagnbelongs to a linear non-singular representation
of a discrete (finite) grouf®, for any elemeng € G, there exists a numben < |G|
such that

g"=gogo...og=€e — |detg =1. (9.3)

mtimes
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As the modulus of its determinant is unity, dgs anmth root of 1.

A group is asymmetryof a dynamics if for every solutiorf(x) € M and
ge G,y =gf(x) is also a solution:

Definition: Symmetry of a dynamical system. A dynamical system A/, f)

is invariant (or G-equivarian} under a symmetry grou if the “equations of
motion” f : M — M (a discrete time map, or the continuous flow") from the
d-dimensional manifold\ into itself commute with all actions @3,

f(9x) = gf(x). (9-4)

Another way to state this is that the “law of motion” is invant, i.e., retains its
form in any symmetry-group related coordinate frafa)

f(9 =g*f(g9, (9.5)

for any statex € M andanyfinite non-singular i xd] matrix representationy of
elementg € G.

Why “equivariant”? A functionh(x) is said to beG-invariantif h(x) = h(gx)
for all g € G. The mapf : M — M maps vector into a vector, hence a slightly
different invariance conditioh(x) = g~ f(gx). It is obvious from the context, but
for verbal emphasis some like to distinguish the two casds/guivariant. The
key result of the representation theory of invariant fuosiis:

Hilbert-Weyl theorem. For a compact grou there exist a finité-invariant
homogenous polynomial basgis, Uy, . . ., um} such that ang-invariant polynomial
can be written as a multinomial

h(x) = p(u(X). Uz(X). - ... im(x)) - (9-6)

In practice, explicit construction of such basis does netrseasy, and we will not
take this path except for a few simple low-dimensional ca®és prefer to apply
the symmetry to the system as given, rather than undertakees ©f nonlinear
coordinate transformations that the theorem suggests.

For a generic ergodic orbit!(x) the trajectory and any of its images under
action ofg € G are distinct with probability onef'(x) n gft'(x) = 0 for all t, t'.
For compact invariant sets, such as fixed points and per@dits, especially the
short ones, the situation is veryfidirent.
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9.1.1 Isotropy subgroups

The subset of pointsly, ¢ M that belong to the infinite-time trajectory of a
given pointxg is called theorbit (or asolutior) of Xo. An orbit is adynamically
invariant notion: it refers to the totality of states that can be reddhem xo, with
the full state spacé foliated into a union of such orbits. We label a generic orbit
My, by any point belonging to ity = x(0) for example. A generic orbit might be
ergodic, unstable and essentially uncontrollable. Thaetesly of this monograph
is to populate the state space by a hierarchgashpact invariant set&quilibria,
periodic orbits, invariant tori,..), each computable in a finite time. Orbits which
are compact invariant sets we label by whatever alphabetngectinvenient in
a particular applicationEQ = xgq = Mgq for an equilibrium,p = M, for a
periodic orbit, etc..

The set of pointgx generated by all actiorgse G of the groupG is called the
group orbitof x e M. If G is a symmetry, intrinsic properties of an equilibrium
(such as Floquet exponents) or a cygldperiod, Floquet multipliers) and its
image under a symmetry transformatigne G are equal. A symmetry thus
reduces the number of dynamically distinct solutiokf, of the system. So
we also need to determine the symmetry cfadution as opposed ta9(5), the
symmetry of thesystem

Definition: Isotropy subgroup. Let p= M, c M be an orbit of the system. A
set of group actions which maps an orbit into itself,

Gp={g<cG:gMp= My}, (9.7)

is called anisotropy subgroupf the solutionM,. We shall denote by, the
maximalisotropysubgroup ofM,,. For a discrete subgroup

Gp:{e,bz,bg,.“,bh}gG, (9.8)

of orderh = |Gy, group elements (isotropies) map orbit points into orbinfo
reached at dierent times. For continuous symmetries the isotropy sulp@y,
can be any continuous or discrete subgrouof

LetH = {e by, bs,...,by} C G be a subgroup of orddr = |H|. The set of
h elementdc, chy, chs, ..., chy}, c € G but not inH, is called leftcoset cH For
a given subgroupd the group elements are partitioned irloandm — 1 cosets,
wherem = |G|/[H|. The cosets cannot be subgroups, since they do not inclede th
identity element.

9.1.2 Conjugate elements, classes and orbit multiplicity

If Gp is the isotropy subgroup of orbit1,, elements of the coset spage G/G,
generate then— 1 distinct copies of\,, so for discrete groups the muiltiplicity of
an equilibrium or a cycle is m, = |G|/|Gp|.
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An elementb € G is conjugateto a if b = cac? wherec is some other
group element. Ib andc are both conjugate @, they are conjugate to each other.
Application of all conjugations separates the set of grdements into mutually
not-conjugate subsets callethisses The identitye is always in the clasge} of its
own. This is the only class which is a subgroup, all othersgadack the identity
element. Physical importance of classes is clear frBrf),(the way coordinate
transformations act on mappings: action of elements ofssdkay reflections, or
discrete rotations) is equivalent up to a redefinition of¢berdinate frame. We
saw above that splitting of a group into an isotropy subgrou®, andm - 1
cosetscGy, relates a solutionM, to m— 1 other distinct solutionsMp. Clearly
all of them have equivalent isotropies: the precise stat¢nsethat the isotropy
subgroup of orbit pis conjugate to the isotropy subgroupGep = ¢ Gpc L.

The next step is the key step; if a set of solutions is equindly symmetry
(a circle, let’s say), we would like to represent it by a sengblution (shrink the
circle to a point).

Definition: Invariant subgroup. A subgroupH C G is aninvariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no
conjugation takes an element of the class out of

H dividesG into H andm — 1 cosets, each of ord@|. Think of action of
H within each subset as identifying itld| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group GH of G, with respect
to thenormal divisor(or invariant subgroupi. Its order ism = |G|/|H|, and its
multiplication table can be worked out from t&multiplication table class by
class, with the subgroud playing the role of identityG/H is homeomorphito
G, with |H| elements in a class & represented by a single elemenGpH.

So far we have discussed the structure of a group as an ahesttetg. Now
we switch gears to what we really need this for: describe thieraof the group
on the state space of a dynamical system of interest.

Definition: Fixed-point subspace. The fixed-point subspace of a given subgroup
H € G, G a symmetry of dynamics, is the set state space pointptefit-wise
invariant under any subgroup action

Fix(H) = {xe M:hx=xforalheH}. (9.9)
A typical point in FixH) moves with time, but remains withifi(Fix(H)) <
Fix(H) for all times. This suggests a systematic approach to sget@mpact

invariant solutions. The larger the symmetry subgroupstheller FixH), easing
the numerical searches, so start with the largest subgtddjst.

Definition: Invariant subspace. M, c M is aninvariant subspace if

{M, :gxe M, forallge Gandxe M,}. (9.10)
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{0} and M are always invariant subspaces. So is anyHx{hich is point-wise
invariant under action d&. We can often decompose the state space into smaller
invariant subspaces, with group acting within each “chusggarately:

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

As a first, coarse attempt at classification of orbits by tegimmetries, we
take note three types of equilibria or cycles: asymmetrisymmetric equilibria
or cycless built by repeats of relative cycles &nd boundary equilibria.

Asymmetric cycles: An equilibrium or periodic orbit is not symmetric fika} N
{gxa} = 0, where{x,} is the set of periodic points belonging to the cyaleThus

g € G generatdG]| distinct orbits with the same number of points and the same
stability properties.

Symmetric cycles: A cycle s is symmetric(or self-dua) if it has a non-trivial
isotropy subgroup, i.e., operating withe G, c G on the set of cycle points
reproduces the sey € Gp acts a shift in time, mapping the cycle poit Mp
into fTv/[Cel(x)

Boundary solutions: An equilibrium x4 or a larger compact invariant solution in
a fixed-point subspace F@&], gx; = Xq for all g € G lies on the boundary of
domains related by action of the symmetry group. A soluthaat ts point-wise
invariant under all group operations has multiplicity 1.

A string of unmotivated definitions (or an unmotivated deiim of strings)
has a way of making trite mysterious, so let's switch geaesetbp a feeling for
why they are needed by first working out the simplest, éxample with a single
reflection symmetry.

Example 9.1 Group D; - a reflection symmetric  1d map: Consider a 1d map f
with reflection symmetry f(-x) = —f(X). An example is the bimodal “sawtooth” map
of figure 9.1, piecewise-linear on the state space M = [-1,1] split into three regions
M = {My, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L, C, R} corresponding to an admissible trajectory. Denote the reflection operation
by Rx= —X. The 2-element group {e, R} goes by many names - here we shall refer to it
as Cy, the group of rotations in the plane by angle n, or D1, dihedral group with a single
reflection. The symmetry invariance of the map implies that if {X,} is a trajectory, than
also {Rx,} is a trajectory because Rx..1 = Rf(xn) = f(RX,) .

Asymmetric cycles:R generates a reflection of the orbit with the same number of points
and the same stability properties, see figure 9.1 (c).

Symmetric cycles:A cycle s is symmetric (or self-dual) if operating with R on the set of
cycle points reproduces the set. The period of a symmetric cycle is even (ns = 2ng), and
the mirror image of the Xs cycle point is reached by traversing the irreducible segment
§ (relative periodic orbit) of length ng, f™(xs) = RX, see figure 9.1 (b).

Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary Fix(G): the fixed point C at the
origin.
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Figure 9.3: The symmetries of three disks on
an equilateral triangle. The fundamental domain
indicated by the shaded wedge.

in depth:
” appendix H, p. 706
9.2 Relative periodic orbits

We show that a symmetry reduces computation of periodidtbirepeats of
shorter, “relative periodic orbit” segments.

Invariance of a flow under a symmetry means that the symmeteage of a
cycle is again a cycle, with the same period and stabilitye fiéw orbit may be
topologically distinct (in which case it contributes to tmeiltiplicity of the cycle)
or it may be the same cycle.

A cycle is symmetricunder symmetry operatiog if g acts on it as a shift
in time, advancing the starting point to the starting poiha symmetry related
segment. A symmetric cycl@ can thus be subdivided intm, repeats of a
irreducible segmentprime” in the sense that the full state space cycle is aaepe
of it. Thus in presence of a symmetry the notion of a periodhitas replaced
by the notion of the shortest segment of the full state spgcke evhich tiles the
cycle under the action of the group. In what follows we retethis segment as a
relative periodic orbit

Relative periodic orbits (oequvariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X(t) =gx(t+T) (9.17)

for a fixedrelative period Tand a fixed group actiog € G. This group action is
referred to as a “phase,” or a “shift.” For a discrete grougth$) g" = efor some
finite m, so the corresponding full state space orbit is periodit wériodmT.

The period of the full orbit is given by the, x (period of the relative periodic
orbit), and theth Floquet multiplierAp; is given byAT,ip of the relative periodic
orbit. The elements of the quotient spdce G/G, generate the copidsp, so the
multiplicity of the full state space cyclgis m, = |G|/|Gp|.
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Figure 9.4: The 3-disk pinball cycles: (al2,

13, 23, 123. Cycle132 turns clockwise. (b)
Cycle1232; the symmetry relatetP13 andl323

not drawn. (c)12323; 12123, 12132, 12313,
13131 andl3232 not drawn. (d) The fundamental @
domain, i.e., the /Bth wedge indicated in (a),
consisting of a section of a disk, two segments
of symmetry axes acting as straight mirror walls,
and the escape gap to the left. The above 14 full-
space cycles restricted to the fundamental domain
reduced to the two fixed poin®, 1, 2-cycle10,
and 5-cycled0111 (not drawn).

We now illustrate these ideas with the example of se&. symmetries of a

3-disk game of pinball.

Example 9.3 Cs, = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.3 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group Ss; however, it is
more instructive to think of this group geometrically, as Cs, (dihedral group Ds), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {012, 0723, 013}, and two rotations by 2r/3 and 4r/3 denoted {C, C?}. Applying an
element (identity, rotation by +2x/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, o1z, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132 figure 9.5 (a). Cycles 12, 23, and 13 in figure 9.4 (a)
are related to each other by rotation by +2r/3, or, equivalently, by a relabeling of the
disks.

[exercise 9.6]

The subgroups of D3 are D1 = {e, o}, consisting of the identity and any one of
the reflections, of order 2, and C3 = {e, C, C?}, of order 3, so possible cycle multiplicities
are |G|/|Gp| = 2, 3 or6.

The C3 subgroup Gy = {e,C, C?} invariance is exemplified by 2 cycles 123and
132 which are invariant under rotations by 2r/3 and 43, but are mapped into each
other by any reflection, figure 9.5 (b), and the multiplicity is |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213 This
cycle is invariant under reflection 053{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, a3}, with multiplicity is mp = |GI/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 27/3 rotations, figure 9.5 (c).

A cycle of no symmetry, such as 12123 has Gy, = {€} and contributes in all six
copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.5 (a).

Besides the above discrete symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
121212323= 313212121which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.5 (d). Continued in example 9.5.
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Figure 9.6: The bimodal Ulam sawtooth map of f(x)
figure 9.1 with the D; symmetry f(—x) = —f(x)
restricted to the fundamental domainf(x) is
121212313 121313132 121231313 indicated by the thin line, and fundamental domain

Figure 9.5: Cycle 121212313 has multiplicity
6; shown here is121313132= 0,3121212313.

map f_(i) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed

However,121231313 which has the same stabilit point pair {L,R} is reduced to the fixed poir, 6
and period is related tdl21313132 by time and the full state space symmetric 2-cytR is e
reversal, but not by an§s, symmetry. reduced to the fixed poirZ. (b) The asymmetric LR
2-cycle pairfLC,CR is reduced to 2-cycl®2. (c)
. ) All fundamental domain fixed points and 2-cycles.
9.3 Domain for fundamentalists (Yueheng Lan) @)

Example 9.4 Group D; and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(—x) = —f(X) of example 9.1,
with symmetry group D1 = {e, R}. The state space M = [~1,1] can be tiled by half-line
M =[0,1], and RM = [-1,0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain % € M = [0, 1], every time

a trajectory leaves this interval, it is mapped back using R.

So far we have used symmetry tfiext a reduction in the number of independeff
cycles in cycle expansions. The next step achieves much: more

1. Discrete symmetries can be used to restrict all compuisito gundamental

domain the M/G quotiented subspace of the full state spAde .

In figure 9.6 the fundamental domain map f(X) is obtained by reflecting x < 0

segments of the global map f(x) into the upper right quadrant. f is also bimodal and

piecewise-linear, with M = [0, 1] split into three regions M = { Mo, M1, My} which we

label with a 3-letter alphabet A=1{0,1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

2. Discrete symmetry tessellates the state space intosopi fundamental
domain, and thus induces a natural partition of state speee state space
is completely tiled by a fundamental domain and its symroétniages.

3. Cycle multiplicities induced by the symmetry are remobgdesymmetrizatiogn
reduction of the full dynamics to the dynamics ofuadamental domain
Each symmetry-related set of global cyclesorresponds to precisely one
fundamental domain (or relative) cycfe Tonversely, each fundamental

However, the interpretation of the “desymmetrized” dynamics is quite different -
the multiplicity of every periodic orbit is now 1, and relative periodic orbits of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 9.6

In (a) the boundary fixed point C is also the fixed point 0. In this case the set

domain cyclep“traces out a segment of the global cyglewith the end
point of the cyclepmapped into the irreducible segmentmivith the group
elemenths. The relative periodic orbits in the full space, folded bauto
the fundamental domain, are periodic orbits.

4. The group elemen@ = {e, @z, ..., g/} Which map the fundamental domain

Minto its copieggM, serve also as letters of a symbolic dynamics alphabet.

If the dynamics is invariant under a discrete symmetry, theesspace\ can
be completely tiled by the fundamental doma and its imagesMa = aM,
Mp = bM, ... under the action of the symmetry groGp= {e a,b,...},

M=MUMaUMp---U Mg = MUaMUbM--- . (9.18)

Now we can use the invariance conditich4) to move the starting point
into the fundamental domair = a%, and then use the relatiar’b = h™* to
also relate the endpointto its image in the fundamental domain. While the
global trajectory runs over the full spagd, the restricted trajectory is brought
back into the fundamental domaivil any time it exits into an adjoining tile; the
two trajectories are related by the symmetry operatiamhich maps the global
endpoint into its fundamental domain image.
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of points invariant under group action of D1, M N RM, is just this fixed point x = O, the
reflection symmetry point.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR) is reduced to the 2-cycle 0L Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.6 (c).

Example 9.5 3-disk game of pinball in the fundamental domain

If the dynamics is symmetric under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk—disk
increments @i, where ¢ is the discrete group element that maps disk i—1 into disk i.
For 3-disk system g is either reflection o back to initial disk (symbol ‘0’) or rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 9.4(d)). A set of orbits related in the full space by discrete symmetries
maps onto a single fundamental domain orbit. The reduction to the fundamental domain

desymmetrizes the dynamics and removes all global discrete symmetry-induced degeneracies:

rotationally symmetric global orbits (such as the 3-cycles 123and 132) have multiplicity
2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have multiplicity 3,
and global orbits with no symmetry are 6-fold degenerate. Table 11.1 lists some of
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Figure 9.7: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental
domain 3-cycled01. (b)
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the shortest binary symbols strings, together with the corresponding full 3-disk symbol
sequences and orbit symmetries. Some examples of such orbits are shown in figures 9.5

and 9.7. Continued in example 11.3.

9.4 Continuous symmetries

[...] which is an expression of consecration of “angulg

momentum.”
— Mason A. Porter’s student

What if the “law of motion” retains its formQ.5) in a family of coordinate frames
f(x) = g1f(gx) related by a group ofontinuoussymmetries? The notion of
“fundamental domain” is of no use here. Instead, as we skall sontinuous
symmetries reduce dynamics to a desymmetrized system ef kdwensionality,

by elimination of “ignorable” coordinates.

Definition: A Lie group is a topological grou® such that (1)G has the

structure of a smooth fierential manifold. (2) The composition mé&x G —

G: (g.h) — gh™t is smooth.

By “smooth” in this text we always meagf* differentiable. If you are mystified

by the above definition, don'’t be. Just think “aha, like thtion groupS (3)?”
If action of every elemeng of a groupG commutes with the flonk = v(x),

X = (%),
) =g,  gf'(x) = f'(g%).
the dynamics is said to hevariant or equivariantunderG.
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Let G be a groupM a set, angM — M a group action. For any € M,
theorbit My of x is the set of all group actions

My ={gx|geG}c M.

For a given state space poithe group ofN continuous transformations together
with the time translation sweeps out a smodth+{)-dimensional manifold of
equivalent orbits. The time evolution itself is a noncontpagarameter Lie
group; however, for solutionp for which theN-dimensional group manifold is
periodic in timeTy, the orbit of x, is a compactinvariant manifoldMp. The
simplest example is th&l = 0 case, where the invariant manifold, is the
1d-torus traced out by the periodic trajectory. Thus the timeligion and the
Lie group continuous symmetries can be considered on the $aating, and
the closure of the set of compact unstable invariant matsfai, is the non—
wandering sef of dynamics in presence of a continuous global symmetry (see
sect.2.1.]).

The desymmetrized state space is the quotient sp&t®. The reduction to
M/G amounts to a change of coordinates where the “ignorablesHgl6s, - - -, On}
parametrizeN+1 time and group translations can be separated out. A simple
example is the “rectification” of the harmonic oscillator bychange to polar
coordinates, examplg 1

9.4.1 Lie groups for pedestrians

All the group theory that you shall need here is in principtettained in the
Peter-Weyl theoremand its corollaries: A compact Lie group is completely
reducible, its representations are fully reducible, evagnpact Lie group is a
closed subgroup df)(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Instead of writing yet another tome on group theory, in wb#bfvs we serve
group theoretic nuggets on need-to-know basis, followingel-trod pedestrian
route through a series of examples of familiar bits of grdugoty and Fourier
analysis (but take a modicum of high, cyclist road in the prper).

Consider infinitesimal transformations of fogn= 1 +iD, |Dj| < 1, i.e., the
transformations connected to the identity (in general, i8e aeed to combine
this with fects of invariance under discrete coordinate transfoonstialready
discussed above)nitary transformations exjf; T;) are generated by sequences
of infinitesimal transformations of form

g° = &2 +is6 (T2 9eRN, T hermitian.
whereT;, the generatorsof infinitesimal transformations, are a set of linearly
independentdx d] hermitian matrices. In terms of the generat@is a tensor
hémﬂmC is invariant if T; “annihilate” it, i.e., T - h = 0:

(TS + (T hy & = (TS hy, © + ... = 0. (9.20)
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Example 9.6 Lie algebra. As one does not want the symmetry rules to change at
every step, the generators Ti, i = 1,2, ..., N, are themselves invariant tensors:

(T2 = Pa O g (Ti) (9.21)

where gj; = [e‘"’kck]” is the adjoint [N x N] matrix representation of g € G. The [dxd]
matrices T; are in general non-commuting, and from (9.20) it follows that they close
N-element Lie algebra

TiT;—T;Ti = iCij Tk i,j,k=212.,N,

where the fully antisymmetric adjoint representation generators [Cy];j = Cijx are known
as the structure constants.

exercisel4.10

Example 9.7 Group SQ2). S Q) is the group of rotations in a plane, smoothly
connected to the unit element (i.e. the inversion (x,y) — (=X, —y) is excluded). A group
element can be parameterized by angle 6, and its action on smooth periodic functions
is generated by

d

— doT = j—

ge)=¢€"", T=-i W

9(0) rotates a periodic function u(@ + 2rr) = u(6) by 6 mod 2x:
g(O)u(@) = u(® +6)

The multiplication law is g(6)g(¢’) = g(6 + ). If the group G actions consists of N such
rotations which commute, for example a N-dimensional box with periodic boundary
conditions, the group G is an Abelian group that acts on a torus TV,

9.4.2 Relative periodic orbits

Consider a flow invariant under a global continuous symmtigy group)G. A
relative periodic orbitp is an orbit in state spac&! which exactly recurs

Xp(t) = GpXp(t + Tp), Xp(t) € Mp (9.22)

for a fixedrelative period T, and a fixed group actiog, € G that “rotates” the
endpointxp(Tp) back into the initial poinix,(0). The group actiowy, is referred
to as a “phase,” or a “shift.”

Example 9.8 Continuous symmetries of the plane Couette flow. The Navier-
Stokes plane Couette flow defined as a flow between two countermoving planes, in a
box periodic in streamwise and spanwise directions, a relative periodic solution is a
solution that recurs at time T, with exactly the same disposition of velocity fields over
the entire box, but shifted by a 2-dimensional (streamwise,spanwise) translation gp.
The SQ2) x S Q(2) continuous symmetry acts on a 2-torus T2.
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For dynamical systems with continuous symmetries parasigté,, - - -, O}
are real numbers, ratiag6; are almost never rational, and relative periodic orbits
are almost never eventually periodic. As almost any suci@xplores ergodically
the manifold swept by action @xt, they are sometimes referred to as “quasiperiodic.”
However, a relative periodic orbit can be pre-periodic ifsiinvariant under a
discrete symmetry: 1§™ = 1 is of finite ordem, then the corresponding orbit is
periodic with periodmTp. If g is not of a finite order, the orbit is periodic only
after the action ofj, as in 0.22).

In either discrete or continuous symmetry case, we refeingatbits M, in
M satisfying 0.22) asrelative periodic orbits Morally, as it will be shown in
chapterl9, they are the true “prime” orbits, i.e., the shortest segsdrat under
action ofG tile the entire invariant submanifold$t,,.

9.5 Stabilit
y A
A infinitesimal symmetry group transformation maps a trajgcin a nearby
equivalent trajectory, so we expect the initial point pesadions along to group
manifold to be marginal, with unit eigenvalue. The argumisrdkin to @.7),
the proof of marginality of perturbations along a periodibib In presence of
an N-dimensional Lie symmetry grou@, further N eigenvalues equal unity.
Consider two nearby initial points separated byNudimensional infinitesimal
group transformationd: 5xg = g(66)xo — Xo = 166 - T Xo. By the commutativity of
the group with the flong(s6) f'(xo) = f1(9(50)%0). Expanding both sides, keeping
the leading term ¢, and using the definition of the fundamental mateixg],
we observe thai'(xo) transports théN-dimensional tangent vector framextto
the rotated tangent vector framext) at timet:

ox() = 9(6)3'(x0) %o - (9.23)

For relative periodic orbitgpx(Tp) = x(0), at any point along cycle the
group tangent vector x(t) is an eigenvector of the fundamental mati(x) =
gpJd"?(X) with an eigenvalue of unit magnitude,

IJP(X) %0 =g@O)TX),  xep. (9.24)

Two successive points along the cycle separateéipyhave the same separation
after a completed periogk(Tp) = gpdxo, hence eigenvalue of magnitude 1.

9.5.1 Boundary orbits /

Peculiar &ects arise for orbits that run on a symmetry lines that baadendamental
domain. The state space transformatios e leaves invariant sets dfoundary
points; for example, under reflectian across a symmetry axis, the axis itself
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remains invariant. Some care need to be exercised in toethirinvariant “boundary
setM = M Man My--- N Mg. The properties of boundary periodic orbits
that belong to such pointwise invariant sets will requirétabthinking.

In our 3-disk example, no such orbits are possible, but thést én other
systems, such as in the bounded region of the Henon-Haites il (remarlo.3)
and in d maps of exampl®.1 For the symmetrical 4-disk billiard, there are in
principle two kinds of such orbits, one kind bouncing backl dorth between
two diagonally opposed disks and the other kind moving albegother axis of
reflection symmetry; the latter exists for bounded systenig dNhile for low-
dimensional state spaces there are typically relativelyjeundary orbits, they
tend to be among the shortest orbits, and they play a keymalgriamics.

While such boundary orbits are invariant under some synyragerations,
their neighborhoods are not. Thiffects the fundamental matri, of the orbit
and its Floquet multipliers.

Here we have used a particularly simple direct product giracof a global
symmetry that commutes with the flow to reduce the dynamica symmetry
reduced §—1 —N)-dimensional state spadel/G.

Résumé

In sect.2.1.1we made a lame attempt to classify “all possible motions:) (1
equilibria, (2) periodic orbits, (3) everything else. Noweocan discern in the
fog of dynamics outline of a more serious classification -gldime dynamics
takes place on the closure of a set of all invariant compatst geeserved by
the dynamics, and those are: (1) O-dimensional equilidig (2) 1-dimensional
periodic orbitsM,, (3) global symmetry inducel-dimensional relative equilibria
Muw, (4) (N+1)-dimensional relative periodic orbifslp, (5) terra incognita. We
have some inklings of the “terra incognita:” for examplemgjectic symmetry
induces existence of KAM-tori, and in general dynamicdiisgs we are encountering
more and more examples pértially hyperbolic invariant torj isolated tori that
are consequences of dynamics, not of a global symmetry, &nchveannot be
represented by a single relative periodic orbit, but rei@inumerical computation
of full (N+1)-dimensional compact invariant sets and their infiniteehsional
linearized fundamental matrices, marginal M+1) dimensions, and hyperbolic
in the rest.

The main result of this chapter can be stated as follows: yierhical system
(M, f) has a symmetr, the symmetry should be deployed to “quotient” the state
spaceM/G, i.e., identify allx e M related by the symmetry.

(1) In presence of a discrete symme@y associated with each full state space
cycle p is a maximal isotropy subgrou@, < G of order 1< |G| < |G|, whose
elements leave invariant. The isotropy subgrou, acts onp as time shift, tiling

it with |Gp| copies of its shortest invariant segment, the relativeogiariorbit p.
The elements of the cosete G/G,, generaten,, = |G|/|Gy| distinct copies of.
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This reduction to the fundamental domaW = M/G simplifies symbolic
dynamics and eliminates symmetry-induced degenerac@shé& short orbits the
labor saving is dramatic. For example, for the 3-disk gampiwiall there are
256 periodic points of length 8, but reduction to the fundatakdomain non-
degenerate prime cycles reduces the number of the distintescof length 8 to
30.

Amusingly, in this extension of “periodic orbit” theory frounstable 1-dimensional
closed orbits to unstableN(+ 1)-dimensional compact manifold${,, invariant
under continuous symmetries, there are either no or priopaity few periodic
orbits. Likelihood of finding a periodic orbit igera One expects some only
if in addition to a continuous symmetry one has a discretensgtry, or the
particular invariant compact manifolt;, is invariant under a discrete subgroup
of the continuous symmetry. Relative periodic orbits areaat never eventually
periodic, i.e., they almost never lie on periodic trajeig®riin the full state space,
unless forced to do so by a discrete symmetry, so looking doiogdic orbits in
systems with continuous symmetries is a fool’s errand.

Atypical as they are (no chaotic solution will be confined ede discrete
subspaces) they are important for periodic orbit theorthae the shortest orbits
dominate.

We feel your pain, but trust us: once you grasp the relatidwden the full
state spaceM and the desymmetrize@-quotientedM/G, you will find the life
as a fundamentalist so much simpler that you will never retaryour full state
space confused ways of yesteryear.

Commentary

Remark 9.1 Symmetries of the Lorenz equation: (Continued from remark.2) After
having studied exampl@.2 you will appreciate whyChaosBook.org starts out with

the symmetry-less Rossler flo&.(7), instead of the better known Lorenz flo®.{2)
(indeed, getting rid of symmetry was one of Rossler’s naitons). He threw the baby
out with the water; for Lorenz flow dimensionalities of s&lbhstable manifolds make
possible a robust heteroclinic connection absent fronsRo8ow, with unstable manifolds

of an equilibrium flowing into the stable manifold of anotleguilibria. How such connections
are forced upon us is best grasped by perusing the chaptetdtroclinic tangles” of

the inimitable Abraham and Shaw illustrated classi6][ Their beautiful hand-drawn
sketches elucidate the origin of heteroclinic connectiornibe Lorenz flow (and its high-
dimensional Navier-Stokes relatives) better than any edersimulation. Miranda and
Stone P& were first to quotient th®; symmetry and explicitly construct the desymmetrized,
“proto-Lorenz system,” by a nonlinear coordinate transfation into the Hilbert-Weyl
polynomial basis invariant under the action of the symmengup [33]. For in-depth
discussion of symmetry-reduced (“images”) and symmetitgreded (“covers”) topology,
symbolic dynamics, periodic orbits, invariant polynontialses etc., of Lorenz, Rossler
and many other low-dimensional systems there is no bettererece than the Gilmore
and Letellier monograpt?p, 31]. They interpret the proto-Lorenz and its “double cover”
Lorenz as “intensities” being the squares of “amplitudasd call quotiented flows such

as (Lorenz)D; “images.” Our “doubled-polar angle” visualization figut8.7is a proto-
Lorenz in disguise, with the flerence: we integrate the flow and construct Poincaré
sections and return maps in the Loreraf 7] coordinates, without any nonlinear coordinate
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transformations. The Poincaré return map figlie8is reminiscent in shape both of
the one given by Lorenz in his original paper, and the onegudoin a radial coordinate
by Gilmore and Letellier. Nevertheless, it is profoundlyfelient: our return maps are
from unstable manifole> itself [4], and thus intrinsic and coordinate independent. This
is necessary in high-dimensional flows to avoid problemé sigcdouble-valuedness of
return map projections on arbitrarydlcoordinates encountered already in the Rdssler
example. More importantly, as we know the embedding of tretabie manifold into the
full state space, a cycle point of our return map regardless of the length of the cycle -
the cycle point in the full state space, so no additional Neveearches are needed.

Remark 9.2 Examples of systems with discrete symmetries. One has &; symmetry
in the Lorenz system (rematk2), the Ising model, and in the-® anisotropic Kepler
potential f, 18, 19, a D3 = C3, symmetry in Heénon-Heiles type potentials [, 7, 3],
aDy = Cy4y Symmetry in quartic oscillators![ 5], in the purex?y? potential f, 7] and in
hydrogen in a magnetic fiel@], and aD, = C,, = V4 = C,xC, symmetry in the stadium
billiard [9]. A very nice application of desymmetrization is carried muref. [10].

Remark 9.3 Hénon-Heiles potential. An example of a system with; = C3, Symmetry
is provided by the motion of a particle in the Henon-Heilesemtial [5]

V(r,0) = %rz + %r3sin(39) .

Our 3-disk coding is indficient for this system because of the existence of elliplanigs
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdamain, they require the
special treatmeng] discussed in secf.5.1

Remark 9.4 Cycles and symmetries. We conclude this section with a few comments
about the role of symmetries in actual extraction of cycleshe N-disk billiard example,

a fundamental domain is a sliver of thNedisk configuration space delineated by a pair of
adjoining symmetry axes. The flow may further be reduced &iwn map on a Poincaré
surface of section. While in principle any Poincaré swefat section will do, a natural
choice in the present context are crossings of symmetry, aresexamplé.6.

In actual numerical integrations only the last crossing siymmetry line needs to
be determined. The cycle is run in global coordinates andgjtbep elements associated
with the crossings of symmetry lines are recorded; intégmas terminated when the orbit
closes in the fundamental domain. Periodic orbits with tranal symmetry subgroups
are particularly easy to find since their points lie on cnegsiof symmetry lines, see
example7.6.
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Exercises

9.1.

9.2.

9.3.

9.4.

3-disk fundamental domain symbolic dynamics.

The 10-cycle is drawn in figurel1.2 The unstab
eigenvalue\ g follows from (7.22).

domain, and interpretthe symb¢® 1) by relatingthem 9.5, A test of your pinball simulator: 10-cycle.  Tes

to topologically distinct types of collisions. Compare
with table 11.1 Then try to sketch the location of
periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the

configuration space longer cycles look like a hopelesg'G'

jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space
coordinates which does not respect the topological
organization of the flow.

Reduction of 3-disk symbolic dynamics to binary.
(a) Verify that the 3-disk cycles

{12,13,23},{123,132, {1213+ 2 perms},
{121232313+ 5 perms}, {121323 2 perms},

correspond to the fundamental domain cy€les,
01,001,011, - - respectively.

(b) Check the reduction for short cycles in tafite 1
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figude”.

(c) Optional: Can you see how the group elements
listed in tablel1.1relate irreducible segments to
the fundamental domain periodic orbits?

Fundamental domain fixed points. Use the formula
(8.11) for billiard fundamental matrix to compute the
periodsT, and the expanding eigenvalugs, of the
fundamental domai® (the 2-cycle of the complete 3-
disk space) and (the 3-cycle of the complete 3-disk
space) fixed points:

‘ TP AP
0| R-2 R-1+RVI-2/R (g 25)
1 2R 2R
I |R-V3 -Z+1-21-V3R

We have set the disk radiusao= 1.

Fundamental domain 2-cycle. Verify that for the10-
cycle the cycle length and the trace of the fundament:
matrix are given by

2R - 3R+ 1-2,

Lo =
trdio = Ao+ 1/A1w (9.26)
2
= 2Uypr2s s laollor 2
2 \3R/2-1

exerDiscrete - 13jun2008.tex

your exerciseB.3 pinball simulator stability evaluati
by checking numerically the exact analyti®-cycl
stability formula ©.26).

The group Ca,. We will compute a few of tt
properties of the grougs,, the group of symmetri
of an equilateral triangle

2 3

(a) For this exercise, get yourself a good texth
a book like Hamermeshl] or Tinkham [L1]
and read up on classes and characters.
discrete groups are isomorphic to a permut
group or one of its subgroups, and eler
of the permutation group can be expresse
cycles. Express the elements of the gr@isp a
cycles. For example, one of the rotations is (
meaning that vertex 1 mapsto 2 and 2 to 3 ¢
to 1.

(b) Find the subgroups of the gro@a,.

(c) Findthe classes @3, and the number of eleme
in them.

(d) There are three irreducible representations f
group. Two are one dimensional and the othe
of multiplicity 2 is formed by [2<2] matrices
the form

cosd  sind
—sing cosd |-
Find the matrices for all six group elements.

(e) Use your representation to find the character
for the group.

-7 Lorenz system in polar coordinates: group theory.

Use 6.7), (6.8) to rewrite the Lorenz equation

X a(y-X)
X:v(x):[y = px—y—sz
z xy — bz

in polar coordinates r(6,2), where ) =
(r cos#, r sind).



EXERCISES

9.8.

1. Show that in the polar coordinates Lorentz flow
takes form

Po= %(—o-—l+((r+p—z)sin29

+(1- o) cos D)

0 = %(—(r+p—z+((r—l)sin29
+(o+p —2) cos D)

z = —bz+;sin29. (9.27)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically

special about the subspace on which the inverse 3.

not exist?

3. Showthatthisis the (Lorerny4); quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the &, y) plane.

4. Show that a periodic orbit of the Lorenz flow in
polar representation is either a periodic orbit or a
relative periodic orbit.17) of the Lorenz flow in
the (x,y, 2) representation.

5. Argue that if the dynamics is invariant under a
rational rotationRymv(X) = V(RymX) = V(X),
a discrete subgrou@n, of SQ2) in the & y)-
plane, the only non-zero Fourier components of
equations of motion argj, # 0, j = 1,2,---. The
Fourier representation is then the quotient map of
the dynamicsM/Cn,.

By going to polar coordinates we have quotiented out the
r-rotation k. y, 2) — (—x, Y, z2) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

Lorenz system in polar coordinates: dynamics.
(Continuation of exercis@.7.)

1. Show that9.27) has two equilibria:

(ro.20) = (0.,0), 6 undefined
(r,61,21) = (v2b(p - 1), 7/4,p £98)
2. Verify numerically that the eigenvalues and 4

eigenvectors of the two equilibria are:

EQ, = (0,12 27) equilibrium: (and itsR-
rotation relatedEQ, partner) has one stable real
eigenvaluel™ = -13.854578, and the unstable

complex conjugate pain®® = 4@ + iw@ = °
0.093956+ 110.194505. The unstable eigenplane

is defined by eigenvectors

Ree® = (-0.4955 —0.201Q -0.8450) Im @ =

(0.5325 -0.84640)

with periodT = 27/w® = 0.6163306,

radial expansion multipliek, = exp(2iu®/w®) = 6.

1.059617,
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and the contracting multiplier A¢ =

exp(2iu®/w®) ~ 1.95686<10* along the stable
eigenvector oEQ,,

€9 = (0.8557, -0.3298 —0.3988).

EQ = (0,0,0) equilibrium: The stable
eigenvectoe® = (0,0, 1) of EQ,, has contraction
rate A® = —b = -2.666.... The other stable
eigenvector is

6 = (~0.244001-0.9697750),
contracting eigenvalug® = -228277.
unstable eigenvector

e® = (-0.6530490.7573160) has eigenvalue
Q) =118277.

Plot the Lorenz strange attractor both in the
original form figure2.4 and in the doubled-polar
coordinates (expand the anglec [0, 7] to 26 €

[0, 2x]) for the Lorenz parameter values = 10,

b = 8/3,p = 28. Topologically, does it resemble
the Lorenz butterfly, the Rossler attractor, or
neither? The Poincaré section of the Lorenz
flow fixed by thez-axis and the equilibrium in
the doubled polar angle representation, and the
corresponding Poincaré return map, &, + 1) are
plotted in figurel0.7.

with
The

=20

20

Figure: The Poincare return mas,, s,.1) for the
EQo, lower Poincare section of figut.7(b). (J.
Halcrow)

return map
(sn, Sn+1), Wheres is arc-length measured along
the unstable manifold oEQ,. Elucidate its
relation to the Poincaré return map of figur@.8

. Show that if a periodic orbit of the polar

representation Lorenz is also periodic orbit of the
Lorenz flow, their stability eigenvalues are the
same. How do the stability eigenvalues of relative
periodic orbits of the representations relate to each
other?

What does the volume contraction formula9)
look like now? Interpret.
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9.9. Proto-Lorenz system. Here we quotient
out the D1 symmetry by constructing an explicit
“intensity” representation of the desymmetrized Lorenz
flow, following Miranda and Stone’f].
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Figure: ~ The Lorenz attractor in proto-Lorenz
representation $.14. The points related by by
rotation about the z-axis are identified. (J. Halcrow)
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(Uv,2) = (¢ —y2, 2xy,2), (9.29)
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u —(c+Lu+(c-rv+(1-o0)N+vz
[V] = {(r—o-)u—(o—+l)v+(r+o-)N—uz—uN
z v/2-bz
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