Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovit)

Boltzmann’s mechanical formulation of statistical meahanSinai, Ruelle

and Bowen (SRB) have generalized Boltzmann’s notion ofdigiy for a
constant energy surface for a Hamiltonian system in eqiilib to dissipative
systems in nonequilibrium stationary states. In this mogaegal setting the
attractor plays the role of a constant energy surface, aadStRB measure of
sect.14.1is a generalization of the Liouville measure. Such measaregurely
microscopic and indierent to whether the system is at equilibrium, close to éagitiim
or far from it. “Far for equilibrium” in this context refer®tsystems with large
deviations from Maxwell's equilibrium velocity distribion. Furthermore, the
theory of dynamical systems has yielded new sets of micpsclynamics formulas
for macroscopic observables such a@Budiion constants and the pressure, to which
we turn now.

THE ADVANCEs in the theory of dynamical systems have brought a new life to

We shall apply cycle expansions to the analysigrahsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assionptare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit ttyegields formulas for
diffusion and other transport dieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The matiow are physical
problems such as beam defocusing in particle acceleratochamtic behavior
of passive tracers in @-rotating flows, problems which can be described as
deterministic difusion in periodic arrays.

In sect.24.1 we derive the formulas for ffusion codicients in a simple
physical setting, the & periodic Lorentz gas. This system, however, is not
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Figure 24.1: Deterministic difusion in a finite
horizon periodic Lorentz gas. (T. Schreibe

the best one to exemplify the theory, due to its complicatedi®lic dynamics.
Therefore we apply the theory first tdidision induced by a -maps in sect24.2.

24.1 Df#fusion in periodic arrays

The 2d Lorentz gads an infinite scatterer array in whichfflision of a light
molecule in a gas of heavy scatterers is modeled by the mofiarpoint particle

in a plane bouncing fb an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of anoynber of pointlike
fast “light molecules” interacting only with the statiogdtheavy molecules” and
not among themselves. As the scatterer array is built up foalm defocusing
concave surfaces, itis a pure hyperbolic system, and omeaiitnplest nontrivial
dynamical systems that exhibits deterministifuliion, figure24.1. We shall
now show that theperiodic Lorentz gas is amenable to a purely deterministic
treatment. In this class of open dynamical systems quesititiaracterizing global
dynamics, such as the Lyapunov exponent, pressure #&ndidn constant, can be
computed from the dynamics restricted to the elementaty Tieé method applies
to any hyperbolic dynamical system that is a periodic tilmg= pet M of the
dynamical state spackl by translatesMp of anelementary cellM, with T the
Abelian group of lattice translations. If the scatteringagrhas further discrete
symmetries, such as reflection symmetry, each elementdnynag be built from

a fundamental domain\l by the action of a discrete (not necessarily Abelian)
groupG. The symboIM refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial componez\f’( of the complement of
the disks in thevholespace.

We shall now relate the dynamics M to diffusive properties of the Lorentz
gas inM.

These concepts are best illustrated by a specific exampleseatz gas based
on the hexagonal lattice Sinai billiard of figued.2 We distinguish two types
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Figure 24.2:  Tiling of M, a periodic lattice . .
of reflecting disks, by the fundamental domain
M. Indicated is an example of a global trajectory ‘
X(t) together with the corresponding elementary cell

trajectory x(t) and the fundamental domain trajectory
X(t). (Courtesy of J.-P. Eckmann) . - - .

of diffusive behavior; thenfinite horizoncase, which allows for infinite length
flights, and thdinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our cdesation to the finite
horizon case, with disks fiiciently large so that no infinite length free flight is
possible. In this case thefflision is normal, withx(t)? growing liket. We shall
return to the anomalousftlision case in sec24.3

As we will work with three kinds of state spaces, good mannegsiire that
we repeat what hats, tildes and nothings atop symbols gignif

~  fundamental domain, triangle in figugd.2
elementary cell, hexagon in figugd.2

full state space, lattice in figuit.2 (24.1)

Itis convenient to define an evolution operator for each ef¥bases of figurg4.2
X(t) = fAt(>“<) denotes the point in the global spakéreached by the flow in time
t. x(t) = f!(x) denotes the corresponding flow in the elementary cell; thee t
are related by

Pe(x0) = f'(x0) - f'(x0) € T, (24.2)

the translation of the endpoint of the global path into tieerentary celiM. The
quantity X(t) = f'(X) denotes the flow in the fundamental domatify f'(X) is
related tof'(X) by a discrete symmetny € G which mapsx(t) € M to x(t) e M .

[chapter 19]

Fix a vector@ € RY, whered is the dimension of the state space. We will
compute the dfusive properties of the Lorentz gas from the leading eigeevaf
the evolution operatorlG.11)

) = fim Tlog& 00, (24.3)

where the average is over all initial points in the elemegntail, x € M.
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If all odd derivatives vanish by symmetry, there is no drifidethe second
derivatives

g 0

— - SB)

1 i
aB: 9B, = Jim (X0 =i (XO =X

5=0

yield a (generally anisotropic) filusion matrix. The spatial ffusion constant is
then given by the Einstein relatiof.13

— lim <L @ — a2
:O—tILrQOZdt«q(t) DIm

where thé sum is restricted to the spatial componeptsf the state space vectors
x = (g, p), i.e., if the dynamics is Hamiltonian to the number of thgrdes of
freedom.

We now turn to the connection betwee?4(3 and periodic orbits in the
elementary cell. As the fulM — M reduction is complicated by the nonabeliebr_le

. . . 'k 24.6
nature ofG, we shall introduce the main ideas in the abelein— M context. e )

24.1.1 Reduction fromM to M

The key idea follows from inspection of the relation

(00) = ﬁ x5 - fi(x).
)‘/GM

M| = fde is the volume of the elementary cel. As in sect.15.2 we have
used the identity & f wdyo(y — X()) to motivate the introduction of the evolution
operatorL'(y, X). There is a unique lattice translatiorstich thaty™= y — A, with

y € M, and f'(x) given by @4.2. The diference is a translation by a constant,
and the Jacobian for changing integration frdjnto dy equals unity. Therefore,
and this is the main point, translation invariance can bd tseeduce this average
to the elementary cell:

° 1
<e@-(x(t)—x)>M _ M y dxdy g-(fﬁ(x)—x)(;(y_ ft(X)) ) (24.4)
X.ye

As this is a translation, the Jacobia{gdy = 1. In this way the globaft(x) flow
averages can be computed by following the flid{x) restricted to the elementary
cell M. The equation44.4) suggests that we study the evolution operator

Ly, %) = 005y - £1(x), (24.5)
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wherex(t) = fi(x) € M, butx, f{(x), y € M. Itis straightforward to check that
this operator satisfies the semigroup propeity.25,

f dZ.Ltz (y’ Z).Ltl (Z, X) — Lt2+t1(y, X) .
M

Forp = 0, the operatord4.5 is the Perron-Frobenius operatd®(10, with the
leading eigenvalue® = 1 because there is no escape from this system (this will
lead to the flow conservation sum rul&(11) later on).

The rest is old hat. The spectrum 6fis evaluated by taking the trace _
[section 16.2]

tr Lt = f dx @MPs(x — x(t)) .
M

Hereri(X) is the discrete lattice translation defined 24(2). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orisi called standing

if it is also periodic orbit of the infinite state space dyne.smif~r P(X) = X, and

it is called running if it corresponds to a lattice translation in the dynamics on
the infinite state spacef?rp(x) = X+ fNp. In the theory of area—preserving maps
such orbits are calledccelerator modesas the dtusion takes place along the
momentum rather than the position coordinate. The trawdiitenceny, = fir (Xo)

is independent of the starting poixy, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinaht (6

> -Ap—STp)r
det(s(g) - A) = [ | exp|- > N akndian (24.6)
b =" |det(1- mp)
or the corresponding dynamical zeta functidi.(L9
alB-hp=sTp)
1/¢(B,9) = 1-—]. 24.7
/£(B.9) 1‘[( A ) (24.7)

p

The dynamical zeta function cycle averaging formul&.21) for the difusion
constant {5.13, zero mean driftX;) = 0, is given by

L <)A(2>{ 11 Z' (~1) LA, + -+ ﬁpk)z‘ (24.8)

T 2d(M),  2d(T), Apy - Apd

where the sum is over all distinct non-repeating combimatioprime cycles. The
derivation is standard, still the formula is strangeff@sion is unbounded motion
across an infinite lattice; nevertheless, the reductiohdé@tementary cell enables
us to compute relevant quantities in the usual way, in teripgioodic orbits.
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X)L

FOX) T
Figure 24.3: (a) f(%), the full space sawtooth 1 4.0
map @4.9, A > 2. (b) f(x), the sawtooth map " .
restricted to the unit circle2d.19), A = 6. (a) (b) ©

A sleepy reader might protest thaf = x(Tp) — x(0) is manifestly equal to
zero for a periodic orbit. That is correaty, in the above formula refers to a
displacement on thimfinite periodic lattice, whilep refers to closed orbit of the
dynamics reduced to the elementary cell, withbelonging to the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodibimhavex% =0,
and contribute only to the time normalizatigh),. The mean square displacement

<>A<2>§ gets contributions only from the periodic runaway trajees they are

closed in the elementary cell, but on the periodic latticeheane grows like
X(t)? = (Ap/Tp)? = Vat2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transpr no transport at all:
diffusion arises as a balance between the two kinds of motiomghtesl by the
1/|Apl measure. If the system is not hyperbolic such weights mayheranally
large, with Y|Ap| =~ 1/T, rather than 1A ~ e "ol whereA is the Lyapunov
exponent, and they may lead to anomalouBudion - accelerated or slowed down
depending on whether the probabilities of the running orstiamding orbits are

enhanced.
[section 24.3]

We illustrate the main idea, tracking of a globallyfdsing orbit by the associated
confined orbit restricted to the elementary cell, with aglafsimple 1d dynamical
systems where all transport d¢beients can be evaluated analytically.

24.2 Dftusion induced by chains of 1d maps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers irbonece, and then the
process is repeated. As was shown in chapfethe essential part of this process

is the stretching along the unstable directions of the flowg & the crudest
approximation the dynamics can be modeled liyepanding maps. This observation
motivates introduction of a class of particularly simplel kystems, chains of
piecewise linear maps.
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We start by defining the maf)on the unit interval as

o[ AR %e[0,1/2)
f(x)—{A>2+1—A Re(121 @ A2 (24.9)

and then extending the dynamics to the entire real line, Ippsimg the translation
property

fx+n) = f(+A NeZ. (24.10)

As the map is discontinuous at= 1/2, f(1/2) is undefined, and the = 1/2
point has to be excluded from the Markov partition. The magnssymmetric
under thex“coordinate flip

f®) = -f(-9, (24.11)

so the dynamics will exhibit no mean drift; all odd derivativof the generating
function (15.11) with respect t@, evaluated a8 = 0, will vanish.

The map 24.9 is sketched in figur@4.3(a). Initial points stficiently close
to either of the fixed points in the initial unit interval reman the elementary cell
for one iteration; depending on the slofseother points jumm tells, either to the
right or to the left. Repetition of this process generatesmaom walk for almost
every initial condition.

The translational symmetry24.10 relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell hsméxample at hand, the
unit interval curled up into a circle. Associated ﬁ(f() we thus also consider the
circle map

fo=f®-[fR]. x=x-[Xe01] (24.12)

figure 24.3(b), where {- -] stands for the integer par24.2). As noted above, the
elementary cell cycles correspond to either standing amingnorbits for the map
on the full line: we shall refer ta, € Z as thgumping numbeof the p cycle, and
take as the cycle weight

tp = Z%M /A (24.13)

For the piecewise linear map of figueéd.3we can evaluate the dynamical zeta
function in closed form. Each branch has the same value o$ltye, and the
map can be parameterized by a single parameter, for exatspteitical value

a = f(1/2), the absolute maximum on the interval [Prelated to the slope of the
map bya = A/2. The largerA is, the stronger is the stretching action of the map.
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The difusion constant formul&2¢.8 for 1-d maps is

where the “mean cycle time” is given b$&.22
Np, +---+N

n ) - UL 24.15

() = azg(oz)z_ -3 Ao A (24.15)
and the “mean cycle displacement squared”18.25

. 92 @ -+ i, )2

<n2>{ ST Z( 1)k '“;\ — LA (24.16)

- ,8 | p1” pk|

the primed sum indicating all distinct non-repeating camakiobns of prime cycles.
The evaluation of these formulas in this simple system \eijuire nothing more
than pencil and paper.

24.2.1 Case of unrestricted symbolic dynamics

WheneverA is an integer number, the symbolic dynamics is exceedirigipls.
For example, for the casé = 6 illustrated in figure24.3 (b), the elementary
cell map consists of 6 full branches, with uniform stretchfactorA = 6. The
branches have fierent jumping numbers: for branches 1 and 2 we lmayed; for
branch 3 we hava = +1, for branch /"= —1, and finally for branches 5 and 6 we
have respectivelp = +2 andri = —2. The same structure reappears whenawver
an even integeA = 2a: all branches are mapped onto the whole unit interval and
we have twan"= 0 branches, one branch for whioh="+1 and one for whichm =
-1, and so on, up to the maximal jurifp = a— 1. The symbolic dynamics is thus
full, unrestricted shift in 2 symbols{O,, 1., ..., (a-1),, (a-1)_, ..., 1, 0_},
where the symbol indicates both the length and the directidhe corresponding
jump.

For the piecewise linear maps with uniform stretching thégimeassociated
with a given symbol sequence is a product of weights for iiidial stepstsq =
tstq. For the map of figur@4.3there are 6 distinct weight24.13:

t1

t3

b = zZ/A
7N, ty=€Pz/A, ts=PzZN, tg=ePzA.

The piecewise linearity and the simple symbolic dynamiad e the full cancellation
of all curvature corrections inlg.7). Theexactdynamical zeta function1@.13
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is given by the fixed point contributions:

1/4(B,2) 1-to, —to. — - —t@1), —ta1).

a-1
1- g[l + > coshp j)] . (24.17)
=1

The leading (and only) eigenvalue of the evolution operéidr5) is

a-1
s(B) = log {g {1 + Z coshﬁj)]} , A = 2a, ainteger. (24.18)
j=1

The flow conservation20.11) sum rule is manifestly satisfied, s(0) = 0. The
first derivatives(0) vanishes as well by the Igfight symmetry of the dynamics,
implying vanishing mean driftX) = 0. The second derivative(8)” yields the
diffusion constantd4.14:

1 -2 o 12 2 (a-1y
(Mg =2a% =1, <X>4‘2X+2X+2X+“'+2 — (24.19)
Using the identity};_, k? = n(n+ 1)(2n + 1)/6 we obtain
1 .
D= ﬂ(A -1)(A -2), A even integer (24.20)

Similar calculation for odd integex = 2k — 1 yields .
[exercise 24.1]

D= 2—14(/\2— 1), A oddinteger (24.21)

24.2.2 Higher order transport codficients

The same approach yields higher order transporffiotents

_ 1 dt =D 24.22
Bk - Eﬁs(ﬂ) 5 BZ— 5 ( . )

5=0

known fork > 2 as the Burnett cdicients. The behavior of the higher order
codficients yields information on the relaxation to the asymiptdistribution
function generated by theftlisive process. Herg is the relevant dynamical
variable andBy’s are related to momen(s‘({‘) of arbitrary order.

Were the diftusive process purely Gaussian

1 +00 N 2 >
JsB) _ f dg R /@Dy _ 7Dt (24.23)
V47T Dt —00
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Figure 24.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
Ax) I = {0,,1,,2,,2.,1 ,0_}. The partition is
Markov, as the critical point is mapped onto the
right border ofM,, . (b) The Markov graph for this
partition. (c) The Markov graph in the compact
notation of @4.26 (introduced by Vadim Moroz). (@) (b)
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the only By codficient diferent from zero would b8, = D. Hence, nonvanishing
higher order coficients signal deviations of deterministidfdision from a Gaussian
stochastic process.

For the map under consideration the first Burnettficcient codficient 8, is
easily evaluated. For example, usi@f (19 in the case of even integer slope

A = 2awe obtain .
[exercise 24.2]

1

54 = 3760

(a—1)(2a-1)(4a®> — 9a+ 7). (24.24)

We see that deterministic filision is_nota Gaussian stochastic process. Higher
order even ca@cients may be calculated along the same lines.

24.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtainedheviee the critical
points are mapped in finite numbers of iterations onto pamntiboundary points,
or onto unstable periodic orbits. We will work out here anmgée for which this
occurs in two iterations, leaving other cases as exercises.

The key idea is to constructMarkov partition(10.4), with intervals mapped
onto unions of intervals. As an example we determine a value optrameter
4 < A < 6forwhichf (f(1/2)) = 0. Asin the integen case, we partition the unit
interval into six intervals, labeled by the jumping numbex)e {Mo,, M1,, Mz, , Mo , M1, Mo_},
ordered by their placement along the unit interval, figgdet(a).

In general the critical valua = f (2/2) will not correspond to an interval
border, but now we choosesuch that the critical point is mapped onto the right
border of My,. Equatingf(1/2) with the right border ofM;, , x = 1/A, we
obtain a quadratic equation with the expanding soluttor= 2(V2 + 1). For
this parameter valué(Mi,) = Mo, U M1, F(M2) = Mg U M1, while the
remaining intervals map onto the whole unit interyl. The transition matrix
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(10.2 is given by

bo,
b1,
b2,
R (24.25)
¢1
bo_

=

Il

_|

-

Il
PR R RPE R
PR R RRE R
OO0 OR R
PR, OOOO
PR R RRE R

[ el e el o

One could diagonalize2¢.25 on a computer, but, as we saw in seifi.4, the
Markov graph figure24.4(b) corresponding to figurg4.4 (a) ofers more insight
into the dynamics. The graph figug€.4 (b) can be redrawn more compactly as
Markov graph figure4.4(c) by replacing parallel lines in a graph by their sum

@ —e>s» e=lith+is. (24.26)

The dynamics is unrestricted in the alphabet
A={04,1,,20,,2,1,,21,20.,1,0}.

Applying the loop expansionl@.13 of sect.13.3 we are led to the dynamical
zeta function

1/¢(8.2)

1-to, —t1, —tr0, —t2,1, —t21 —tho -ty —tg

1- ZXZ(l + coshf)) — i—zj (cosh() + cosh(B)) . (24.27)

For grammar as simple as this one, the dynamical zeta funigithe sum over
fixed points of the unrestricted alphabet. As the first chddkie expression for
the dynamical zeta function we verify that

4 4
1/¢(0,1) =1-—-— =0
/{01 =1~ %~ =0,

as required by the flow conservation0(11). Conversely, we could have started
by picking the desired Markov partition, writing down ther@sponding dyn-
amical zeta function, and then fixing by the 1//(0, 1) = 0 condition. For more
complicated Markov graphs this approach, together withHabtorization £4.35,

is helpful in reducing the order of the polynomial conditithat fixesA.

The diffusion constant follows from2@.14) fexercise 24.3]

1 2 - 12 2 3
<n>{ = 4X + 4p , <n >( = ZX + Zp + Zp
_ 15+ 2‘/5 . (24.28)
16+ 8V2
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It is by now clear how to build an infinite hierarchy of finite kkav partitions:
tune the slope in such a way that the critical vafii&/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsf™(1/2) = 0. By taking higher

and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whitibhrrals are densely
embedded in the unit interval. For example, each of the 6 gwnintervals

can be subdivided into 6 intervals obtained by the 2-nd tikecd the map, and

for the critical point mapping into any of those in 2 steps grammar (and

the corresponding cycle expansion) is finite. So, if we cawv@rcontinuity of

D = D(A), we can apply the periodic orbit theory to the sawtooth n2apdj for

a random “generic” value of the parameterfor exampleA = 4.5. The idea is to
bracket this value oA by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and studyr t@nvergence
toward the value ob for A = 4.5. Judging how dficult such problem is already
for a tent map (see sedt3.6), this is not likely to take only a week of work.

Expressions like34.20 may lead to an expectation that thé&dsion codficient
(and thus transport properties) are smooth functions admaters controlling
the chaoticity of the system. For example, one might exgeat the difusion
codficient increases smoothly and monotonically as the sfopéthe map 24.9
is increased, or, perhaps more physically, that tiffeision codicient is a smooth
function of the Lyapunov exponemt. This turns out not to be trueD as a
function of A is a fractal, nowhere flierentiable curve illustrated in figuit.5
The dependence & on the map parametey is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratiba
diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stabilitgnesf purely hyperbolic
systems such as the Lozi map and theédiffusion map 24.9. The trouble arises
due to non-smooth dependence of the topological entropysters parameters
- any parameter change, no mater how small, leads to creatidmestruction of
infinitely many periodic orbits. As far asfilision is concerned this means that
even though local expansion rate is a smooth function,ahe number of ways
in which the trajectory can re-enter the the initial cell isicegular function of
A.

The lesson is that lack of structural stability implies ladlspectral stability,
and no global observable is expected to depend smoothlye®ytem parameters.
If you want to master the material, working through one of tleerministic
diffusion projects onChaosBook.org/pages is strongly recommended.

24.3 Marginal stability and anomalous difusion

What dfect does the intermittency of chapt3 have on transport properties of
1-d maps? Consider a-1d map of the real line on itself with the same properties
as in sect24.2, except for a marginal fixed point at= 0.

A marginal fixed point ects the balance between running and standing orbits,
thus generating a mechanism that may result in anomaldiusidin. Our model
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Figure 24.5: The dependence dd on the map S ‘ ‘ ‘ 0.805
parametea is continuous, but not monotone (from 6 62 64 66 68 7 56 5.62 5.64 5.66
ref. [8]). Herea stands for the slopa in (24.9. a a

example is the map shown in figued.6 (a), with the corresponding circle map
shown in figure24.6 (b). As in sect.23.2.], a branch with support itM;, | =
1,2,3,4 has constant slop&;, while f|,, is of intermittent form. To keep you
nimble, this time we take a slightly filerent choice of slopes. The toy example
of sect.23.2.1was cooked up so that th¢dbranch cut in dynamical zeta func-
tion was the whole answer. Here we shall take a slightffecent route, and pick
piecewise constant slopes such that the dynamical zetéidarfor intermittent

system can be expressed in terms of the Jonquiére function ]
[remark 24.8]

Jz 9 = i /K (24.29)
k=1

Once the0 fixed point is pruned away, the symbolic dynamics is given by
the infinite alphabetl, 2, 3,4,0'1,0/2,043,0'4}, i, j, k.| = 1,2,... (compare with
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Figure 24.6: (a) A map with marginal fixed point. :
(b) The map restricted to the unit circle. @) (b) -1-2

table 23.3. The partitioning of the subintervalo is induced byMo(ighy =
¢'(‘right) (M3 U Ms) (Wheregignty denotes the inverse of the right brancthQ{/[O)
and the same reasoning applies to the leftmost branch. Tresegions over
which the slope off|,,, is constant. Thus we have the following stabilities and
jumping numbers associated to letters:

k1+a

Kk Kk P
| | _ |l+(1 ~ _
01,02 Ap=L7  Ap=-1

wherea = 1/sis determined by the intermittency exponed8 (1), while g is to
be determined by the flow conservati®?0(11) for f: —PCdefineR

%+2q§(a+1)=1

so thatg = (A-4)/2A(a+1). The dynamical zeta function picks up contributions
just by the alphabet’s letters, as we have imposed piecdinisarity, and can be
expressed in terms of a Jonquiere functiagn.R9:

4
1/50(zpB) = 1- choshB— AT a)

zcoshB - J(z a + 1). (24.31)

Its first zeroz(B) is determined by

4Z+ A-4
A A1+ a)

1

z-Jza+1) = coshp
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By using implicit function derivation we see thBtvanishes (i.e.z’(6)|s=1 = 0)
whena < 1. The physical interpretation is that a typical orbit wiick for long
times near thé® marginal fixed point, and the ‘trapping time’ will be largier
higher values of the intermittency paramesérecalla = s™1). Hence, we need to
look more closely at the behavior of traces of high powersefttansfer operator.

The evaluation of transport cfieient requires one more derivative with respect
to expectation values of state space observables (see2debt. if we use the
diffusion dynamical zeta functio24.7), we may write the dfusion codficient as
an inverse Laplace transform,in such a way that any digim¢tetween maps and
flows has vanished. In the case ofl tiffusion we thus have

D = Ilim

Im 55 o (24.32)

@ 1 sl B9
I 9y

where the”’ refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high valiethe argument
is most conveniently performed using Tauberian theorenesshll take

w(d) = j:o dx e u(x),

with u(xX) monotone asx — oo; then, ast — 0 andx +— oo respectively (and
p € (0, c0),

w(d) ~ A_];L(%)
if and only if
ux) ~ F—(p)x'O L),

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

140/ (e.8) _ (i + x4 (JE S, a+ 1)+ IS, a))) cosh
Yio(esB)  1- fescoshd— Ariyes(es a+1)coshpd

We then take the double derivative with respegs eind obtain

2

7 (Lo ©@=B)IEHE™A),

A+ A QS a+ 1)+ IS ) -0 (24.33)

. — 2
(1- tes - hpsesies a+1))
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The asymptotic behavior of the inverse Laplace transfa2m3? may then be
evaluated via Tauberian theorems, once we use our estimrateef behavior of
Jonquiere functions near= 1. The deviations from normal behavior correspond
to an explicit dependence Bfon time. Omitting prefactors (which can be calculated
by the same procedure) we have

52 for @ >1
Ou(s) ~ { setD for a € (0,1)
1/(£Ins) for a=1.

The anomalous diusion exponents follow: .
[exercise 24.6]

t for a>1
(x=%0)%) ~ ¢ t*  for a€(0,1) (24.34)
t/Int for a=1.

Résum é

With initial data accuracyx = |6x(0)| and system sizk, a trajectory is predictable
only to thefinite Lyapunov time

1
Tiyap ~ 2 Injox/LI,

Beyond the Lyapunov time chaos rules. Successes of chaogy/thstatistical
mechanics, quantum mechanics, and questions of long taiitst in celestial
mechanics.

Tabletop experiment: measurecroscopic transport diffusion, conductance,
drag — observe thus determinism menoscales

Chaos: whatis it good for? TRANSPORTMeasurable predictions: washboard
mean velocity figur@4.7(a), cold atom lattice figure4.7(b), AFM tip drag force
figure24.7(c).

That Smale’s “structural stability” conjecture turned aotbe wrong is not
a bane of chaotic dynamics - it is actually a virtue, perhdggsrhost dramatic
experimentally measurable prediction of chaotic dynamiaslong as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere dfferentiablefunctions.

The classical Boltzmann equation for evolution of 1-pdetidensity is based
on stosszahlansatmneglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of tklgas dynamics, but
a difficult starting point for inclusion of systematic correcgonlin the theory
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(@)

[ N % 20 Qo0

(b) sin@ t)
frequency Q

Figure 24.7: (a) Washboard mean velocity, (b)
cold atom lattice, and (c) AFM tip drag force. (Y.

Lan) (©) velocity

developed here, no correlations are neglected - they anecalided in the cycle
averaging formula such as the cycle expansion for tifesion constant

Z (-1 )k+1 (nP +:0) (npl -t r’='F)k)2
2d (T, Ap--| IApl Apd

Such formulas arexact the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums requioetheir evaluation.
Unlike most statistical mechanics, here there are no phenotagical macroscopic
parameters; quantities such as transportfaoents are calculable to any desired
accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probatiti random walk
diffusion, deterministic dliusion is quite recognizable, at least in low dimensional
settings, through fractal dependence of tifeudion constant on the system parameters,
and through non-Gaussion relaxation to equilibrium (nanishing Burnett cd@cients).

For systems of a few degrees of freedom these results arganousis footing,
but there are indications that they capture the essentizrdics of systems of
many degrees of freedom as well.

Actual evaluation of transport ciiients is a test of the techniques developed
above in physical settings. In cases of severe pruning #ee tformulas and
ergodic sampling of dominant cycles might be mofieeive strategy than the
cycle expansions of dynamical zeta functions and systeneatimeration of all
cycles.
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Commentary

Remark 24.1 Lorentz gas. The original pinball model proposed by Lorent} §onsisted
of randomly, rather than regularly placed scatterers.

Remark 24.2 Who's dunit? Cycle expansions for thefflision constant of a particle
moving in a periodic array have been introduced indepemglegtR. Artuso [] (exact
dynamical zeta function for @l-chains of maps24.8), by W.N. Vance {],and by P.
Cvitanovi€, J.-P. Eckmann, and P. Gaspaidthe dynamical zeta function cycle expansion
(24.9 applied to the Lorentz gas).

Remark 24.3 Lack of structural stability for D. Expressions liked4.2Q may lead to
an expectation that the flision codicient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized gkample, by the Lyapunov
exponenfl = In A). This turns out not to be tru® as a function of\ is a fractal, nowhere
differentiable curve shown in figuggl.5 The dependence &f on the map parametéris
rather unexpected - even though for largemore points are mapped outside the unit cell
in one iteration, the diusion constant does not necessarily grow. The fractal dipae

of diffusion constant on the map parameter is discussed in #&f§, [(]. Statistical
mechanicians tend to believe that such complicated beh#vioot to be expected in
systems with very many degrees of freedom, as the additiaraaye integer dimension
of a number smaller than 1 should be as unnoticeable as asoapir perturbation of a
macroscopic quantity. No fractal-like behavior of the codiility for the Lorentz gas has
been detected so fat ]].

Remark 24.4 Diffusion induced by 1-d maps. We refer the reader to refsl.g, 13 for
early work on the deterministic filusion induced by 1-dimenional maps. The sawtooth
map @4.9 was introduced by Grossmann and Fujisaké] who derived the integer
slope formulas44.20 for the difusion constant. The sawtooth map is also discussed
in refs. [L5].

Remark 24.5 Symmetry factorization in one dimension. Intheg = 0 limit the dynamics
(24.17 is symmetric undex — —X, and the zeta functions factorize into products of zeta
functions for the symmetric and antisymmetric subspacedeacribed in sect9.1.1

1 1 1 61_161_’_1&1 (24.35)

02 02 %02 027 {s02ln (a02ls

The leading (material flow conserving) eigenvatue 1 belongs to the symmetric subspace
1/Z4(0,1) = 0, so the derivative@.15 also depend only on the symmetric subspace:

1 1 0 1

= 25 0.9 s ~ 220 292 (0.9 pn

(24.36)

Implementing the symmetry factorization is convenient, it essential, at this level of
computation.

diffusion - 2sep2002.tex



CHAPTER 24. DETERMINISTIC DIFFUSION 432

| length [ # cycles] £(0,0) | 1]
1 5] -1.216975 -
2 10 | -0.024823| 1.745407
3 32| -0.021694| 1.719617
4 104 | 0.000329| 1.743494
5 351 | 0.002527| 1.760581
6 1243 | 0.000034| 1.756546

Table 24.1: Fundamental domain, 0.3 .

Remark 24.6 Lorentz gas in the fundamental domain. The vector valued nature of
the generating functior2é.3 in the case under consideration makesftidiilt to perform

a calculation of the diusion constant within the fundamental domain. Yet we poirt o
that, at least as regards scalar quantities, the full réeztutd M leads to better estimates.
A proper symbolic dynamics in the fundamental domain has lrgeoduced in ref. 16].

In order to perform the full reduction for flision one should express the dynamical
zeta function 24.7) in terms of the prime cycles of the fundamental domadnof the
lattice (see figur@4.2) rather than those of the elementary (Wigner-Seitz) 8¢l This
problem is complicated by the breaking of the rotational sygtry by the auxiliary vector
B, or, in other words, the non-commutativity of translati@msl rotations: see ref/].

Remark 24.7 Anomalous diffusion. Anomalous difusion for 1d intermittent maps
was studied in the continuous time random walk approachfm [&0, 11]. The first
approach within the framework of cycle expansions (basettumrcated dynamical zeta
functions) was proposed inref.f]. Our treatment follows methods introduced in réf],
applied there to investigate the behavior of the Lorentaigisunbounded horizon.

Remark 24.8 Jonquiére functions. In statistical mechanics Jonquiére functions

Iz 9 = i /K (24.37)
k=1

appear in the theory of free Bose-Einstein gas, see t&is2[].
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Exercises

24.1. Diffusion for odd integerA.
slopeA = 2k—11in (24.9 is an odd integer, the filusion
constant is given byD = (A% — 1)/24, as stated in
(24.21).

Fourth-order transport coefficient.
You will need the identity

24.2. Verify (24.29.

zn: Kt = in(n+ 1)(2n+ 1)(3% + 3n—1).
£ 30

24.3.
24.4.

Finite Markov partitions.  Verify (24.29.

Maps with variable peak shape:
Consider the following piecewise linear map

w

X

for x e

>

fs(x) = (% e x|) for x e

- 5 (x- §@+9)) for xe

= Nlw e

12+0).3]

and the map in [12, 1]is obtained by antisymmetry with
respect tox = 1/2,y = 1/2. Write the corresponding
dynamical zeta function relevant tofiilision and then
show that

_ 0(2+0)

D = 4(1-9)

See refs.[8, 19 for further details.

24.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(15)and (05).
ChaosBook.org/pages offers several project-length
deterministic difusion exercises.
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Show that when the 24.6. Accelerated diffusion.

Consider a maf, such that

h = f of figure 24.6 (b), but now running branches
are turner into standing branches and vice versa, so tha
1,2, 3,4 are standing while O leads to both positive and
negative jumps. Build the corresponding dynamical zeta
function and show that

t for @ >2

tint for a =2
o2(t) ~{ 7 for ae(L,2)

t?2/Int for a=1

t2 for a € (0,1)

o,%(l_Zg)F. Recurrence times for Lorentz gas with infinite
3(1-0).5(2

hakizo onsider the Lorentz gas with unbounded
* 4. . L .
h%?:];og?w%gga square lattice geometry, with disk radius

R and unit lattice spacing. Label disks according to
the (integer) coordinates of their center: the sequence
of recurrence timest;} is given by the set of collision
times. Consider orbits that leave the disk sitting at
the origin and hit a disk far away after a free flight
(along the horizontal corridor). Initial conditions are
characterized by coordinateg, () (¢ determines the
initial position along the disk, whiler gives the angle

of the initial velocity with respect to the outward
normal: the appropriate measure is they cosa da

(¢ € [0,2n), @ € [-n/2,7/2]. Find howy(T) scales

for large values of: this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk @, 1), for large values oh (as
Ni—oon=T).
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