
Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

T  in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a

constant energy surface for a Hamiltonian system in equilibrium to dissipative
systems in nonequilibrium stationary states. In this more general setting the
attractor plays the role of a constant energy surface, and the SRB measure of
sect.14.1is a generalization of the Liouville measure. Such measuresare purely
microscopic and indifferent to whether the system is at equilibrium, close to equilibrium
or far from it. “Far for equilibrium” in this context refers to systems with large
deviations from Maxwell’s equilibrium velocity distribution. Furthermore, the
theory of dynamical systems has yielded new sets of microscopic dynamics formulas
for macroscopic observables such as diffusion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysis oftransport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made, and
the all correlations are taken into account by the inclusionof cycles of all periods.
The infinite extent systems for which the periodic orbit theory yields formulas for
diffusion and other transport coefficients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The motivation are physical
problems such as beam defocusing in particle accelerators or chaotic behavior
of passive tracers in 2-d rotating flows, problems which can be described as
deterministic diffusion in periodic arrays.

In sect.24.1 we derive the formulas for diffusion coefficients in a simple
physical setting, the 2-d periodic Lorentz gas. This system, however, is not
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Figure 24.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (T. Schreiber)

the best one to exemplify the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1-d maps in sect.24.2.

24.1 Diffusion in periodic arrays

The 2-d Lorentz gasis an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modeled by the motionof a point particle
in a plane bouncing off an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of anynumber of pointlike
fast “light molecules” interacting only with the stationary “heavy molecules” and
not among themselves. As the scatterer array is built up fromonly defocusing
concave surfaces, it is a pure hyperbolic system, and one of the simplest nontrivial
dynamical systems that exhibits deterministic diffusion, figure24.1. We shall
now show that theperiodic Lorentz gas is amenable to a purely deterministic
treatment. In this class of open dynamical systems quantities characterizing global
dynamics, such as the Lyapunov exponent, pressure and diffusion constant, can be
computed from the dynamics restricted to the elementary cell. The method applies
to any hyperbolic dynamical system that is a periodic tilingM̂ = ⋃

n̂∈TMn̂ of the
dynamical state spacêM by translatesMn̂ of anelementary cellM, with T the
Abelian group of lattice translations. If the scattering array has further discrete
symmetries, such as reflection symmetry, each elementary cell may be built from
a fundamental domaiñM by the action of a discrete (not necessarily Abelian)
groupG. The symbolM̂ refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial component ofM̂ is the complement of
the disks in thewholespace.

We shall now relate the dynamics inM to diffusive properties of the Lorentz
gas inM̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of figure24.2. We distinguish two types
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CHAPTER 24. DETERMINISTIC DIFFUSION 416

Figure 24.2: Tiling of M̂, a periodic lattice
of reflecting disks, by the fundamental domain
M̃. Indicated is an example of a global trajectory
x̂(t) together with the corresponding elementary cell
trajectoryx(t) and the fundamental domain trajectory
x̃(t). (Courtesy of J.-P. Eckmann)

of diffusive behavior; theinfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our consideration to the finite
horizon case, with disks sufficiently large so that no infinite length free flight is
possible. In this case the diffusion is normal, with ˆx(t)2 growing like t. We shall
return to the anomalous diffusion case in sect.24.3.

As we will work with three kinds of state spaces, good mannersrequire that
we repeat what hats, tildes and nothings atop symbols signify:

˜ fundamental domain, triangle in figure24.2

elementary cell, hexagon in figure24.2

ˆ full state space, lattice in figure24.2 (24.1)

It is convenient to define an evolution operator for each of the 3 cases of figure24.2.
x̂(t) = f̂ t(x̂) denotes the point in the global spacêM reached by the flow in time
t. x(t) = f t(x0) denotes the corresponding flow in the elementary cell; the two
are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (24.2)

the translation of the endpoint of the global path into the elementary cellM. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domaiñM; f̃ t(x̃) is
related tof t(x̃) by a discrete symmetryg ∈ G which maps ˜x(t) ∈ M̃ to x(t) ∈ M .

[chapter 19]

Fix a vectorβ ∈ Rd, whered is the dimension of the state space. We will
compute the diffusive properties of the Lorentz gas from the leading eigenvalue of
the evolution operator (15.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (24.3)

where the average is over all initial points in the elementary cell, x ∈ M.
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If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion constant is
then given by the Einstein relation (15.13)

D =
1
2d

∑

i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t) − q)2〉M ,

where thei sum is restricted to the spatial componentsqi of the state space vectors
x = (q, p), i.e., if the dynamics is Hamiltonian to the number of the degrees of
freedom.

We now turn to the connection between (24.3) and periodic orbits in the
elementary cell. As the fullM̂ → M̃ reduction is complicated by the nonabelian

[remark 24.6]
nature ofG, we shall introduce the main ideas in the abelianM̂ → M context.

24.1.1 Reduction fromM̂ toM

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M =

1
|M|

∫

x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ− f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cellM. As in sect.15.2, we have

used the identity 1=
∫
Mdyδ(y− x̂(t)) to motivate the introduction of the evolution

operatorLt(ŷ, x). There is a unique lattice translation ˆn such that ˆy = y − n̂, with
y ∈ M, and f t(x) given by (24.2). The difference is a translation by a constant,
and the Jacobian for changing integration fromdŷ to dy equals unity. Therefore,
and this is the main point, translation invariance can be used to reduce this average
to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫

x,y∈M
dxdy eβ·( f̂ t (x)−x)δ(y− f t(x)) . (24.4)

As this is a translation, the Jacobian isδŷ/δy = 1. In this way the global̂f t(x) flow
averages can be computed by following the flowf t(x0) restricted to the elementary
cellM. The equation (24.4) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y− f t(x)) , (24.5)
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wherex̂(t) = f̂ t(x) ∈ M̂, but x, f t(x), y ∈ M. It is straightforward to check that
this operator satisfies the semigroup property (15.25),

∫

M
dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) .

For β = 0, the operator (24.5) is the Perron-Frobenius operator (14.10), with the
leading eigenvaluees0 = 1 because there is no escape from this system (this will
lead to the flow conservation sum rule (20.11) later on).

The rest is old hat. The spectrum ofL is evaluated by taking the trace
[section 16.2]

trLt =

∫

M
dx eβ·n̂t(x)δ(x− x(t)) .

Heren̂t(x) is the discrete lattice translation defined in (24.2). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orbit is calledstanding
if it is also periodic orbit of the infinite state space dynamics, f̂ Tp(x) = x, and
it is called running if it corresponds to a lattice translation in the dynamics on
the infinite state space,̂f Tp(x) = x + n̂p. In the theory of area–preserving maps
such orbits are calledaccelerator modes, as the diffusion takes place along the
momentum rather than the position coordinate. The traveleddistance ˆnp = n̂Tp(x0)
is independent of the starting pointx0, as can be easily seen by continuing the path
periodically inM̂.

The final result is the spectral determinant (17.6)

det (s(β) −A) =
∏

p

exp

−
∞∑

r=1

1
r

e(β·n̂p−sTp)r
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣

 , (24.6)

or the corresponding dynamical zeta function (17.15)

1/ζ(β, s) =
∏

p

(
1− e(β·n̂p−sTp)

|Λp|

)
. (24.7)

The dynamical zeta function cycle averaging formula (18.21) for the diffusion
constant (15.13), zero mean drift〈x̂i〉 = 0 , is given by

D =
1
2d

〈
x̂2

〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk)
2

|Λp1 · · ·Λpk |
. (24.8)

where the sum is over all distinct non-repeating combination of prime cycles. The
derivation is standard, still the formula is strange. Diffusion is unbounded motion
across an infinite lattice; nevertheless, the reduction to the elementary cell enables
us to compute relevant quantities in the usual way, in terms of periodic orbits.
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CHAPTER 24. DETERMINISTIC DIFFUSION 419

Figure 24.3: (a) f̂ (x̂), the full space sawtooth
map (24.9), Λ > 2. (b) f (x), the sawtooth map
restricted to the unit circle (24.12), Λ = 6. (a) (b)

A sleepy reader might protest thatxp = x(Tp) − x(0) is manifestly equal to
zero for a periodic orbit. That is correct; ˆnp in the above formula refers to a
displacement on theinfinite periodic lattice, whilep refers to closed orbit of the
dynamics reduced to the elementary cell, withxp belonging to the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have ˆx2
p = 0,

and contribute only to the time normalization〈T〉ζ . The mean square displacement〈
x̂2

〉
ζ

gets contributions only from the periodic runaway trajectories; they are

closed in the elementary cell, but on the periodic lattice each one grows like
x̂(t)2 = (n̂p/Tp)2 = v2

pt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transport or no transport at all:
diffusion arises as a balance between the two kinds of motion, weighted by the
1/|Λp| measure. If the system is not hyperbolic such weights may be abnormally
large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, whereλ is the Lyapunov
exponent, and they may lead to anomalous diffusion - accelerated or slowed down
depending on whether the probabilities of the running or thestanding orbits are
enhanced.

[section 24.3]

We illustrate the main idea, tracking of a globally diffusing orbit by the associated
confined orbit restricted to the elementary cell, with a class of simple 1-d dynamical
systems where all transport coefficients can be evaluated analytically.

24.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in onebounce, and then the
process is repeated. As was shown in chapter10, the essential part of this process
is the stretching along the unstable directions of the flow, and in the crudest
approximation the dynamics can be modeled by 1-d expanding maps. This observation
motivates introduction of a class of particularly simple 1-d systems, chains of
piecewise linear maps.
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We start by defining the map̂f on the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂+ 1− Λ x̂ ∈ (1/2, 1] , Λ > 2 , (24.9)

and then extending the dynamics to the entire real line, by imposing the translation
property

f̂ (x̂+ n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (24.10)

As the map is discontinuous at ˆx = 1/2, f̂ (1/2) is undefined, and thex = 1/2
point has to be excluded from the Markov partition. The map isantisymmetric
under the ˆx-coordinate flip

f̂ (x̂) = − f̂ (−x̂) , (24.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating
function (15.11) with respect toβ, evaluated atβ = 0, will vanish.

The map (24.9) is sketched in figure24.3(a). Initial points sufficiently close
to either of the fixed points in the initial unit interval remain in the elementary cell
for one iteration; depending on the slopeΛ, other points jump ˆn cells, either to the
right or to the left. Repetition of this process generates a random walk for almost
every initial condition.

The translational symmetry (24.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the
unit interval curled up into a circle. Associated tof̂ (x̂) we thus also consider the
circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂− [ x̂] ∈ [0, 1] (24.12)

figure24.3(b), where [· · ·] stands for the integer part (24.2). As noted above, the
elementary cell cycles correspond to either standing or running orbits for the map
on the full line: we shall refer to ˆnp ∈ Z as thejumping numberof thep cycle, and
take as the cycle weight

tp = znpeβn̂p/|Λp| . (24.13)

For the piecewise linear map of figure24.3 we can evaluate the dynamical zeta
function in closed form. Each branch has the same value of theslope, and the
map can be parameterized by a single parameter, for example its critical value
a = f̂ (1/2), the absolute maximum on the interval [0, 1] related to the slope of the
map bya = Λ/2. The largerΛ is, the stronger is the stretching action of the map.
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The diffusion constant formula (24.8) for 1-d maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
(24.14)

where the “mean cycle time” is given by (18.22)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (24.15)

and the “mean cycle displacement squared” by (18.25)

〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (24.16)

the primed sum indicating all distinct non-repeating combinations of prime cycles.
The evaluation of these formulas in this simple system will require nothing more
than pencil and paper.

24.2.1 Case of unrestricted symbolic dynamics

WheneverΛ is an integer number, the symbolic dynamics is exceedingly simple.
For example, for the caseΛ = 6 illustrated in figure24.3 (b), the elementary
cell map consists of 6 full branches, with uniform stretching factorΛ = 6. The
branches have different jumping numbers: for branches 1 and 2 we have ˆn = 0, for
branch 3 we have ˆn = +1, for branch 4 ˆn = −1, and finally for branches 5 and 6 we
have respectively ˆn = +2 andn̂ = −2. The same structure reappears wheneverΛ is
an even integerΛ = 2a: all branches are mapped onto the whole unit interval and
we have two ˆn = 0 branches, one branch for which ˆn = +1 and one for which ˆn =
−1, and so on, up to the maximal jump|n̂| = a−1. The symbolic dynamics is thus
full, unrestricted shift in 2a symbols{0+, 1+, . . . , (a− 1)+, (a− 1)−, . . . , 1−, 0−},
where the symbol indicates both the length and the directionof the corresponding
jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps,tsq =

tstq. For the map of figure24.3there are 6 distinct weights (24.13):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full cancellation
of all curvature corrections in (18.7). Theexactdynamical zeta function (13.13)
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is given by the fixed point contributions:

1/ζ(β, z) = 1− t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1− z
a

1+
a−1∑

j=1

cosh(β j)

 . (24.17)

The leading (and only) eigenvalue of the evolution operator(24.5) is

s(β) = log


1
a

1+
a−1∑

j=1

cosh(β j)




, Λ = 2a, a integer. (24.18)

The flow conservation (20.11) sum rule is manifestly satisfied, sos(0) = 0. The
first derivatives(0)′ vanishes as well by the left/right symmetry of the dynamics,
implying vanishing mean drift〈x̂〉 = 0. The second derivatives(β)′′ yields the
diffusion constant (24.14):

〈n〉ζ = 2a
1
Λ
= 1 ,

〈
x̂2

〉
ζ
= 2

02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a− 1)2

Λ
(24.19)

Using the identity
∑n

k=1 k2 = n(n+ 1)(2n+ 1)/6 we obtain

D =
1
24

(Λ − 1)(Λ − 2) , Λ even integer. (24.20)

Similar calculation for odd integerΛ = 2k − 1 yields
[exercise 24.1]

D =
1
24

(Λ2 − 1) , Λ odd integer. (24.21)

24.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (24.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher order
coefficients yields information on the relaxation to the asymptotic distribution
function generated by the diffusive process. Here ˆxt is the relevant dynamical
variable andBk’s are related to moments

〈
x̂k

t

〉
of arbitrary order.

Were the diffusive process purely Gaussian

ets(β) =
1

√
4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ

2Dt (24.23)
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Figure 24.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
n̂(x) I = {0+,1+,2+,2−,1−,0−}. The partition is
Markov, as the critical point is mapped onto the
right border ofM1+ . (b) The Markov graph for this
partition. (c) The Markov graph in the compact
notation of (24.26) (introduced by Vadim Moroz). (a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

the onlyBk coefficient different from zero would beB2 = D. Hence, nonvanishing
higher order coefficients signal deviations of deterministic diffusion from a Gaussian
stochastic process.

For the map under consideration the first Burnett coefficient coefficientB4 is
easily evaluated. For example, using (24.18) in the case of even integer slope
Λ = 2a we obtain

[exercise 24.2]

B4 = −
1

4! · 60
(a− 1)(2a − 1)(4a2 − 9a+ 7) . (24.24)

We see that deterministic diffusion is nota Gaussian stochastic process. Higher
order even coefficients may be calculated along the same lines.

24.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which this
occurs in two iterations, leaving other cases as exercises.

The key idea is to construct aMarkov partition(10.4), with intervals mapped
onto unions of intervals. As an example we determine a value of theparameter
4 ≤ Λ ≤ 6 for which f ( f (1/2)) = 0. As in the integerΛ case, we partition the unit
interval into six intervals, labeled by the jumping number ˆn(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0− },
ordered by their placement along the unit interval, figure24.4(a).

In general the critical valuea = f̂ (1/2) will not correspond to an interval
border, but now we choosea such that the critical point is mapped onto the right
border ofM1+ . Equating f (1/2) with the right border ofM1+ , x = 1/Λ, we
obtain a quadratic equation with the expanding solutionΛ = 2(

√
2 + 1). For

this parameter valuef (M1+ ) = M0+
⋃M1+ , f (M2− ) = M0−

⋃M1− , while the
remaining intervals map onto the whole unit intervalM. The transition matrix
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(10.2) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+
φ1+
φ2+
φ2−
φ1−
φ0−



. (24.25)

One could diagonalize (24.25) on a computer, but, as we saw in sect.10.4, the
Markov graph figure24.4(b) corresponding to figure24.4(a) offers more insight
into the dynamics. The graph figure24.4(b) can be redrawn more compactly as
Markov graph figure24.4(c) by replacing parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (24.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (13.13) of sect.13.3, we are led to the dynamical
zeta function

1/ζ(β, z) = 1− t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1− 2z
Λ

(1+ cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (24.27)

For grammar as simple as this one, the dynamical zeta function is the sum over
fixed points of the unrestricted alphabet. As the first check of this expression for
the dynamical zeta function we verify that

1/ζ(0, 1) = 1− 4
Λ
− 4

Λ2
= 0 ,

as required by the flow conservation (20.11). Conversely, we could have started
by picking the desired Markov partition, writing down the corresponding dyn-
amical zeta function, and then fixingΛ by the 1/ζ(0, 1) = 0 condition. For more
complicated Markov graphs this approach, together with thefactorization (24.35),
is helpful in reducing the order of the polynomial conditionthat fixesΛ.

The diffusion constant follows from (24.14)
[exercise 24.3]

〈n〉ζ = 4
1
Λ
+ 4

2

Λ2
,

〈
n̂2

〉
ζ
= 2

12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15+ 2

√
2

16+ 8
√

2
. (24.28)
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It is by now clear how to build an infinite hierarchy of finite Markov partitions:
tune the slope in such a way that the critical valuef (1/2) is mapped into the fixed
point at the origin in a finite number of iterationsp fP(1/2) = 0. By taking higher
and higher values ofp one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in which rationals are densely
embedded in the unit interval. For example, each of the 6 primary intervals
can be subdivided into 6 intervals obtained by the 2-nd iterate of the map, and
for the critical point mapping into any of those in 2 steps thegrammar (and
the corresponding cycle expansion) is finite. So, if we can prove continuity of
D = D(Λ), we can apply the periodic orbit theory to the sawtooth map (24.9) for
a random “generic” value of the parameterΛ, for exampleΛ = 4.5. The idea is to
bracket this value ofΛ by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and study their convergence
toward the value ofD for Λ = 4.5. Judging how difficult such problem is already
for a tent map (see sect.13.6), this is not likely to take only a week of work.

Expressions like (24.20) may lead to an expectation that the diffusion coefficient
(and thus transport properties) are smooth functions of parameters controlling
the chaoticity of the system. For example, one might expect that the diffusion
coefficient increases smoothly and monotonically as the slopeΛ of the map (24.9)
is increased, or, perhaps more physically, that the diffusion coefficient is a smooth
function of the Lyapunov exponentλ. This turns out not to be true:D as a
function ofΛ is a fractal, nowhere differentiable curve illustrated in figure24.5.
The dependence ofD on the map parameterΛ is rather unexpected - even though
for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely hyperbolic
systems such as the Lozi map and the 1-d diffusion map (24.9). The trouble arises
due to non-smooth dependence of the topological entropy on system parameters
- any parameter change, no mater how small, leads to creationand destruction of
infinitely many periodic orbits. As far as diffusion is concerned this means that
even though local expansion rate is a smooth function ofΛ, the number of ways
in which the trajectory can re-enter the the initial cell is an irregular function of
Λ.

The lesson is that lack of structural stability implies lackof spectral stability,
and no global observable is expected to depend smoothly on the system parameters.
If you want to master the material, working through one of thedeterministic
diffusion projects onChaosBook.org/pages is strongly recommended.

24.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter23 have on transport properties of
1-d maps? Consider a 1− d map of the real line on itself with the same properties
as in sect.24.2, except for a marginal fixed point atx = 0.

A marginal fixed point affects the balance between running and standing orbits,
thus generating a mechanism that may result in anomalous diffusion. Our model
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Figure 24.5: The dependence ofD on the map
parametera is continuous, but not monotone (from
ref. [8]). Herea stands for the slopeΛ in (24.9).
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example is the map shown in figure24.6(a), with the corresponding circle map
shown in figure24.6 (b). As in sect.23.2.1, a branch with support inMi , i =
1, 2, 3, 4 has constant slopeΛi , while f |M0 is of intermittent form. To keep you
nimble, this time we take a slightly different choice of slopes. The toy example
of sect.23.2.1was cooked up so that the 1/s branch cut in dynamical zeta func-
tion was the whole answer. Here we shall take a slightly different route, and pick
piecewise constant slopes such that the dynamical zeta function for intermittent
system can be expressed in terms of the Jonquière function

[remark 24.8]

J(z, s) =
∞∑

k=1

zk/ks (24.29)

Once the0 fixed point is pruned away, the symbolic dynamics is given by
the infinite alphabet{1, 2, 3, 4, 0i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with
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Figure 24.6: (a) A map with marginal fixed point.
(b) The map restricted to the unit circle. (a) (b)

table 23.3). The partitioning of the subintervalM0 is induced byM0k(right) =

φk
(right)(M3

⋃M4) (whereφ(right) denotes the inverse of the right branch off̂ |M0)
and the same reasoning applies to the leftmost branch. Theseare regions over
which the slope off̂ |M0 is constant. Thus we have the following stabilities and
jumping numbers associated to letters:

0k3, 0k4 Λp =
k1+α

q/2 n̂p = 1

0l1, 0l2 Λp =
l1+α

q/2 n̂p = −1

3, 4 Λp = ±Λ n̂p = 1

2, 1 Λp = ±Λ n̂p = −1 , (24.30)

whereα = 1/s is determined by the intermittency exponent (23.1), while q is to
be determined by the flow conservation (20.11) for f̂ : —PCdefineR

4
Λ
+ 2qζ(α + 1) = 1

so thatq = (Λ−4)/2Λζ(α+1). The dynamical zeta function picks up contributions
just by the alphabet’s letters, as we have imposed piecewiselinearity, and can be
expressed in terms of a Jonquiere function (24.29):

1/ζ0(z, β) = 1− 4
Λ

zcoshβ − Λ − 4
Λζ(1+ α)

zcoshβ · J(z, α + 1) . (24.31)

Its first zeroz(β) is determined by

4
Λ

z+
Λ − 4
Λζ(1+ α)

z · J(z, α + 1) =
1

coshβ
.
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By using implicit function derivation we see thatD vanishes (i.e.,z′′(β)|β=1 = 0)
whenα ≤ 1. The physical interpretation is that a typical orbit will stick for long
times near the0 marginal fixed point, and the ‘trapping time’ will be largerfor
higher values of the intermittency parameters (recallα = s−1). Hence, we need to
look more closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with respect
to expectation values of state space observables (see sect.24.1): if we use the
diffusion dynamical zeta function (24.7), we may write the diffusion coefficient as
an inverse Laplace transform,in such a way that any distinction between maps and
flows has vanished. In the case of 1-d diffusion we thus have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds estζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(24.32)

where theζ′ refers to the derivative with respect tos.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed using Tauberian theorems. We shall take

ω(λ) =
∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone asx → ∞; then, asλ 7→ 0 andx 7→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)

if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

whereL denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1)+ J(e−s, α)

))
coshβ

1− 4
Λ

e−s coshβ − Λ−4
Λζ(1+α)e

−s(e−s, α + 1) coshβJ
.

We then take the double derivative with respect toβ and obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1)+ J(e−s, α)

)

(
1− 4

Λ
e−s − Λ−4

Λζ(1+α)e
−sJ(e−s, α + 1)

)2
= gα(s) (24.33)
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The asymptotic behavior of the inverse Laplace transform (24.32) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior of
Jonquière functions nearz= 1. The deviations from normal behavior correspond
to an explicit dependence ofD on time. Omitting prefactors (which can be calculated
by the same procedure) we have

gα(s) ∼



s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
[exercise 24.6]

〈(x− x0)2〉t ∼



t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1 .

(24.34)

Résum é

With initial data accuracyδx = |δx(0)| and system sizeL, a trajectory is predictable
only to thefinite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| ,

Beyond the Lyapunov time chaos rules. Successes of chaos theory: statistical
mechanics, quantum mechanics, and questions of long term stability in celestial
mechanics.

Tabletop experiment: measuremacroscopic transport– diffusion, conductance,
drag – observe thus determinism onnanoscales.

Chaos: what is it good for? TRANSPORT!Measurable predictions: washboard
mean velocity figure24.7(a), cold atom lattice figure24.7(b), AFM tip drag force
figure24.7(c).

That Smale’s “structural stability” conjecture turned outto be wrong is not
a bane of chaotic dynamics - it is actually a virtue, perhaps the most dramatic
experimentally measurable prediction of chaotic dynamics. As long as microscopic
periodicity is exact, the prediction is counterintuitive for a physicist - transport
coefficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere differentiablefunctions.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
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Figure 24.7: (a) Washboard mean velocity, (b)
cold atom lattice, and (c) AFM tip drag force. (Y.
Lan)

(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

developed here, no correlations are neglected - they are allincluded in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1
2d

1
〈T〉ζ

∑′
(−1)k+1 (n̂p + · · ·)

|Λp · · · |
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
.

Such formulas areexact; the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums required for their evaluation.
Unlike most statistical mechanics, here there are no phenomenological macroscopic
parameters; quantities such as transport coefficients are calculable to any desired
accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimensional
settings, through fractal dependence of the diffusion constant on the system parameters,
and through non-Gaussion relaxation to equilibrium (non-vanishing Burnett coefficients).

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques developed
above in physical settings. In cases of severe pruning the trace formulas and
ergodic sampling of dominant cycles might be more effective strategy than the
cycle expansions of dynamical zeta functions and systematic enumeration of all
cycles.
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Commentary

Remark 24.1 Lorentz gas. The original pinball model proposed by Lorentz [4] consisted
of randomly, rather than regularly placed scatterers.

Remark 24.2 Who’s dun it? Cycle expansions for the diffusion constant of a particle
moving in a periodic array have been introduced independently by R. Artuso [5] (exact
dynamical zeta function for 1-d chains of maps (24.8)), by W.N. Vance [6],and by P.
Cvitanović, J.-P. Eckmann, and P. Gaspard [7] (the dynamical zeta function cycle expansion
(24.8) applied to the Lorentz gas).

Remark 24.3 Lack of structural stability for D. Expressions like (24.20) may lead to
an expectation that the diffusion coefficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized, for example, by the Lyapunov
exponentλ = lnΛ). This turns out not to be true:D as a function ofΛ is a fractal, nowhere
differentiable curve shown in figure24.5. The dependence ofD on the map parameterΛ is
rather unexpected - even though for largerΛmore points are mapped outside the unit cell
in one iteration, the diffusion constant does not necessarily grow. The fractal dependence
of diffusion constant on the map parameter is discussed in refs. [8, 9, 10]. Statistical
mechanicians tend to believe that such complicated behavior is not to be expected in
systems with very many degrees of freedom, as the addition toa large integer dimension
of a number smaller than 1 should be as unnoticeable as a microscopic perturbation of a
macroscopic quantity. No fractal-like behavior of the conductivity for the Lorentz gas has
been detected so far [11].

Remark 24.4 Diffusion induced by 1-d maps. We refer the reader to refs. [12, 13] for
early work on the deterministic diffusion induced by 1-dimenional maps. The sawtooth
map (24.9) was introduced by Grossmann and Fujisaka [14] who derived the integer
slope formulas (24.20) for the diffusion constant. The sawtooth map is also discussed
in refs. [15].

Remark 24.5 Symmetry factorization in one dimension. In theβ = 0 limit the dynamics
(24.11) is symmetric underx→ −x, and the zeta functions factorize into products of zeta
functions for the symmetric and antisymmetric subspaces, as described in sect.19.1.1:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
,

∂

∂z
1
ζ
=

1
ζs

∂

∂z
1
ζa
+

1
ζa

∂

∂z
1
ζs
. (24.35)

The leading (material flow conserving) eigenvaluez= 1 belongs to the symmetric subspace
1/ζs(0, 1) = 0, so the derivatives (24.15) also depend only on the symmetric subspace:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
=

1
ζa(0, z)

z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (24.36)

Implementing the symmetry factorization is convenient, but not essential, at this level of
computation.
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 24.1: Fundamental domain, w=0.3 .

Remark 24.6 Lorentz gas in the fundamental domain. The vector valued nature of
the generating function (24.3) in the case under consideration makes it difficult to perform
a calculation of the diffusion constant within the fundamental domain. Yet we point out
that, at least as regards scalar quantities, the full reduction toM̃ leads to better estimates.
A proper symbolic dynamics in the fundamental domain has been introduced in ref. [16].

In order to perform the full reduction for diffusion one should express the dynamical
zeta function (24.7) in terms of the prime cycles of the fundamental domainM̃ of the
lattice (see figure24.2) rather than those of the elementary (Wigner-Seitz) cellM. This
problem is complicated by the breaking of the rotational symmetry by the auxiliary vector
β, or, in other words, the non-commutativity of translationsand rotations: see ref. [7].

Remark 24.7 Anomalous diffusion. Anomalous diffusion for 1-d intermittent maps
was studied in the continuous time random walk approach in refs. [10, 11]. The first
approach within the framework of cycle expansions (based ontruncated dynamical zeta
functions) was proposed in ref. [12]. Our treatment follows methods introduced in ref. [13],
applied there to investigate the behavior of the Lorentz gaswith unbounded horizon.

Remark 24.8 Jonquière functions. In statistical mechanics Jonquière functions

J(z, s) =
∞∑

k=1

zk/ks (24.37)

appear in the theory of free Bose-Einstein gas, see refs. [22, 23].
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Exercises

24.1. Diffusion for odd integerΛ. Show that when the
slopeΛ = 2k−1 in (24.9) is an odd integer, the diffusion
constant is given byD = (Λ2 − 1)/24, as stated in
(24.21).

24.2. Fourth-order transport coefficient. Verify (24.24).
You will need the identity

n∑

k=1

k4 =
1
30

n(n+ 1)(2n+ 1)(3n2 + 3n− 1) .

24.3. Finite Markov partitions. Verify (24.28).

24.4. Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =



3x
1−δ for x ∈

[
0, 1

3(1− δ)
]

3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣
)

for x ∈
[

1
3(1− δ), 1

6(2+ δ)
]

1− 3
1−δ

(
x− 1

6(2+ δ)
)

for x ∈
[

1
6(2+ δ), 1

2

] (24.38)

and the map in [1/2, 1] is obtained by antisymmetry with
respect tox = 1/2, y = 1/2. Write the corresponding
dynamical zeta function relevant to diffusion and then
show that

D =
δ(2+ δ)
4(1− δ)

See refs. [18, 19] for further details.

24.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5).

ChaosBook.org/pages offers several project-length
deterministic diffusion exercises.

24.6. Accelerated diffusion. Consider a maph, such that
ĥ = f̂ of figure 24.6 (b), but now running branches
are turner into standing branches and vice versa, so that
1, 2, 3, 4 are standing while 0 leads to both positive and
negative jumps. Build the corresponding dynamical zeta
function and show that

σ2(t) ∼



t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24.7. Recurrence times for Lorentz gas with infinite
horizon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk radius
R and unit lattice spacing. Label disks according to
the (integer) coordinates of their center: the sequence
of recurrence times{t j} is given by the set of collision
times. Consider orbits that leave the disk sitting at
the origin and hit a disk far away after a free flight
(along the horizontal corridor). Initial conditions are
characterized by coordinates (φ, α) (φ determines the
initial position along the disk, whileα gives the angle
of the initial velocity with respect to the outward
normal: the appropriate measure is thendφ cosαdα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find howψ(T) scales
for large values ofT: this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk (n, 1), for large values ofn (as
n 7→ ∞ n ≃ T).
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