Chapter 17

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn'’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don't exactly know what they are!”

—Lewis Carroll,Through the Looking Glass

diverge atz = € ¥, respectivelys = s, i.e., precisely where one would

like to use them. While this does not prevent numerical esdion of
some “thermodynamic” averages for iterated mappings, énctise of the Gutz-
willer trace formula this leads to a perplexing observatioat crude estimates
of the radius of convergence seem to put the entire physpadtsim out of
reach. We shall now cure this problem by thinking, at no extnputational
cost; while traces and determinants are formally equitvabterminants are the
tool of choice when it comes to computing spectra.  The idedlustrated

. . .. . [chapter 21]

by figure 1.13 Determinants tend to have larger analyticity domains bsea
iftr £L/(1-2L) = —d%ln det(1- z£) diverges at a particular value a@f then
det (1- z£) might have an isolated zero there, and a zero of a functieasgr to
determine numerically than its poles.

THE PROBLEM With the trace formulasl.10, (16.23 and (L6.29 is that they

17.1 Spectral determinants for maps

The eigenvalueg of a linear operator are given by the zeros of the determinant

det(1-z£) = | [ -z/z). (17.1)
k

For finite matrices this is the characteristic determinémt;operators this is the
Hadamard representation of tepectral determinant(sparing the reader from
pondering possible regularization factors). Considet fivre case of maps, for
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CHAPTER 17. SPECTRAL DETERMINANTS 284

which the evolution operator advances the densities bgéntsteps in time. In

this case we can use the formal matrix identity [exercise 4.1]

Indet(1- M) = tr In(L - M) = — Z %tr M", (17.2)
n=1

to relate the spectral determinant of an evolution opeifatoa map to its traces
(16.8), and hence to periodic orbits:
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Going the other way, the trace formula6(1Q can be recovered from the
spectral determinant by taking a derivative

zL d
tr T —zd—zln det(1-2zL). (17.4)

fast track:
W sect. 17.2, p. 285
Example 17.1 Spectral determinants of transfer operators:
y

J For a piecewise-linear map (15.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (16.11)
into (17.3):

det(1-z£) = ﬁ[l— B _ t—l) , (17.5)

k=0

where ts = z/|Ag|. The eigenvalues are necessarily the same as in (16.12), which we
already determined from the trace formula (16.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (17.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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CHAPTER 17. SPECTRAL DETERMINANTS 285

17.2 Spectral determinant for flows

..an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. However
we will mention a wild idea in this direction. {-] define
[(y) to be the minimal period of [ - -] then define formally
(another zeta function(s) to be the infinite product

Z(s>—1_[1_[ ~ [expl()] ) .

yell k=0

—Stephen Smaldifferentiable Dynamical Systems

We write the formula for the spectral determinant for flowsdnalogy to

(17.3

1 g (B-Ap—sTp)

(17.6)
~ |det1 M)

det(s— A) = exp[ Z
p

and then check that the trace formula (23 is the logarithmic derivative of the
spectral determinant

1 d
trm = d—sln det(s— A). a7.7)

With zsettoz = e Sas in (L6.24), the spectral determinart.6 has the same
form for both maps and flows. We refer tb7(6) asspectral determinantas the
spectrum of the operatofi is given by the zeros of

det(s— A) = 0. (17.8)

We now note that the sum in (L7.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spatgterminant into an
infinite product over periodic orbits as follows:

Let M, be thep-cycle [dxd] transverse fundamental matrix, with eigenvalues
Ap1, Apo, ..., Apd. Expanding the expanding eigenvalue factof€lt 1/Ape)
and the contracting eigenvalue factorgll- Ap ) in (16.4 as geometric series,
substituting back intol(7.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product

det(s—A) =
( ) !1_:[ nﬁq e
Al A2 Al
Ydgre = [ ]|1-te—20 Ef*z kep’d (17.9)
P Ap,lAp,Z o Ape
1
tp = tp(zs,ﬂ):meB'Ap_Ssznp. (17.10)
p
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CHAPTER 17. SPECTRAL DETERMINANTS 286

In such formulast, is a weight associated with the cycle (lettert refers to
the “local trace” evaluated along thecycle trajectory), and the indeg runs
through all distinct prime cycles. Why the factdir? It is associated with
the trace formula6.10 for maps, whereas the facters™ is specific to the
continuous time trace formuld.§.23; according to 16.24 we should use either
one or the other. But we have learned in s&ct.that flows can be represented
either by their continuous-time trajectories, or by thepdlogical time Poincaré
section return maps. In cases when we have good control fewéopology of the
flow, it is often convenient to insert th&r factor into cycle weights, as a formal
parameter which keeps track of the topological cycle lemgtihese factors will
assist us in expanding zeta functions and determinantsitialy we shall set
z = 1. The subscriptg, ¢ indicate that there are expanding eigenvalues, and
c contracting eigenvalues. The observable whose averageistetav compute
contributes through thal(x) term in thep cycle multiplicative weigh&®4». By
its definition (L5.1), the weight for maps is a product along the cycle points

[chapter 18]

np—1
e = 1‘[ A(F1 )

j=0

and the weight for flows is an exponential of the integtél.f) along the cycle

e = exp( f " a(x(r))dr).
0

This formula is correct for scalar weighting functions; mgeneral matrix valued
weights require a time-ordering prescription as in the &mdntal matrix of sectl. L

Example 17.2 Expanding 1- d map: J For expanding 1-d mappings the spec-
tral determinant (17.9) takes the form

(o8] &Ap
det@-z0) = [[ [(1-to/A).  tp= |Ap|z”p . (17.11)
p k=0
Example 17.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of

freedom Hamiltonian flows the energy conservation eliminates on phase space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
A =1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue A, |A| > 1, and one contracting transverse eigenvalue
1/A. The weight in (16.4) is expanded as follows:

1 1 1 Sk+l
_ _ gkl (17.12)
det(1—mp)| A= 1/AG) 1A kZ(:) AY

The spectral determinant exponent can be resummed,

Ap—STp)r © Ap—ST,
Zl il Z(k+1)|og(1—e6p kp),
‘det 1- Mf) k=0 [AplAD

det - 19apr2005.tex



CHAPTER 17. SPECTRAL DETERMINANTS 287

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

o

dets—A) = [ [ ](1-to/al)" . (17.13)
p

k=0

[exercise 21.4]

Now we are finally poised to deal with the problem posed at #ggriming of
chapterl6; how do we actually evaluate the averages introduced in 5&df? The
eigenvalues of the dynamical averaging evolution opem@®given by the values
of sfor which the spectral determinant4.6 of the evolution operatorl6.23
vanishes. If we can compute the leading eigenvalfg) and its derivatives, we
are done. Unfortunately, the infinite product formula © is no more than a
shorthand notation for the periodic orbit weights conttiifg to the spectral det-
erminant; more work will be needed to bring such formulae etractable form.
This shall be accomplished in chaptis, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta fancti

17.3 Dynamical zeta functions

It follows from sect.16.1.1that if one is interested only in the leading eigenvalue
of £, the size of thep cycle neighborhood can be approximated BjA}|", the
dominant term in theT, =t — oo limit, where A, = []eApe is the product of
the expanding eigenvalues of the fundamental matix With this replacement
the spectral determinani®.6) is replaced by theynamical zeta function

®1
1/¢ = exp[— Z Z Ft;,} (17.14)
p r=1

that we have already derived heuristically in s&cd.2 Resumming the logarithms
usingy;, t,/r = —In(1-tp) we obtain theEuler product representatioof the dyn-
amical zeta function:

1/¢ = l—l(l—tp) . (17.15)

p

In order to simplify the notation, we usually omit the exiilidependence of /£,
tp onz s, S whenever the dependence is clear from the context.

The approximate trace formula&.28 plays the same rolgis-a-vis the dyn-
amical zeta function1(7.7)

d Tt
Ke=gInct=) 7o (17.16)
P p
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CHAPTER 17. SPECTRAL DETERMINANTS 288

as the exact trace formulaq.23 playsvis-a-vis the spectral determinant?.6).
The heuristically derived dynamical zeta function of séck.2now re-emerges
as the 1o..0(2) part of theexactspectral determinant; other factors in the infinite
product (L7.9 affect the non-leading eigenvalues.ff

In summary, the dynamical zeta functiciv(15 associated with the flovi*(x)
is defined as the product over all prime cycles The quantities,T,, np and
Ap, denote the period, topological length and product of theaarling stability
eigenvalues of prime cyclp, A, is the integrated observabd#§x) evaluated on a
single traversal of cycle (see (5.9), sis a variable dual to the timi z is dual
to the discrete “topological” tima, andty(z s, 5) denotes the local trace over the
cycle p. We have included the factafr in the definition of the cycle weight in
order to keep track of the number of times a cycle traversesuiface of section.
The dynamical zeta function is useful because the term

1/¢(s) =0 (17.17)

whens = s, Here s is the leading eigenvalue oft = €, which is often all
that is necessary for application of this equation. The almygument completes
our derivation of the trace and determinant formulas fosgitzal chaotic flows.
In chapters that follow we shall make these formulas taediyl working out a
series of simple examples.

The remainder of this chapteffers examples of zeta functions.
fast track:
W chapter 18, p. 299
17.3.1 A contour integral formulation

,
J The following observation is sometimes useful, in particulor zeta
functions with richer analytic structure than just zeros @oles, as in the case
of intermittency (chapte23): ', the trace suml.26, can be expressed in terms
of the dynamical zeta functiori7.19

Zp
1 = 1-—| . 17.18
/<@ l:[( ~) (17.18
as a contour integral
R QY s B
I'h = o 92_2 (dzlogg (z)) dz, (17.19)

[exercise 17.7]
where a small contouy,; encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unitle |z = 1, we may
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CHAPTER 17. SPECTRAL DETERMINANTS 289

Figure 17.1: The survival probabilityl’, can be split
into contributions from poles (x) and zeros (0) between
the small and the large circle and a contribution from
the large circle.

write the logarithmic derivative of ~1(2) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the irtegga be solved term
by term, and the trace formuld .26 is recovered. For hyperbolic maps, cycl[((—g-hapter 18]
expansions or other techniques provide an analytical woation of the dynam-

ical zeta function beyond the leading zero; we may therefieferm the original

contour into a larger circle with radid® which encircles both poles and zeros of

7 Y(2), as depicted in figuré7.1 Residue calculus turns this into a sum over the
zerosz, and poles; of the dynamical zeta function, that is

zeros poles 1

:Z%

Fn Y
lZaI<R Iz51<R %

1 _,d 1
+27ri 9§§dzz dzlog{ , (17.20)

where the last term gives a contribution from a large cingle It would be a
miracle if you still remembered this, but in sett4.3we interpreted™, as fraction

of survivors aftem bounces, and defined the escape taés the rate of the find
exponential decay df,. We now see that this exponential decay is dominated by
the leading zero or pole &f(2).

17.3.2 Dynamical zeta functions for transfer operators

,
J Ruelle’s original dynamical zeta function was a generéizaof the
topological zeta function1@3.21) to a function that assignsftirent weights to

. hapter 13
different cycles: [chapter 13]

00 n-1
4(z)=exp2§[ D tr]‘[g(fi(m)J.

n=1 xieFixfn j=0
[exercise 16.2]
Here we sum over all periodic pointg of period n, and g(x) is any (matrix
valued) weighting function, where the weight evaluatedtiplitatively along the
trajectory ofx;.

By the chain rule 4.50 the stability of anyn-cycle of a 1d map is given
by Ap = ?:1 f’(x), so the 1d map cycle stability is the simplest example
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CHAPTER 17. SPECTRAL DETERMINANTS 290

of a multiplicative cycle weightg(x) = 1//f’(x)|, and indeed - via the Perron-
Frobenius evolution operatoi4.9 - the historical motivation for Ruelle’s more
abstract construction.

In particular, for a piecewise-linear map with a finite Markgartition such
as the map of exampl&4.1, the dynamical zeta function is given by a finite
polynomial, a straightforward generalization of the tamital transition matrix
determinant 10.2). As explained in sectl3.3 for a finite [N x N] dimensional
matrix the determinant is given by

N
[Ja-t)=> 7cn,
p n=1

wherec, is given by the sum over all non-self-intersecting closeithpaf length
n together with products of all non-intersecting closed paihtotal lengthn.

Example 17.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (15.17) factorizes as As;s,..s, = AGA}™,
where m s the total number of times the letter s; = 0 appears in the p symbol sequence,
so the traces in the sum (16.28) take the particularly simple form

n
tl’TnZFn:(l 1).

—_ + —_
Aol A4l

The dynamical zeta function (17.14) evaluated by resumming the traces, )
[exercise 17.3]

1/4(2) = 1= 2/|Aol = Z/|A4l, (17.21)

is indeed the determinant det(1— zT) of the transfer operator (15.19), which is almost
as simple as the topological zeta function (13.25).

[section 10.5]

More generally, piecewise-linear approximations to dyitairsystems yield
polynomial or rational polynomial cycle expansions, pded that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so d¥ddaly quantum
chaologians is a bogus anxiety; we are dealing with expaaBniany cycles of
increasing length and instability, but all that really reedtin this example are the
stabilities of the two fixed points. Clearly the informatioarried by the infinity
of longer cycles is highly redundant; we shall learn in ckafi8 how to exploit
this redundancy systematically.

17.4 False zeros

Compare {7.21) with the Euler product7.15. For simplicity consider two
equal scalegAo| = |A1] = €. Our task is to determine the leading zere &
of the Euler product. It is a novice error to assume that tfiaite Euler product
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CHAPTER 17. SPECTRAL DETERMINANTS 291

(17.15 vanishes whenever one of its factors vanishes. If that imeeg each factor
(1-2"/|Apl) would yield

0=1- w1 (17.22)

so the escape ratewould equal the Floquet exponent of a repulsive cycle, one
eigenvaluey = vy, for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires tiftshe zeros of the
infinite product. The correct formula follows from{.21)

0=1-e*"  h=In2 (17.23)

This particular formula for the escape rate is a special odsegeneral relation
between escape rates, Lyapunov exponents and entropiets that yet included
into this book. Physically this means that the escape irtllgethe repulsion
by each unstable fixed point is diminished by the rate of bzatksr from other
repelling regions, i.e., the entrojoy the positive entropy of orbits shifts the “false
zeros”z = e'r of the Euler productX(7.15 to the true zera = et™".

17.5 Spectral determinantsvs. dynamical zeta functions

In sect.17.3we derived the dynamical zeta function as an approximatoatine
spectral determinant. Here we relate dynamical zeta fomstio spectral deter-
minantsexactly by showing that a dynamical zeta function can be expressed a
ratio of products of spectral determinants.

The elementary identity fai-dimensional matrices

_ 1 d k k
1= e kZ:;)(—l) tr (A M), (17.24)

inserted into the exponential representati@i.{4 of the dynamical zeta func-
tion, relates the dynamical zeta functioneightedspectral determinants.

Example 17.5 Dynamical zeta function in terms of determinants, 1-  d maps:  For
1-d maps the identity

L1 1 1
T (1-1/A) A(@1-1/A)

substituted into (17.14) yields an expression for the dynamical zeta function for 1-d
maps as a ratio of two spectral determinants

1¢ = det(1-zL)

= Jet(_2Zu) (17.25)
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CHAPTER 17. SPECTRAL DETERMINANTS 292

where the cycle weight in L) is given by replacement t, — tp/Ap. As we shall see
in chapter 21, this establishes that for nice hyperbolic flows 1/ is meromorphic, with
poles given by the zeros of det (1-zL1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1—- zL(1)) might be cancelled by coincident zeros of det(1— zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 17.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 17.6 Dynamical zeta function in terms of determinants, 2-  d Hamiltonian
maps:  For 2-dimensional Hamiltonian flows the above identity yields

1 1

A A= TA? i 1/A)2(1 —2/A +1/A?),

SO

det(1- z£) det (1- zL)

17.26
det(1-zL)) ( )

1/¢=

This establishes that for nice 2-d hyperbolic flows the dynamical zeta function is meromorphic.

Example 17.7 Dynamical zeta functions for 2- d Hamiltonian flows: The relation
(17.26) is not particularly useful for our purposes. Instead we insert the identity

1o 1 2 1 N
T (1-1/A)2 A(1-1/A)2  A2(1-1/A)

into the exponential representation (17.14) of 1/, and obtain

_ det(1-2zLy)det(1- 2Lx:2)
det (1- zLk.1))?

1/4x (17.27)

Even though we have no guarantee that det (1- zL)) are entire, we do know that the
upper bound on the leading zeros of det (1- zL.1)) lies strictly below the leading zeros
of det(1- zL), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/x generically has a double leading pole coinciding with the
leading zero of the det (1- zL.1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (17.13) is entire, and also implies that the
poles in 1/ must have the right multiplicities to cancel in the det (1- zL) = [] 1/§|'<‘+l
product.

17.6 Alltoo many eigenvalues?

O3

What does the 2-dimensional hyperbolic Hamiltonian flowcsad determinant
(17.13 tell us? Consider one of the simplest conceivable hyparblmws: the
game of pinball of figur@? consisting of two disks of equal size in a plane. There
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Aims
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Figure 17.2: The classical resonances = {k,n} {0.-3}
. . o o o o [e]
(17.298 for a 2-disk game of pinball.

is only one periodic orbit, with the periotland expanding eigenvaluegiven by
elementary considerations (see exer8is®, and the resonances dst ¢ A) = 0,
a = {k, n} plotted in figurel7.2

S = —(k+1)2 + n?l , heZ,keZ,, multplicity k+ 1, (17.28)

can be readfd the spectral determinant?.13 for a single unstable cycle:

(o)

det(s—A) = [ [(1-e=T/IAIA¥
k=0

) (17.29)

In the abovel = In|A|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalug gives the decay rate a@fth eigenstate, and the
imaginary part gives the “node number” of the eigenstatee fégative real part
of s, indicates that the resonance is unstable, and the decajnrtiis simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Rere not a problem, but
as there are eigenvalues arbitrarily far in the imaginargation, this might seem
like all too many eigenvalues. However, they are necessag/can check this by
explicit computation of the right hand side dfg.23, the trace formula for flows:

(o]
2,
a=0

i i (k+ l)e(k+1)/1t+i27mt/T

k=0 N=—oc0

(k + 1)(—) g2m
k=0 IAIAR)

o k+1 <
> AR D6 -yT)
F=—oo

k=0

(o)

ot—rT)
) NA-UAT (17.30)

r=—co

Hence, the two sides of the trace formul® (23 are verified. The formula is fine
fort > 0O; fort — 0., however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that foredéstime we
work with the variablez = €%, so an infinite strip along Im's maps into an annulus
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CHAPTER 17. SPECTRAL DETERMINANTS 294

in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in16.8. In the case at hand there is only one time scale
T, and we could just as well replaceby the variablez = €. In general, a
continuous time flow has an infinity of irrationally relategcte periods, and the
resonance arrays are more irregutdr,figure 18.1

Résum é

The eigenvalues of evolution operators are given by theszefa@orresponding

determinants, and one way to evaluate determinants is tanexfhem in terms

of traces, using the matrix identity log dettr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functiorgsirethis way the spectra
of evolution operators are related to periodic orbits. Tiwectral problem is now

recast into a problem of determining zeros of eithergpectral determinant

1 B-Ap=sTp)r
det(s— A) = exp ZZ |det p) )

or the leading zeros of thdynamical zeta function

ve=1](1-t%), t= |Ap|e8Ap STy

p

The spectral determinant is the tool of choice in actual atmons, as it
has superior convergence properties (this will be discugsehapter21 and is
illustrated, for example, by tabl&8.2.9. In practice both spectral determinants
and dynamical zeta functions are preferable to trace fambécause they yield
the eigenvalues more readily; the maitffelience is that while a trace diverges
at an eigenvalue and requires extrapolation methods, ndet@nts vanish as
corresponding to an eigenvalgg, and are analytic irsin an open neighborhood

of s,.

The critical step in the derivation of the periodic orbit rfarlas for spec-
tral determinants and dynamical zeta functions is the Hpglimity assumption
(16.9 that no cycle stability eigenvalue is margingl,,i| # 1. By dropping the
prefactors in {.4), we have given up on any possibility of recovering the meci
distribution of the initialx (return to the past is rendered moot by the chaotic
mixing and the exponential growth of errors), but in excleang gain an ective
description of the asymptotic behavior of the system. Teagdnt surprise (to be
demonstrated in chapt&B) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior
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CHAPTER 17. SPECTRAL DETERMINANTS 295

Commentary

Remark 17.1 Piecewise monotone maps. A partial list of cases for which the transfer
operator is well defined: the expanding Holder case, weijisuibshifts of finite type,
expanding dierentiable case, see Bower]: expanding holomorphic case, see Ruelle |
piecewise monotone maps of the interval, see Hofbauer alldr{&4] and Baladi and
Keller [17].

Remark 17.2 Smale’s wild idea. Smale’s wild idea quoted on pagé5was technically
wrong because 1) the Selberg zeta function yields the spaaif a quantum mechanical
Laplacian rather than the classical resonances, 2) thérapdeterminant weights are
different from what Smale conjectured, as the individual cy@mtts also depend on the
stability of the cycle, 3) the formula is not dimensionalyrect, ak is an integer ang
represents inverse time. Only for spaces of constant vegairvature do all cycles have
the same Lyapunov exponeht In|Ap|/T,. In this case, one can normalize time so that
A =1, and the factorg ™ /A¥ in (17.9 simplify to s**WTe, as intuited in Smale’s quote
on page285 (wherel(y) is the cycle period denoted here By). Nevertheless, Smale’s
intuition was remarkably on the target.

Remark 17.3 Is this a generalization of the Fourier analysis?  Fourier analysis is a
theory of the space» eigenfunction duality for dynamics on a circle. The way inieth
periodic orbit theory generalizes Fourier analysis to madr flows is discussed in re)]|

a very readable introduction to the Selberg Zeta function.

Remark 17.4 Zeta functions, antecedents.  For a function to be deserving of the
appellation “zeta function,” one expects it to have an Epteduct representatiod 7.19,
and perhaps also satisfy a functional equation. Variousdskf zeta functions are reviewed
in refs. [7, 8, 9]. Historical antecedents of the dynamical zeta functienthe fixed-point
counting functions introduced by Weil [], Lefschetz [ 1] and Artin and Mazur]2], and
the determinants of transfer operators of statistical rapitis 6.

In his review article SmaleZ[3] already intuited, by analogy to the Selberg Zeta
function, that the spectral determinant is the right geliion for continuous time
flows. In dynamical systems theory, dynamical zeta funetiarise naturally only for
piecewise linear mappings; for smooth flows the naturalaligg the study of classical
and quantal spectra are the spectral determinants. Ruelieed the relation 7.3
between spectral determinants and dynamical zeta furs;tit since he was motivated
by the Artin-Mazur zeta functionl@.2]) and the statistical mechanics analogy, he did
not consider the spectral determinant to be a more natupatioihan the dynamical zeta
function. This has been put right in papers on “flat tracés); P3].

The nomenclature has not settled down yet; what we call eoloperators here is
elsewhere called transfer operators][ Perron-Frobenius operators] [andor Ruelle-
Araki operators.

Here we refer to kernels such a(23 as evolution operators. We follow Ruelle in
usage of the term “dynamical zeta function,” but elsewherthe literature the function
(17.19 s often called the Ruelle zeta function. Rueil€][points out that the corresponding
transfer operatdF was never considered by either Perron or Frobenius; a mpreppate
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EXERCISES 296

designation would be the Ruelle-Araki operator. Determisaimilar to or identical with

our spectral determinants are sometimes called SelbersZ8tlberg-Smale zetad,[
functional determinants, Fredholm determinants, or etemaximize confusion - dynamical
zeta functions]3]. A Fredholm determinant is a notion that applies only tecé¢ralass
operators - as we consider here a somewhat wider class aitopgrwe prefer to refer to
their determinants loosely as “spectral determinants.”

Exercises

17.1. Escape rate for a 1d repeller, numerically. Consider
the quadratic map f(x) f(x)

01 11

f(x) = AX(1 - X) (17.31)

on the unit interval. The trajectory of a point starting A A
in the unit interval either stays in the interval forever
or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate
(20.9, the rate of exponential decay of the measure of
points remaining in the unit interval, for eith&r= 9/2

or A = 6. Remember to compare your numerical
estimate with the solution of the continuation of this
exercise, exercises.2

X X

(b) What if there are four dlierent slopesoyo, So1, S10,
and s;; instead of just two, with the preimages
of the gap adjusted so that junctions of branches
S00, So1 @andsy1, S1p map in the gap in one iteration?
What would the dynamical zeta function be?

17.2. Spectrum of the “golden mean” pruned map.
(medium - Exercisé3.6continued)

17.4. Dynamical zeta functions from Markov graphs.
Extend sect13.3to evaluation of dynamical zeta func-

(a) Determine an expression for AP, the trace of tions for piecewise linear maps with finite Markov
powers of the Perron-Frobenius operatb4.(L0 graphs. This generalizes the results of exertis&
for the tent map of exercisE3.a o o
17.5. Zeros of infinite products. Determination of the
(b) Show that the spectral determinant for the Perron-  guantities of interest by periodic orbits involves working
Frobenius operator is with infinite product formulas.
det(1-z£) = l_] (1 - ﬁ - %) (a) Consider the infinite product
k even o
M (1+ 2z, @b%z) F@=]]a+ @)
k odd A A k=0

where the function$ are “suficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of

17.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-

tion S
infinite products.
Z®
1/4(2) = ]_[ (1— A ) , (b) If z is a root of the functiorF, show that the
p Al infinite product diverges when evaluatedzat
for the piecewise-linear magd$.17% with the left (c) How does one compute a root of a function
branch slopé\o, the right branch slopA;. represented as an infinite product?
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(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(2) to the infinite
product

Fo=[Ja- )
p

(e) Are the roots of the factors in the above product
the zeros of(2)?

(Per Rosenqvist)

17.6. Dynamical zeta functions as ratios of spectral determinarg.

17.10. Riemann ¢ function.

(medium) Show that the zeta function

1/£@) = exp[— ) % f:'r)

p r=1
ratio /4(2 =

can be written as the
det(1- Z.C(O))/det (- ZL(]_)) s
where det (E zLg) = [T, [Tioo(1 - z”p/|Ap|A"§+3).

Contour integral for survival probability. Perform
explicitly the contour integral appearing ifi{.19.

17.7.

17.8. Dynamical zeta function for maps.  In this problem
we will compare the dynamical zeta function and the
spectral determinant. Compute the exact dynamical zeta

function for the skew Ulam tent mafi4.45

Z®

v =[] 5

peP

What are its roots? Do they agree with those computed
in exercisel4.7?

17.9. Dynamical zeta functions for Hamiltonian maps.

Starting from

1/(9) = exp[— Z i %tg]
P

r=1
for a 2-dimensional Hamiltonian map. Using the
equality
1= 1 (1-2/A +1/A?)
S (1-1/A)0 ’
show that

1/¢ = det(1- £) det(1- L)/det (1~ L)

References

17.11. Finite truncations.

297

In this expression det zL)) is the expansion one gets
by replacingp — tp/A';, in the spectral determinant.

The Riemanry function is
defined as the sum

0

() = g

n=1

seC.

(a) Use factorization into primes to derive the Euler
product representation

@@=l
p

The dynamical zeta function exercide.15is
called a “zeta” function because it shares the
form of the Euler product representation with the
Riemann zeta function.

(b) (Not trivial:) For which complex values cfis the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the produst,=
—In p, also the zeros of the Riemagrfunction?
If not, why not?

(easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Ap= A AP, Npo =#0inp, nyy =#linp,

so that, for example) o101 = AJAZ.

(@) Compute the dynamical zeta function for this
system; perhaps by creating a transfer matrix
analogous to15.19, with the right weights.

(b) Compute the finitep truncations of the cycle
expansion, i.e. take the product only over the
up to given length witm, < N, and expand as a

series inz
7

(1)

Do they agree? If not, how does the disagreement
depend on the truncation lengt?

[17.1] D. Ruelle,Statistical Mechanics, Thermodynamic Formali¢Addison-

Wesley, Reading MA, 1978)

refsDet - 25sep2001.tex



