
Chapter 17

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll,Through the Looking Glass

T  with the trace formulas (16.10), (16.23) and (16.28) is that they
diverge atz = e−s0, respectivelys = s0, i.e., precisely where one would
like to use them. While this does not prevent numerical estimation of

some “thermodynamic” averages for iterated mappings, in the case of the Gutz-
willer trace formula this leads to a perplexing observationthat crude estimates
of the radius of convergence seem to put the entire physical spectrum out of
reach. We shall now cure this problem by thinking, at no extracomputational
cost; while traces and determinants are formally equivalent, determinants are the
tool of choice when it comes to computing spectra. The idea isillustrated

[chapter 21]
by figure 1.13: Determinants tend to have larger analyticity domains because
if tr L/(1 − zL) = − d

dz ln det (1− zL) diverges at a particular value ofz, then
det (1− zL) might have an isolated zero there, and a zero of a function iseasier to
determine numerically than its poles.

17.1 Spectral determinants for maps

The eigenvalueszk of a linear operator are given by the zeros of the determinant

det (1− zL) =
∏

k

(1− z/zk) . (17.1)

For finite matrices this is the characteristic determinant;for operators this is the
Hadamard representation of thespectral determinant(sparing the reader from
pondering possible regularization factors). Consider first the case of maps, for
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which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity

[exercise 4.1]

ln det (1− M) = tr ln(1− M) = −
∞
∑

n=1

1
n

tr Mn , (17.2)

to relate the spectral determinant of an evolution operatorfor a map to its traces
(16.8), and hence to periodic orbits:
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. (17.3)

Going the other way, the trace formula (16.10) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1− zL
= −z

d
dz

ln det (1− zL) . (17.4)

fast track:

sect. 17.2, p. 285

Example 17.1 Spectral determinants of transfer operators:

For a piecewise-linear map (15.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (16.11)
into (17.3):

det (1− zL) =
∞

∏

k=0
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Λk

0

−
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Λk

1













, (17.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (16.12), which we
already determined from the trace formula (16.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (17.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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17.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. However
we will mention a wild idea in this direction. [· · ·] define
l(γ) to be the minimal period ofγ [· · ·] then define formally
(another zeta function!)Z(s) to be the infinite product

Z(s) =
∏

γ∈Γ

∞
∏

k=0

(

1−
[

expl(γ)
]−s−k

)

.

—Stephen Smale,Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows byanalogy to
(17.3)

det (s−A) = exp
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, (17.6)

and then check that the trace formula (16.23) is the logarithmic derivative of the
spectral determinant

tr
1

s−A
=

d
ds

ln det (s−A) . (17.7)

With zset toz= e−s as in (16.24), the spectral determinant (17.6) has the same
form for both maps and flows. We refer to (17.6) asspectral determinant, as the
spectrum of the operatorA is given by the zeros of

det (s−A) = 0 . (17.8)

We now note that ther sum in (17.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into an
infinite product over periodic orbits as follows:

Let Mp be thep-cycle [d×d] transverse fundamental matrix, with eigenvalues
Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue factors 1/(1− 1/Λp,e)
and the contracting eigenvalue factors 1/(1− Λp,c) in (16.4) as geometric series,
substituting back into (17.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product

det (s−A) =
∞
∏

k1=0

· · ·

∞
∏
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1
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1/ζk1···lc =
∏

p
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(17.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (17.10)
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In such formulastp is a weight associated with thep cycle (lettert refers to
the “local trace” evaluated along thep cycle trajectory), and the indexp runs
through all distinct prime cycles. Why the factorznp? It is associated with
the trace formula (16.10) for maps, whereas the factore−sTp is specific to the
continuous time trace formuls (16.23); according to (16.24) we should use either
one or the other. But we have learned in sect.3.1 that flows can be represented
either by their continuous-time trajectories, or by their topological time Poincaré
section return maps. In cases when we have good control over the topology of the
flow, it is often convenient to insert theznp factor into cycle weights, as a formal
parameter which keeps track of the topological cycle lengths. These factors will

[chapter 18]
assist us in expanding zeta functions and determinants, eventually we shall set
z = 1. The subscriptse, c indicate that there aree expanding eigenvalues, and
c contracting eigenvalues. The observable whose average we wish to compute
contributes through theAt(x) term in thep cycle multiplicative weighteβ·Ap. By
its definition (15.1), the weight for maps is a product along the cycle points

eAp =

np−1
∏

j=0

ea( f j (xp)) ,

and the weight for flows is an exponential of the integral (15.5) along the cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)

.

This formula is correct for scalar weighting functions; more general matrix valued
weights require a time-ordering prescription as in the fundamental matrix of sect.4.1.

Example 17.2 Expanding 1- d map: For expanding 1-d mappings the spec-
tral determinant (17.9) takes the form

det (1− zL) =
∏

p

∞
∏

k=0

(

1− tp/Λ
k
p

)

, tp =
eβAp

|Λp|
znp . (17.11)

Example 17.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of
freedom Hamiltonian flows the energy conservation eliminates on phase space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
Λ = 1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalueΛ, |Λ| > 1, and one contracting transverse eigenvalue
1/Λ. The weight in (16.4) is expanded as follows:
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The spectral determinant exponent can be resummed,
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and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s−A) =
∏

p

∞
∏

k=0

(

1− tp/Λ
k
p

)k+1
. (17.13)

[exercise 21.4]

Now we are finally poised to deal with the problem posed at the beginning of
chapter16; how do we actually evaluate the averages introduced in sect. 15.1? The
eigenvalues of the dynamical averaging evolution operatorare given by the values
of s for which the spectral determinant (17.6) of the evolution operator (15.23)
vanishes. If we can compute the leading eigenvalues0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (17.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter18, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

17.3 Dynamical zeta functions

It follows from sect.16.1.1that if one is interested only in the leading eigenvalue
of Lt, the size of thep cycle neighborhood can be approximated by 1/|Λp|

r , the
dominant term in therTp = t → ∞ limit, whereΛp =

∏

eΛp,e is the product of
the expanding eigenvalues of the fundamental matrixMp. With this replacement
the spectral determinant (17.6) is replaced by thedynamical zeta function

1/ζ = exp
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(17.14)

that we have already derived heuristically in sect.1.5.2. Resumming the logarithms
using

∑

r trp/r = − ln(1−tp) we obtain theEuler product representationof the dyn-
amical zeta function:

1/ζ =
∏

p

(

1− tp

)

. (17.15)

In order to simplify the notation, we usually omit the explicit dependence of 1/ζ,
tp onz, s, β whenever the dependence is clear from the context.

The approximate trace formula (16.28) plays the same rolevis-à-vis the dyn-
amical zeta function (17.7)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1− tp
, (17.16)
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as the exact trace formula (16.23) playsvis-à-vis the spectral determinant (17.6).
The heuristically derived dynamical zeta function of sect.1.5.2now re-emerges
as the 1/ζ0···0(z) part of theexactspectral determinant; other factors in the infinite
product (17.9) affect the non-leading eigenvalues ofL.

In summary, the dynamical zeta function (17.15) associated with the flowf t(x)
is defined as the product over all prime cyclesp. The quantities,Tp, np and
Λp, denote the period, topological length and product of the expanding stability
eigenvalues of prime cyclep, Ap is the integrated observablea(x) evaluated on a
single traversal of cyclep (see (15.5)), s is a variable dual to the timet, z is dual
to the discrete “topological” timen, andtp(z, s, β) denotes the local trace over the
cycle p. We have included the factorznp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because the term

1/ζ(s) = 0 (17.17)

when s= s0, Here s0 is the leading eigenvalue ofLt = etA, which is often all
that is necessary for application of this equation. The above argument completes
our derivation of the trace and determinant formulas for classical chaotic flows.
In chapters that follow we shall make these formulas tangible by working out a
series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 18, p. 299

17.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta
functions with richer analytic structure than just zeros and poles, as in the case
of intermittency (chapter23): Γn, the trace sum (16.26), can be expressed in terms
of the dynamical zeta function (17.15)

1/ζ(z) =
∏

p

(

1−
znp

|Λp|

)

. (17.18)

as a contour integral

Γn =
1

2πi

∮

γ−r

z−n
(

d
dz

logζ−1(z)

)

dz , (17.19)

[exercise 17.7]

where a small contourγ−r encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
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Figure 17.1: The survival probabilityΓn can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

write the logarithmic derivative ofζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (16.26) is recovered. For hyperbolic maps, cycle

[chapter 18]
expansions or other techniques provide an analytical continuation of the dynam-
ical zeta function beyond the leading zero; we may thereforedeform the original
contour into a larger circle with radiusR which encircles both poles and zeros of
ζ−1(z), as depicted in figure17.1. Residue calculus turns this into a sum over the
zeroszα and poleszβ of the dynamical zeta function, that is

Γn =

zeros
∑

|zα |<R

1
zn
α

−

poles
∑

|zβ |<R

1
zn
β

+
1

2πi

∮

γ−R

dz z−n d
dz

logζ−1, (17.20)

where the last term gives a contribution from a large circleγ−R. It would be a
miracle if you still remembered this, but in sect.1.4.3we interpretedΓn as fraction
of survivors aftern bounces, and defined the escape rateγ as the rate of the find
exponential decay ofΓn. We now see that this exponential decay is dominated by
the leading zero or pole ofζ−1(z).

17.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the
topological zeta function (13.21) to a function that assigns different weights to

[chapter 13]
different cycles:

ζ(z) = exp
∞
∑

n=1

zn

n



















∑

xi∈Fix f n

tr
n−1
∏

j=0

g( f j(xi))



















.

[exercise 16.2]

Here we sum over all periodic pointsxi of period n, and g(x) is any (matrix
valued) weighting function, where the weight evaluated multiplicatively along the
trajectory ofxi.

By the chain rule (4.50) the stability of anyn-cycle of a 1-d map is given
by Λp =

∏n
j=1 f ′(xi), so the 1-d map cycle stability is the simplest example
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of a multiplicative cycle weightg(xi) = 1/| f ′(xi)|, and indeed - via the Perron-
Frobenius evolution operator (14.9) - the historical motivation for Ruelle’s more
abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition such
as the map of example14.1, the dynamical zeta function is given by a finite
polynomial, a straightforward generalization of the topological transition matrix
determinant (10.2). As explained in sect.13.3, for a finite [N×N] dimensional
matrix the determinant is given by

∏

p

(1− tp) =
N

∑

n=1

zncn ,

wherecn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total lengthn.

Example 17.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (15.17) factorizes as Λs1s2...sn = Λ

m
0Λ

n−m
1 ,

where m is the total number of times the letter sj = 0 appears in the p symbol sequence,
so the traces in the sum (16.28) take the particularly simple form

tr Tn = Γn =

(

1
|Λ0|
+

1
|Λ1|

)n

.

The dynamical zeta function (17.14) evaluated by resumming the traces,
[exercise 17.3]

1/ζ(z) = 1− z/|Λ0| − z/|Λ1| , (17.21)

is indeed the determinant det (1− zT) of the transfer operator (15.19), which is almost
as simple as the topological zeta function (13.25).

[section 10.5]

More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are the
stabilities of the two fixed points. Clearly the informationcarried by the infinity
of longer cycles is highly redundant; we shall learn in chapter 18 how to exploit
this redundancy systematically.

17.4 False zeros

Compare (17.21) with the Euler product (17.15). For simplicity consider two
equal scales,|Λ0| = |Λ1| = eλ. Our task is to determine the leading zeroz = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
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(17.15) vanishes whenever one of its factors vanishes. If that weretrue, each factor
(1− znp/|Λp|) would yield

0 = 1− enp(γ−λp), (17.22)

so the escape rateγ would equal the Floquet exponent of a repulsive cycle, one
eigenvalueγ = γp for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires to shift the zeros of the
infinite product. The correct formula follows from (17.21)

0 = 1− eγ−λ+h , h = ln 2. (17.23)

This particular formula for the escape rate is a special caseof a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. Physically this means that the escape induced by the repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling regions, i.e., the entropyh; the positive entropy of orbits shifts the “false
zeros”z= eλp of the Euler product (17.15) to the true zeroz= eλ−h.

17.5 Spectral determinantsvs. dynamical zeta functions

In sect.17.3we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to spectral deter-
minantsexactly, by showing that a dynamical zeta function can be expressed as a
ratio of products of spectral determinants.

The elementary identity ford-dimensional matrices

1 =
1

det (1− M)

d
∑

k=0

(−1)ktr
(

∧kM
)

, (17.24)

inserted into the exponential representation (17.14) of the dynamical zeta func-
tion, relates the dynamical zeta function toweightedspectral determinants.

Example 17.5 Dynamical zeta function in terms of determinants, 1- d maps: For
1-d maps the identity

1 =
1

(1− 1/Λ)
−

1
Λ

1
(1− 1/Λ)

substituted into (17.14) yields an expression for the dynamical zeta function for 1-d
maps as a ratio of two spectral determinants

1/ζ =
det (1− zL)

det (1− zL(1))
(17.25)
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where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 21, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with
poles given by the zeros of det (1−zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1− zL(1)) might be cancelled by coincident zeros of det (1− zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 17.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 17.6 Dynamical zeta function in terms of determinants, 2- d Hamiltonian
maps: For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ|
=

1
|Λ|(1− 1/Λ)2

(1− 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1− zL) det (1− zL(2))

det (1− zL(1))
. (17.26)

This establishes that for nice 2-d hyperbolic flows the dynamical zeta function is meromorphic.

Example 17.7 Dynamical zeta functions for 2- d Hamiltonian flows: The relation
(17.26) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1− 1/Λ)2
−

2
Λ

1
(1− 1/Λ)2

+
1
Λ2

1
(1− 1/Λ)2

into the exponential representation (17.14) of 1/ζk, and obtain

1/ζk =
det (1− zL(k))det (1− zL(k+2))

det (1− zL(k+1))2
. (17.27)

Even though we have no guarantee that det (1− zL(k)) are entire, we do know that the
upper bound on the leading zeros of det (1−zL(k+1)) lies strictly below the leading zeros
of det (1− zL(k)), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/ζk generically has a double leading pole coinciding with the
leading zero of the det (1− zL(k+1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (17.13) is entire, and also implies that the
poles in 1/ζk must have the right multiplicities to cancel in the det (1− zL) =

∏

1/ζk+1
k

product.

17.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determinant
(17.13) tell us? Consider one of the simplest conceivable hyperbolic flows: the
game of pinball of figure??consisting of two disks of equal size in a plane. There
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Figure 17.2: The classical resonancesα = {k,n}
(17.28) for a 2-disk game of pinball.

s

s

Re

2π/Τ

−2π/Τ

4π/Τ

6π/Τ

−λ/Τ−2λ/Τ−3λ/Τ−4λ/Τ

−4π/Τ

s

{3,2}

{0,−3}

Im

is only one periodic orbit, with the periodT and expanding eigenvalueΛ given by
elementary considerations (see exercise9.3), and the resonances det (sα −A) = 0,
α = {k, n} plotted in figure17.2:

sα = −(k + 1)λ + n
2πi
T
, n ∈ Z , k ∈ Z+ , multiplicity k+ 1, (17.28)

can be read off the spectral determinant (17.13) for a single unstable cycle:

det (s−A) =
∞
∏

k=0

(

1− e−sT/|Λ|Λk
)k+1

. (17.29)

In the aboveλ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvaluesα gives the decay rate ofαth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay ratein this simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Re sα are not a problem, but
as there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary -we can check this by
explicit computation of the right hand side of (16.23), the trace formula for flows:

∞
∑

α=0

esαt =

∞
∑

k=0

∞
∑

n=−∞

(k+ 1)e(k+1)λt+i2πnt/T

=

∞
∑

k=0

(k + 1)

(

1

|Λ|Λk

)t/T ∞
∑

n=−∞

ei2πn/T

=

∞
∑

k=0

k+ 1

|Λ|rΛkr

∞
∑

r=−∞

δ(r − t/T)

= T
∞
∑

r=−∞

δ(t − rT)

|Λ|(1− 1/Λr )2
. (17.30)

Hence, the two sides of the trace formula (16.23) are verified. The formula is fine
for t > 0; for t → 0+, however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work with the variablez= es, so an infinite strip along Im s maps into an annulus
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in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (16.8). In the case at hand there is only one time scale
T, and we could just as well replaces by the variablez = e−sT. In general, a
continuous time flow has an infinity of irrationally related cycle periods, and the
resonance arrays are more irregular,cf. figure18.1.

Résum é

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det= tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either thespectral determinant

det (s−A) = exp
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or the leading zeros of thedynamical zeta function

1/ζ =
∏

p

(

1− tp

)

, tp =
1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as it
has superior convergence properties (this will be discussed in chapter21 and is
illustrated, for example, by table18.2.2). In practice both spectral determinants
and dynamical zeta functions are preferable to trace formulas because they yield
the eigenvalues more readily; the main difference is that while a trace diverges
at an eigenvalue and requires extrapolation methods, determinants vanish ats
corresponding to an eigenvaluesα, and are analytic ins in an open neighborhood
of sα.

The critical step in the derivation of the periodic orbit formulas for spec-
tral determinants and dynamical zeta functions is the hyperbolicity assumption
(16.5) that no cycle stability eigenvalue is marginal,|Λp,i | , 1. By dropping the
prefactors in (1.4), we have given up on any possibility of recovering the precise
distribution of the initialx (return to the past is rendered moot by the chaotic
mixing and the exponential growth of errors), but in exchange we gain an effective
description of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter18) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.
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Commentary

Remark 17.1 Piecewise monotone maps. A partial list of cases for which the transfer
operator is well defined: the expanding Hölder case, weighted subshifts of finite type,
expanding differentiable case, see Bowen [24]: expanding holomorphic case, see Ruelle [9];
piecewise monotone maps of the interval, see Hofbauer and Keller [14] and Baladi and
Keller [17].

Remark 17.2 Smale’s wild idea. Smale’s wild idea quoted on page285was technically
wrong because 1) the Selberg zeta function yields the spectrum of a quantum mechanical
Laplacian rather than the classical resonances, 2) the spectral determinant weights are
different from what Smale conjectured, as the individual cycle weights also depend on the
stability of the cycle, 3) the formula is not dimensionally correct, ask is an integer ands
represents inverse time. Only for spaces of constant negative curvature do all cycles have
the same Lyapunov exponentλ = ln |Λp|/Tp. In this case, one can normalize time so that
λ = 1, and the factorse−sTp/Λk

p in (17.9) simplify to s−(s+k)Tp, as intuited in Smale’s quote
on page285(wherel(γ) is the cycle period denoted here byTp). Nevertheless, Smale’s
intuition was remarkably on the target.

Remark 17.3 Is this a generalization of the Fourier analysis? Fourier analysis is a
theory of the space↔ eigenfunction duality for dynamics on a circle. The way in which
periodic orbit theory generalizes Fourier analysis to nonlinear flows is discussed in ref. [3],
a very readable introduction to the Selberg Zeta function.

Remark 17.4 Zeta functions, antecedents. For a function to be deserving of the
appellation “zeta function,” one expects it to have an Eulerproduct representation (17.15),
and perhaps also satisfy a functional equation. Various kinds of zeta functions are reviewed
in refs. [7, 8, 9]. Historical antecedents of the dynamical zeta function are the fixed-point
counting functions introduced by Weil [10], Lefschetz [11] and Artin and Mazur [12], and
the determinants of transfer operators of statistical mechanics [26].

In his review article Smale [23] already intuited, by analogy to the Selberg Zeta
function, that the spectral determinant is the right generalization for continuous time
flows. In dynamical systems theory, dynamical zeta functions arise naturally only for
piecewise linear mappings; for smooth flows the natural object for the study of classical
and quantal spectra are the spectral determinants. Ruelle derived the relation (17.3)
between spectral determinants and dynamical zeta functions, but since he was motivated
by the Artin-Mazur zeta function (13.21) and the statistical mechanics analogy, he did
not consider the spectral determinant to be a more natural object than the dynamical zeta
function. This has been put right in papers on “flat traces” [18, 23].

The nomenclature has not settled down yet; what we call evolution operators here is
elsewhere called transfer operators [28], Perron-Frobenius operators [5] and/or Ruelle-
Araki operators.

Here we refer to kernels such as (15.23) as evolution operators. We follow Ruelle in
usage of the term “dynamical zeta function,” but elsewhere in the literature the function
(17.15) is often called the Ruelle zeta function. Ruelle [29] points out that the corresponding
transfer operatorT was never considered by either Perron or Frobenius; a more appropriate
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designation would be the Ruelle-Araki operator. Determinants similar to or identical with
our spectral determinants are sometimes called Selberg Zetas, Selberg-Smale zetas [9],
functional determinants, Fredholm determinants, or even -to maximize confusion - dynamical
zeta functions [13]. A Fredholm determinant is a notion that applies only to trace class
operators - as we consider here a somewhat wider class of operators, we prefer to refer to
their determinants loosely as “spectral determinants.”

Exercises

17.1. Escape rate for a 1-d repeller, numerically. Consider
the quadratic map

f (x) = Ax(1− x) (17.31)

on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever
or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate
(20.8), the rate of exponential decay of the measure of
points remaining in the unit interval, for eitherA = 9/2
or A = 6. Remember to compare your numerical
estimate with the solution of the continuation of this
exercise, exercise18.2.

17.2. Spectrum of the “golden mean” pruned map.
(medium - Exercise13.6continued)

(a) Determine an expression for trLn, the trace of
powers of the Perron-Frobenius operator (14.10)
for the tent map of exercise13.6.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1− zL) =
∏

k even

(

1−
z

Λk+1
−

z2

Λ2k+2

)

∏

k odd

(

1+
z

Λk+1
+

z2

Λ2k+2

)

.(17.32)

17.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-
tion

1/ζ(z) =
∏

p

(

1−
znp

|Λp|

)

,

for the piecewise-linear map (15.17) with the left
branch slopeΛ0, the right branch slopeΛ1.

x

f(x)

Λ0 Λ1

f(x)

s00

s01 s11

(b) What if there are four different slopess00, s01, s10,
and s11 instead of just two, with the preimages
of the gap adjusted so that junctions of branches
s00, s01 ands11, s10 map in the gap in one iteration?
What would the dynamical zeta function be?

17.4. Dynamical zeta functions from Markov graphs.
Extend sect.13.3to evaluation of dynamical zeta func-
tions for piecewise linear maps with finite Markov
graphs. This generalizes the results of exercise17.3.

17.5. Zeros of infinite products. Determination of the
quantities of interest by periodic orbits involves working
with infinite product formulas.

(a) Consider the infinite product

F(z) =
∞

∏

k=0

(1+ fk(z))

where the functionsfk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the functionF, show that the
infinite product diverges when evaluated atz∗.

(c) How does one compute a root of a function
represented as an infinite product?
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(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(z) to the infinite
product

F(z) =
∏

p

(1−
znp

Λnp
)

(e) Are the roots of the factors in the above product
the zeros ofF(z)?

(Per Rosenqvist)

17.6. Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

















−
∑

p

∑

r=1

1
r

znp

|Λp|
r

















can be written as the ratio 1/ζ(z) =

det (1− zL(0))/det (1− zL(1)) ,
where det (1− zL(s)) =

∏

p
∏∞

k=0(1− znp/|Λp|Λ
k+s
p ).

17.7. Contour integral for survival probability. Perform
explicitly the contour integral appearing in (17.19).

17.8. Dynamical zeta function for maps. In this problem
we will compare the dynamical zeta function and the
spectral determinant. Compute the exact dynamical zeta
function for the skew Ulam tent map (14.45)

1/ζ(z) =
∏

p∈P

(

1−
znp

|Λp|

)

.

What are its roots? Do they agree with those computed
in exercise14.7?

17.9. Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

















−
∑

p

∞
∑

r=1

1
r

trp

















for a 2-dimensional Hamiltonian map. Using the
equality

1 =
1

(1− 1/Λ)2
(1− 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1− L) det (1− L(2))/det (1− L(1))
2 .

In this expression det (1−zL(k)) is the expansion one gets
by replacingtp → tp/Λ

k
p in the spectral determinant.

17.10. Riemann ζ function. The Riemannζ function is
defined as the sum

ζ(s) =
∞
∑

n=1

1
ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1− p−s

.

The dynamical zeta function exercise17.15 is
called a “zeta” function because it shares the
form of the Euler product representation with the
Riemann zeta function.

(b) (Not trivial:) For which complex values ofs is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product,s =
− ln p, also the zeros of the Riemannζ function?
If not, why not?

17.11. Finite truncations. (easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example,Λ00101= Λ
3
0Λ

2
1.

(a) Compute the dynamical zeta function for this
system; perhaps by creating a transfer matrix
analogous to (15.19), with the right weights.

(b) Compute the finitep truncations of the cycle
expansion, i.e. take the product only over thep
up to given length withnp ≤ N, and expand as a
series inz

∏

p

(

1−
znp

|Λp|

)

.

Do they agree? If not, how does the disagreement
depend on the truncation lengthN?
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