
Chapter 12

Fixed points, and how to get them

H   the dynamical context, now we turn to the key and unavoidable
piece of numerics in this subject; search for the solutions (x,T), x ∈ Rd,
T ∈ R of theperiodic orbit condition

f t+T(x) = f t(x) , T > 0 (12.1)

for a given flow or mapping.

We know from chapter16that cycles are the necessary ingredient for evaluation
of spectra of evolution operators. In chapter10 we have developed a qualitative
theory of how these cycles are laid out topologically.

This chapter is intended as a hands-on guide to extraction ofperiodic orbits,
and should be skipped on first reading - you can return to it whenever the need for
finding actual cycles arises. Sadly, searching for periodicorbits will never become
as popular as a week on Côte d’Azur, or publishing yet another log-log plot in
Phys. Rev. Letters. A serious cyclist will want to also learn about the variational

[chapter 27]
methods to find cycles, chapter27. They are particularly useful when little is
understood about the topology of a flow, such as in high-dimensional periodic
orbit searches.

fast track:

chapter 13, p. 212

A prime cycle p of periodTp is a single traversal of the periodic orbit, so
our task will be to find a cycle pointx ∈ p and the shortest timeTp for which
(12.1) has a solution. A cycle point of a flowf t which crosses a Poincaré section
n times is a fixed point of thePn iterate ofP, the return map (3.1), hence we shall
refer to all cycles as “fixed points” in this chapter. By cyclic invariance, stability

[section 5.2]
eigenvalues and the period of the cycle are independent of the choice of the initial
point, so it will suffice to solve (12.1) at a single cycle point.
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If the cycle is an attracting limit cycle with a sizable basinof attraction, it can
be found by integrating the flow for sufficiently long time. If the cycle is unstable,
simple integration forward in time will not reveal it, and methods to be described
here need to be deployed. In essence, any method for finding a cycle is based on
devising a new dynamical system which possesses the same cycle, but for which
this cycle is attractive. Beyond that, there is a great freedom in constructing such
systems, and many different methods are used in practice.

Due to the exponential divergence of nearby trajectories inchaotic dynamical
systems, fixed point searches based on direct solution of thefixed-point condition
(12.1) as an initial value problem can be numerically very unstable. Methods

[chapter 27]
that start with initial guesses for a number of points along the cycle, such as
the multipoint shooting method described here in sect.12.3, and the variational
methods of chapter27, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation
is preparation of a list of all distinct admissible prime periodic symbol sequences,
such as the list given in table10.1. The relations between the temporal symbol
sequences and the spatial layout of the topologically distinct regions of the state
space discussed in chapters10and11should enable us to guess location of a series
of periodic points along a cycle. Armed with such informed guess we proceed to
improve it by methods such as the Newton-Raphson iteration;we show how this
works by applying the Newton method to 1- andd-dimensional maps. But first,
where are the cycles?

12.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessingwhere the cycles are is
the case of planar billiards. The Maupertuis principle of least action here dictates
that the physical trajectories extremize the length of an approximate orbit that
visits a desired sequence of boundary bounces.

Example 12.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 11.1. . Label the three disks by 1, 2 and 3, and associate to

[section 11.1]

[section 1.4]
every trajectory an itinerary, a sequence of labels indicating the order in which the disks
are visited, as in figure 3.2. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si .
The computational problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sn) , a task that we postpone to sect. 27.3. As an example, the short

[exercise 27.2]

[exercise 12.10]
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periods and stabilities of 3-disk cycles computed this way are listed table 27.2, and
some examples are plotted in figure 3.2. It’s a no brainer, and millions of such cycles
have been computed.

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. In practice one might be satisfied
with any rampaging robot that finds “the most important” cycles. Ergodic exploration
of recurrences that we turn to next sometimes perform admirably well.

12.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit
[remark 12.1]

cycles) are never seen in simulations and experiments because they are unstable.
Nevertheless, one does observe close passes to the least unstable equilibria and
periodic orbits. Ergodic exploration by long-time trajectories (or long-lived transients,
in case of strange repellers) can uncover state space regions of low velocity, or
finite time recurrences. In addition, such trajectories preferentially sample the

[section 14.1]
natural measure of the ‘turbulent’ flow, and by initiating searches within the state
space concentrations of natural measure bias the search toward the dynamically
important invariant solutions.

The search consists of following a long trajectory in state space, and looking
for close returns of the trajectory to itself. Whenever the trajectory almost closes in
a loop (within a given tolerance), another point of this nearmiss of a cycle can be
taken as an initial condition. Supplemented by a Newton routine described below,
a sequence of improved initial conditions may indeed rapidly lead to closing a
cycle. The method preferentially finds the least unstable orbits, while missing the
more unstable ones that contribute little to the cycle expansions.

This blind search is seriously flawed: in contrast to the 3-disk example12.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in chapters10 and 11, but are a bit of work to
implement.

12.1.2 Cycles found by thinking

Thinking is extra price.
—Argentine saying
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A systematic charting out of state space starts out by a hunt for equilibrium points.
If the equations of motion are a finite set of ODEs, setting thevelocity fieldv(x)
in (2.6) to zero reduces search for equilibria to a search for zeros of a set of
algebraic equations. We should be able, in principle, to enumerate and determine
all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the
Rössler example2.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be determined by symmetry
considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.
the LorenzEQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,
about 50xk acrossM in each dimension, and compute the velocity fieldvk = v(xk)
at each grid point; a few millionvk values are easily stored. Plotxk for which
|vk|

2 < ǫ, ǫ << |vmax|
2 but sufficiently large that a few thousandxk are plotted.

If the velocity field varies smoothly across the state space,the regions|vk|
2 < ǫ

isolate the (candidate) equilibria. Start a Newton iteration with the smallest|vk|
2

point within each region. Barring exceptionally fast variations inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady
states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs
or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A chaotic
trajectory can be though of as a sequence of near visitationsof equilibria. Typically
such neighborhoods have many stable, contracting directions and a handful of
unstable directions. Our strategy will be to generalize thebilliard Poincaré section
mapsPsn+1←sn of example3.2 to maps from a section of the unstable manifold of
equilibrium sn to the section of unstable manifold of equilibriumsn+1, and thus
reduce the continuous time flow to a sequence of maps. These Poincaré section
maps do double duty, providing us both with an exact representation of dynamics
in terms of maps, and with a covering symbolic dynamics.

invariant

We showed in the Lorenz flow example10.5how to reduce the 3-dimensional
Lorenz flow to a 1−d return map.

In the Rössler flow example2.3 we sketched the attractor by running a long
chaotic trajectory, and noted that the attractor is very thin, but otherwise the return
maps that we plotted were disquieting – figure3.6 did not appear to be a 1-to-1
map. In the next example we show how to use such information toapproximately
locate cycles. In the remainder of this chapter and in chapter 27 we shall learn
how to turn such guesses into highly accurate cycles.

Example 12.2 Rössler attractor (G. Simon and P. Cvitanović)

Run a long simulation of the Rössler flow f t, plot a Poincaré section, as in figure 3.5,
and extract the corresponding Poincaré return map P, as in figure 3.6. Luck is with
us; the figure 12.1 (a) return map y → P1(y, z) looks much like a parabola, so we
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CHAPTER 12. FIXED POINTS, AND HOW TO GET THEM 199

Figure 12.1: (a) y → P1(y, z) return map for
x = 0, y > 0 Poincaré section of the Rössler flow
figure 2.5. (b) The 1-cycle found by taking the
fixed pointyk+n = yk together with the fixed point
of the z → z return map (not shown) an initial
guess (0, y(0), z(0)) for the Newton-Raphson search.
(c) yk+3 = P3

1(yk, zk), the third iterate of Poincaré
return map (3.1) together with the corresponding
plot for zk+3 = P3

2(yk, zk), is used to pick starting
guesses for the Newton-Raphson searches for the
two 3-cycles: (d) the001 cycle, and (e) the011
cycle. (G. Simon)
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take the unimodal map symbolic dynamics, sect. 10.2.1, as our guess for the covering
dynamics. Strictly speaking, the attractor is “fractal,” but for all practical purposes the
return map is 1-dimensional; your printer will need a resolution better than 1014 dots
per inch to start resolving its structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré
section of the Rössler flow figure 2.5 are fixed points (y, z) = Pn(y, z) of the nth Poincaré
return map.

Using the fixed point yk+1 = yk in figure 12.1 (a) together with the simultaneous
fixed point of the z→ P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0)) for
the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the
cycle figure 12.1 (b) with the Poincaré section point (0, yp, zp), period Tp, expanding,
marginal, contracting stability eigenvalues (Λp,e,Λp,m,Λp,c), and Lyapunov exponents
(λp,e, λp,m, λp,c): [exercise 12.7]

1-cycle: (x, y, z) = (0, 6.09176832,1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1+ 10−14,−1.29× 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44). (12.2)

The Newton-Raphson method that we used is described in sect. 12.4.

As an example of a search for longer cycles, we use yk+3 = P3
1(yk, zk), the

third iterate of Poincaré return map (3.1) plotted in figure 12.1 (c), together with a
corresponding plot for zk+3 = f 3(yk, zk), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 12.1 (d), (e). For a listing of the short
cycles of the Rössler flow, consult exercise 12.7.

The numerical evidence suggests (but a proof is lacking) that all cycles that
comprise the strange attractor of the Rössler flow are hyperbolic, each with an expanding
eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal eigenvalue
|Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely contracting,
a factor of e−32 per one par-course of the attractor, so their numerical determination is
quite difficult. Fortunately, they are irrelevant; for all practical purposes the strange
attractor of the Rössler flow is 1-dimensional, a very good realization of a horseshoe
template.
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Figure 12.2: The inverse time path to the01-cycle of
the logistic mapf (x) = 4x(1− x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0,
respectively 1 branch.
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Figure 12.3: Convergence of Newton method (♦)
vs. inverse iteration (+). The error aftern iterations
searching for the01-cycle of the logistic mapf (x) =
4x(1 − x) with an initial starting guess ofx1 =

0.2, x2 = 0.8. y-axis is log10 of the error. The
difference between the exponential convergence of
the inverse iteration method and the super-exponential
convergence of Newton method is dramatic.
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12.2 One-dimensional mappings

(F. Christiansen)

12.2.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-dimensional
map such as the logistic map. Unstable cycles of 1-d maps are attracting cycles
of the inverse map. The inverse map is not single valued, so ateach backward
iteration we have a choice of branch to make. By choosing branch according to
the symbolic dynamics of the cycle we are trying to find, we will automatically
converge to the desired cycle. The rate of convergence is given by the stability of
the cycle, i.e., the convergence is exponentially fast. Figure12.2shows such path
to the01-cycle of the logistic map.

[exercise 12.10]

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-d systems such as the repeller of exercise12.10. It is not particularly fast,
especially if the inverse map is not known analytically. However, it completely
fails for higher dimensional systems where we have both stable and unstable
directions. Inverse iteration will exchange these, but we will still be left with both
stable and unstable directions. The best strategy is to directly attack the problem
of finding solutions off T(x) = x.

12.2.2 Newton method

Newton method for determining a zerox∗ of a functionF(x) of one variable is
based on a linearization around a starting guessx0:

F(x) ≈ F(x0) + F′(x0)(x− x0). (12.3)
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An approximate solutionx1 of F(x) = 0 is

x1 = x0 − F(x0)/F′(x0). (12.4)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a mapf is a solution toF(x) = x − f (x) = 0. We
determinex by iterating

xm = g(xm−1) = xm−1 − F(xm−1)/F′(xm−1)

= xm−1 −
1

1− f ′(xm−1)
(xm−1 − f (xm−1)) . (12.5)

Provided that the fixed point is not marginally stable,f ′(x) , 1 at the fixed point
x, a fixed point off is a super-stable fixed point of the Newton-Raphson mapg,
g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the efficiency of the Newton method we compare it to the inverse
iteration method in figure12.3. Newton method wins hands down: the number of
significant digits of the accuracy ofx estimate doubles with each iteration.

In order to avoid jumping too far from the desiredx∗ (see figure12.4), one
often initiates the search by thedamped Newton method,

∆xm = xm+1 − xm = −
F(xm)
F′(xm)

∆τ , 0 < ∆τ ≤ 1 ,

takes small∆τ steps at the beginning, reinstating to the full∆τ = 1 jumps only
when sufficiently close to the desiredx∗.

12.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengthn are fixed points off n so in principle we could use
the simple Newton method described above to find them. However, this is not an
optimal strategy. f n will be a highly oscillating function with perhaps as many
as 2n or more closely spaced fixed points, and finding a specific periodic point,
for example one with a given symbolic sequence, requires avery good starting
guess. For binary symbolic dynamics we must expect to improve the accuracy of
our initial guesses by at least a factor of 2n to find orbits of lengthn. A better
alternative is themultipoint shooting method. While it might very hard to give
a precise initial point guess for a long periodic orbit, if our guesses are informed
by a good state space partition, a rough guess for each point along the desired
trajectory might suffice, as for the individual short trajectory segments the errors
have no time to explode exponentially.
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Figure 12.4: Newton method: bad initial
guess x(b) leads to the Newton estimatex(b+1) far
away from the desired zero ofF(x). Sequence
· · · , x(m), x(m+1), · · ·, starting with a good guess
converges super-exponentially tox∗. The method
diverges if it iterates into the basin of attraction of a
local minimumxc.
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A cycle of lengthn is a zero of then-dimensional vector functionF:

F(x) = F
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The relations between the temporal symbol sequences and thespatial layout of
the topologically distinct regions of the state space discussed in chapter10enable
us to guess location of a series of periodic points along a cycle. Armed with such
informed initial guesses we can initiate a Newton-Raphson iteration. The iteration
in the Newton method now takes the form of

d
dx

F(x)(x′ − x) = −F(x), (12.6)

where d
dxF(x) is an [n× n] matrix:

d
dxF(x) =


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. (12.7)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in thenth column. We
eliminate these and are done.

Example 12.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:
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where ∆xi = x′i − xi is the correction to our initial guess xi , and Fi = xi − f (xi−1) is the
error at ith cycle point. Eliminate the sub-diagonal elements by adding f ′(x1) times the
first row to the second row, then adding f ′(x2) times the second row to the third row:
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The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1 − f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot
work. As f ′(x2) f ′(x1) f ′(x3) is the stability of the cycle (when the Newton iteration has
converged), this is not a good method to find marginally stable cycles. We now have
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Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, the right hand
side is an explicit formula for the corrections to our initial guess. We have gone through
one Newton iteration.

When one sets up the Newton iteration on the computer it is notnecessary
to write the left hand side as a matrix. All one needs is a vector containing the
f ′(xi)’s, a vector containing then’th column, i.e., the cumulative product of the
f ′(xi)’s, and a vector containing the right hand side. After the iteration the vector
containing the right hand side should be the correction to the initial guess.

[exercise 12.1]

12.3.1 d-dimensional mappings

Armed with clever, symbolic dynamics informed initial guesses we can easily
extend the Newton-Raphson iteration method tod-dimensional mappings. In this
casef ′(xi) is a [d × d] matrix, and d

dxF(x) is an [nd× nd] matrix. In each of the
steps that we went through above we are then manipulatingd rows of the left hand
side matrix. (Remember that matrices do not commute - alwaysmultiply from the
left.) In the inversion of thenth element of the diagonal we are inverting a [d× d]
matrix (1−

∏

f ′(xi)) which can be done if none of the eigenvalues of
∏

f ′(xi)
equals 1, i.e., if the cycle has no marginally stable eigen-directions.

Example 12.4 Newton method for time delay maps. Some d-dimensional mappings
(such as the Hénon map (3.18)) can be written as 1-dimensional time delay mappings
of the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (12.8)

In this case d
dxF(x) is an [n × n] matrix as in the case of usual 1-dimensional maps

but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the final
cleaning of the diagonal we will need to invert a [d × d] matrix. In this respect, nothing
is gained numerically by looking at such maps as 1-dimensional time delay maps.
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12.4 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that fora periodic orbit
the stability eigenvalue corresponding to the flow direction of necessity equals
unity; the separation of any two points along a cycle remainsunchanged after a
completion of the cycle. More unit eigenvalues can arise if the flow satisfies

[section 5.2.1]
conservation laws, such as the energy invariance for Hamiltonian systems. We
now show how such problems are solved by increasing the number of fixed point
conditions.

12.4.1 Newton method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow to a
mapping on the Poincaré surface of section. An autonomous flow (2.6) is given as

ẋ = v(x), (12.9)

The corresponding fundamental matrixM (4.43) is obtained by integrating the
linearized equation (4.9)

Ṁ = AM , Ai j (x) =
∂vi(x)
∂x j

along the trajectory. The flow and the corresponding fundamental matrix are
integrated simultaneously, by the same numerical routine.Integrating an initial
condition on the Poincaré surface until a later crossing ofthe same and linearizing
around the flow we can write

f (x′) ≈ f (x) + M(x′ − x). (12.10)

Notice here, that, even though all ofx′, x and f (x) are on the Poincaré surface,
f (x′) is usually not. The reason for this is thatM corresponds to a specific
integration time and has no explicit relation to the arbitrary choice of Poincaré
section. This will become important in the extended Newton method described
below.

To find a fixed point of the flow near a starting guessx we must solve the
linearized equation

(1− M)(x′ − x) = −(x− f (x)) = −F(x) (12.11)
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wheref (x) corresponds to integrating from one intersection of the Poincaré surface
to another andM is integrated accordingly. Here we run into problems with the
direction along the flow, since - as shown in sect.5.2.1- this corresponds to a unit
eigenvector ofM. The matrix (1−M) does therefore not have full rank. A related
problem is that the solutionx′ of (12.11) is not guaranteed to be in the Poincaré
surface of section. The two problems are solved simultaneously by adding a small
vector along the flow plus an extra equation demanding thatx be in the Poincaré
surface. Let us for the sake of simplicity assume that the Poincaré surface is a
(hyper)-plane, i.e., it is given by the linear equation

(x− x0) · a = 0, (12.12)

wherea is a vector normal to the Poincaré section andx0 is any point in the
Poincaré section. (12.11) then becomes

(

1− M v(x)
a 0

) (

x′ − x
δT

)

=

(

−F(x)
0

)

. (12.13)

The last row in this equation ensures thatx will be in the surface of section, and
the addition ofv(x)δT, a small vector along the direction of the flow, ensures that
such anx can be found at least ifx is sufficiently close to a solution, i.e., to a fixed
point of f .

To illustrate this little trick let us take a particularly simple example; consider
a 3-d flow with the (x, y, 0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e., withv = (0, 0, vz), which means that the
marginally stable direction is also perpendicular to the Poincaré section. Furthermore,
let the unstable direction be parallel to thex-axis and the stable direction be
parallel to they-axis. In this case the Newton setup looks as follows



























1− Λ 0 0 0
0 1− Λs 0 0
0 0 0 vz
0 0 1 0





















































δx
δy
δz
δτ



























=



























−Fx
−Fy
−Fz

0



























. (12.14)

If you consider only the upper-left [3× 3] matrix (which is what we would have
without the extra constraints that we have introduced) thenthis matrix is clearly
not invertible and the equation does not have a unique solution. However, the full
[4×4] matrix is invertible, as det (·) = vzdet (1−M⊥), whereM⊥ is the monodromy
matrix for a surface of section transverse to the orbit, see sect.5.3.

For periodic orbits (12.13) generalizes in the same way as (12.7), but with n
additional equations – one for each point on the Poincaré surface. The Newton
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setup looks like this



































































1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

v1
. . .

vn

a
. . .

a

0
. . .

0





































































































































δ1
δ2
·

·

δn
δt1
·

δtn



































































=



































































−F1
−F2
·

·

−Fn
0
.

0



































































.

Solving this equation resembles the corresponding task formaps. However, in the
process we will need to invert an [(d+ 1)n× (d+ 1)n] matrix rather than a [d× d]
matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems if
other eigenvalues of the fundamental matrix equal 1. This happens if the flow has
an invariant of motion, the most obvious example being energy conservation in
Hamiltonian systems. In this case we add an extra equation for x to be on the
energy shell plus and extra variable corresponding to adding a small vector along
the gradient of the Hamiltonian. We then have to solve

(

1− M v(x) ∇H(x)
a 0 0

)



















x′ − x
δτ

δE



















=

(

−(x− f (x))
0

)

(12.15)

simultaneously with

H(x′) − H(x) = 0. (12.16)

The last equation is nonlinear. It is often best to treat thisequation separately and
solve it in each Newton step. This might mean putting in an additional Newton
routine to solve the single step of (12.15) and (12.16) together. One might be
tempted to linearize (12.16) and put it into (12.15) to do the two different Newton
routines simultaneously, but this will not guarantee a solution on the energy shell.
In fact, it may not even be possible to find any solution of the combined linearized
equations, if the initial guess is not very good.

12.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-shooting methods and
their variational cousins of chapter27 enable us to compute periodic orbits of
arbitrary length. A notion that errors somehow grow exponentially with the cycle
length at Lyapunov exponent rate cannot be right. So how do wecharacterize the
accuracy of an orbit of arbitrary length?

The numerical round-off errors along a trajectory are uncorrelated and act
as noise, so the errors (x(t + ∆t) − f∆t(x(t))2 are expected to accumulate as the
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sum of squares of uncorrelated steps, linearly with time. Hence the accumulated
numerical noise along an orbit sliced byN intermediate sections separated by
∆tk = tk+1 − tk ∼ Tp/N can be characterized by an effective diffusion constant

Dp =
1

2(de + 1)

N
∑

k=1

1
∆tk

(xk+1 − f∆tk(xk))
2 . (12.17)

For hyperbolic flows errors are exponentially amplified along unstable and contracted
along stable eigen-directions, sode+1 stands for the number of unstable directions
of the flow together with the single marginal direction alongthe flow. An honest
calculation requires an honest error estimate. If you are computing a large set of
periodic orbitsp, list Dp along withTp and other properties of cycles.

Résum é

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given periodTmax) to the periodic orbit condition

f t+T(x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby
trajectories in chaotic dynamical systems, direct solution of the periodic orbit
condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle search isa good (but hard
to come by) understanding of the topology of the flow. Usuallyone starts by
- possibly analytic - determination of the equilibria of theflow. Their locations,
stabilities, stability eigenvectors and invariant manifolds offer skeletal information
about the topology of the flow. Next step is numerical long-time evolution of
“typical” trajectories of the dynamical system under investigation. Such numerical
experiments build up the “natural measure,” and reveal regions most frequently
visited. The periodic orbit searches can then be initialized by taking nearly

[section 14.4.1]
recurring orbit segments and deforming them into a closed orbits. With a sufficiently
good initial guess the Newton-Raphson formula

(

1− M v(x)
a 0

) (

δx
δT

)

=

(

f (x) − x
0

)

yields improved estimatex′ = x+δx,T′ = T+δT. Iteration then yields the period
T and the location of a periodic pointxp in the Poincaré surface (xp − x0) · a = 0,
wherea is a vector normal to the Poincaré section atx0.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point on
a periodic orbit, methods like the Newton-Raphson method are likely to fail.
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Methods that start with initial guesses for a number of points along the cycle, such
[chapter 27]

as the multipoint shooting method of sect.12.3, are more robust. The relaxation
(or variational) methods take this strategy to its logical extreme, and start by a
guess of not a few points along a periodic orbit, but a guess ofthe entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter27.

Commentary

Remark 12.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial guesses for periodic orbits from
close recurrences of a long ergodic trajectory seems like anobvious idea. Nevertheless,
ref. [1] is frequently cited. Such methods have been deployed by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. Davidchack [2, 13, 14, 10]
(see also sect.18.5). Sometimes one can determine most of the admissible itineraries and
their weights without working too hard, but method comes with no guarantee.

Remark 12.2 Piecewise linear maps. The Lozi map (3.20) is linear, and 100,000’s
of cycles can be easily computed by [2×2] matrix multiplication and inversion.

Remark 12.3 Newton gone wild. Skowronek and Gora [21] offer an interesting discussion
of Newton iterations gone wild while searching for roots of polynomials as simple as
x2 + 1 = 0.
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Exercises

12.1. Cycles of the Ulam map. Test your cycle-searching
routines by computing a bunch of short cycles and their
stabilities for the Ulam map

f (x) = 4x(1− x) . (12.18)

12.2. Cycles stabilities for the Ulam map, exact. In
exercise 12.1 you should have observed that the
numerical results for the cycle stability eigenvalues
(4.50) are exceptionally simple: the stability eigenvalue
of thex0 = 0 fixed point is 4, while the eigenvalue of any
othern-cycle is±2n. Prove this. (Hint: the Ulam map
can be conjugated to the tent map (10.6). This problem
is perhaps too hard, but give it a try - the answer is in
many introductory books on nonlinear dynamics.)

12.3. Stability of billiard cycles. Compute stabilities of few
simple cycles.

(a) A simple scattering billiard is the two-disk
billiard. It consists of a disk of radius one centered
at the origin and another disk of unit radius located
atL+2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in exercise1.2; at least now you will
be able to see where you went wrong when you
knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagonaly = x and one
of the hyperbola branchesy = −1/x.

12.4. Cycle stability. Add to the pinball simulator of
exercise8.1 a routine that evaluates the expanding
eigenvalue for a given cycle.

12.5. Pinball cycles. Determine the stability and length
of all fundamental domain prime cycles of the binary
symbol string lengths up to 5 (or longer) for R : a = 6
3-disk pinball.

12.6. Newton-Raphson method. Implement the Newton-
Raphson method in 2-d and apply it to determination of
pinball cycles.

12.7. Rössler flow cycles. (continuation of exercise4.4)
Determine all cycles up to 5 Poincaré sections returns
for the Rössler flow (2.17), as well as their stabilities.

(Hint: implement (12.13), the multipoint shooting
methods for flows; you can cross-check your shortest
cycles against the ones listed in the table.)

Table: The Rössler flow (2.17): The itinerary p, a
periodic point xp = (0, yp, zp) and the expanding
eigenvalueΛp for all cycles up to the topological length
7. ( J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

12.8. Cycle stability, helium. Add to the helium integrator
of exercise2.10a routine that evaluates the expanding
eigenvalue for a given cycle.

12.9. Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up to
symbol sequence length 5 or longer for collinear helium
of figure7.2.

12.10. Uniqueness of unstable cycles∗∗∗. Prove that there
exists only one 3-disk prime cycle for a given finite
admissible prime cycle symbol string. Hints: look at the
Poincaré section mappings; can you show that there is
exponential contraction to a unique periodic point with
a given itinerary? Exercise27.1might be helpful in this
effort.

12.11. Inverse iteration method for a Hamiltonian repeller.

Table: All periodic orbits up to 6 bounces for the
Hamiltonian Hénon mapping (12.19) with a= 6. Listed
are the cycle itinerary, its expanding eigenvalueΛp, and
its “center of mass.” The “center of mass” is listed
because it turns out the “center of mass” is often a
simple rational or a quadratic irrational.
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p Λp
∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.18) for area-preserving

(“Hamiltonian”) parameter valueb = −1. The
coordinates of a periodic orbit of lengthnp satisfy the
equation

xp,i+1 + xp,i−1 = 1− ax2
p,i , i = 1, ..., np , (12.19)

with the periodic boundary conditionxp,0 = xp,np. Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (12.19) ata = 6 are as listed
above.

Hint : you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by
inverse iteration, using the inverse of (12.19)

x′′p,i = Sp,i

√

1− x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

HereSp,i are the signs of the corresponding cycle point
coordinates,Sp,i = xp,i/|xp,i |. (G. Vattay)

12.12. “Center of mass” puzzle∗∗. Why is the “center of
mass,” tabulated in exercise12.11,
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