Chapter 12

Fixed points, and how to get them

piece of numerics in this subject; search for the solution3) x € RY,

I I AVING SeT UP the dynamical context, now we turn to the key and unavoidable
T € R of the periodic orbit condition

f* T = f'(9, T>0 (12.1)

for a given flow or mapping.

We know from chaptet 6that cycles are the necessary ingredient for evaluation
of spectra of evolution operators. In chapiérwe have developed a qualitative
theory of how these cycles are laid out topologically.

This chapter is intended as a hands-on guide to extractigeriddic orbits,
and should be skipped on first reading - you can return to inether the need for
finding actual cycles arises. Sadly, searching for periodiits will never become
as popular as a week on Coéte d’Azur, or publishing yet amdtigglog plot in
Phys. Rev. LettersA serious cyclist will want to also learn about the variaib ]
methods to find cycles, chapt@r. They are particularly useful when little iéChapte' 2]
understood about the topology of a flow, such as in high-dsoel periodic
orbit searches.

fast track:
W chapter 13, p. 212
A prime cycle p of period T is a single traversal of the periodic orbit, so
our task will be to find a cycle poirnt € p and the shortest timé&, for which
(12.1) has a solution. A cycle point of a flof} which crosses a Poincaré section
n times is a fixed point of the®" iterate ofP, the return map3.1), hence we shall
refer to all cycles as “fixed points” in this chapter. By cgdlivariance, stability

eigenvalues and the period of the cycle are independenedattbice of the initial
point, so it will sufice to solve {2.1) at a single cycle point.

[section 5.2]
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If the cycle is an attracting limit cycle with a sizable basirattraction, it can
be found by integrating the flow for fiiciently long time. If the cycle is unstable,
simple integration forward in time will not reveal it, and theds to be described
here need to be deployed. In essence, any method for findipgeais based on
devising a new dynamical system which possesses the satee loytfor which
this cycle is attractive. Beyond that, there is a great foeeth constructing such
systems, and manyftierent methods are used in practice.

Due to the exponential divergence of nearby trajectoriehaotic dynamical
systems, fixed point searches based on direct solution difépoint condition
(12.1) as an initial value problem can be numerically very ungtablMethods
that start with initial guesses for a number of points alohg tycle, such as
the multipoint shooting method described here in s&2t3 and the variational
methods of chaptet7, are considerably more robust and safer.

[chapter 27]

A prerequisite for any exhaustive cycle search is a goodmsteteding of the
topology of the flow: a preliminary step to any serious pddarbit calculation
is preparation of a list of all distinct admissible primeipdic symbol sequences,
such as the list given in tablE0.1. The relations between the temporal symbol
sequences and the spatial layout of the topologicallyrdistiegions of the state
space discussed in chaptéfsand11should enable us to guess location of a series
of periodic points along a cycle. Armed with such informeesggiwe proceed to
improve it by methods such as the Newton-Raphson iteratiershow how this
works by applying the Newton method to 1- addiimensional maps. But first,
where are the cycles?

12.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guesgigge the cycles are is
the case of planar billiards. The Maupertuis principle efteaction here dictates
that the physical trajectories extremize the length of gor@pmate orbit that
visits a desired sequence of boundary bounces.

Example 12.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 11.1. . Label the three disks by 1, 2 and 3, and associate to

. . LS . . [sdec}%on 11.1]
every trajectory anitinerary, a sequence of labels indicating the order in which the'disks
are visited, as in figure 3.2. Given the itinerary, you can construct a guess trajectory by -
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake

the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions s.
The computational problem is to find the extremum values of cycle length L(s) where

S = task that I L t. 27.3. A le, the sh
(St,...,S), a task that we postpone to sec s an example, e[gxeorgtlse 27.2]

[exercise 12.10]
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periods and stabilities of 3-disk cycles computed this way are listed table 27.2, and
some examples are plotted in figure 3.2. It's a no brainer, and millions of such cycles
have been computed.

If we were only so lucky. Real life finds us staring at someaghike Yang-
Mills or Navier-Stokes equations, utterly clueless. Wioadd?

One, there is always mindless computation. In practice dgétrbe satisfied
with any rampaging robot that finds “the most important” egclErgodic exploration
of recurrences that we turn to next sometimes perform adhgimgell.

12.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanovit)

The equilibria and periodic orbits (with the exception aiks and stable limit fremark 12.4]
cycles) are never seen in simulations and experiments bedhay are unstable. '
Nevertheless, one does observe close passes to the letdilerejuilibria and
periodic orbits. Ergodic exploration by long-time trajagriés (or long-lived transients,
in case of strange repellers) can uncover state space segfdow velocity, or
finite time recurrences. In addition, such trajectoriedguamtially sample the

C . e [section 14.1]
natural measure of the ‘turbulent’ flow, and by initiatingasshes within the state
space concentrations of natural measure bias the searandtdkae dynamically
important invariant solutions.

The search consists of following a long trajectory in st@&ce, and looking
for close returns of the trajectory to itself. Whenever tlagetctory almost closes in
a loop (within a given tolerance), another point of this na&s of a cycle can be
taken as an initial condition. Supplemented by a Newtorimeudescribed below,
a sequence of improved initial conditions may indeed rgplielad to closing a
cycle. The method preferentially finds the least unstaldégsrwhile missing the
more unstable ones that contribute little to the cycle exjoms.

This blind search is seriously flawed: in contrast to thesk@ixamplel2.1,
it is not systematic, it gives no insight into organizatidnttee ergodic sets, and
can easily miss very important cycles. Foundations to aesyatic exploration
of ergodic state space are laid in chaptéfsand 11, but are a bit of work to
implement.

12.1.2 Cycles found by thinking

Thinking is extra price.
—Argentine saying
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A systematic charting out of state space starts out by a lbuetjuilibrium points.

If the equations of motion are a finite set of ODES, settinguvitlecity field v(x)

in (2.6) to zero reduces search for equilibria to a search for zefas set of
algebraic equations. We should be able, in principle, tov@rate and determine
all real and complex zeros in such cases, e.g. the Lorenzpm&ah® and the
Rossler exampl@.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be éted by symmetry
considerations: if a function is e.g. antisymmetric, it tinvenish at origin, e.g.
the LorenzEQ, = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, createagesspace grid,
about 50x acrossM in each dimension, and compute the velocity fslé v(X)
at each grid point; a few milliow, values are easily stored. Plgt for which
IVikl? < €, € << |Vmax? but sufficiently large that a few thousandg are plotted.
If the velocity field varies smoothly across the state sptue regiongvyl® < e
isolate the (candidate) equilibria. Start a Newton iterativith the smallesv|?
point within each region. Barring exceptionally fast védas inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of &igna, but steady
states of PDEs such as the Navier-Stokes flow are themsealitg®rs of ODES
or PDEs, and much harder to determine.

Equilibria—by definition—do not move, so they cannot be Btuent.” What
makes them dynamically important are their stalistable manifolds. A chaotic
trajectory can be though of as a sequence of near visitabicguilibria. Typically
such neighborhoods have many stable, contracting directamd a handful of
unstable directions. Our strategy will be to generalizevilird Poincaré section
mapsPs, ., s, of example3.2to maps from a section of the unstable manifold of
equilibrium s, to the section of unstable manifold of equilibriusp.1, and thus
reduce the continuous time flow to a sequence of maps. Thesead®® section
maps do double duty, providing us both with an exact reptatien of dynamics
in terms of maps, and with a covering symbolic dynamics.

invariant

We showed in the Lorenz flow exampl®.5how to reduce the 3-dimensional
Lorenz flow to a 4d return map.

In the Rossler flow examplg.3 we sketched the attractor by running a long
chaaotic trajectory, and noted that the attractor is veny, thit otherwise the return
maps that we plotted were disquieting — figdé did not appear to be a 1-to-1
map. In the next example we show how to use such informati@appooximately
locate cycles. In the remainder of this chapter and in chditeve shall learn
how to turn such guesses into highly accurate cycles.

Example 12.2 Réssler attractor (G. Simon and P. Cvitanovic)

Run a long simulation of the Réssler flow f!, plot a Poincaré section, as in figure 3.5,
and extract the corresponding Poincaré return map P, as in figure 3.6. Luck is with
us; the figure 12.1 (a) return map 'y — Pi(y,2) looks much like a parabola, so we
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x = 0,y > 0 Poincaré section of the Rossler flow
figure 2.5. (b) The1-cycle found by taking the :
fixed pointyk.n = Yk together with the fixed point (&)~~~ = (D)
of thez — zreturn map (not shown) an initial |
guess (0y?, Z%)) for the Newton-Raphson search.

(©) Yiez = P3(yk, z), the third iterate of Poincaré
return map 8.1) together with the corresponding
plot for z.s = P3(yk. z), is used to pick starting
guesses for the Newton-Raphson searches for the
two 3-cycles: (d) thed01 cycle, and (e) th@11l N
cycle. (G. Simon) (c) TS (d) (e)

Figure 12.1: (a) y — Pi(y,2 return map for \\

take the unimodal map symbolic dynamics, sect. 10.2.1, as our guess for the covering
dynamics. Strictly speaking, the attractor is “fractal,” but for all practical purposes the
return map is 1-dimensional; your printer will need a resolution better than 10* dots
per inch to start resolving its structure.

Periodic points of a prime cycle p of cycle length n, for the x = 0, y > 0 Poincaré
section of the Rossler flow figure 2.5 are fixed points (y, 2) = P"(y, 2) of the nth Poincaré
return map.

Using the fixed point yy.1 = Yk in figure 12.1 (a) together with the simultaneous
fixed point of the z — P1(y, 2) return map (not shown) as a starting guess (0, Y9, Z%) for
the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the
cycle figure 12.1 (b) with the Poincaré section point (0,Yp, z,), period T,, expanding,
marginal, contracting stability eigenvalues (Ape, Apm, Apc), and Lyapunov exponents
(e Apm Apc)- [exercise 12.7]

1-cycle: (xy,2 = (0,6.091768321.2997319)
T, = 5.88108845586
(Are, Aim A1e) = (—2.403953531+ 10714 -1.29x 10714
(e, Azm A1) = (0149141556101 -5.44). (12.2)

The Newton-Raphson method that we used is described in sect. 12.4.

As an example of a search for longer cycles, we use Y,z = Pf(yk, %), the
third iterate of Poincaré return map (3.1) plotted in figure 12.1 (c), together with a
corresponding plot for z.,.3 = T3(yk, ), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 12.1 (d), (e). For a listing of the short
cycles of the Rossler flow, consult exercise 12.7.

The numerical evidence suggests (but a proof is lacking) that all cycles that
comprise the strange attractor of the Réssler flow are hyperbolic, each with an expanding
eigenvalue |Ael > 1, a contracting eigenvalue |A¢| < 1, and a marginal eigenvalue
|Aml = 1 corresponding to displacements along the direction of the flow.

For the Réssler flow the contracting eigenvalues turn out to be insanely contracting,
a factor of € 32 per one par-course of the attractor, so their numerical determination is
quite difficult. Fortunately, they are irrelevant; for all practical purposes the strange
attractor of the Réssler flow is 1-dimensional, a very good realization of a horseshoe
template.
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l T T 1 T
08 | g
06 | e
04 | e
Figure 12.2: The inverse time path to tH@l-cycle of
the logistic mapf (x) = 4x(1 — x) from an initial guess 02 Y
of x = 0.2. At each inverse iteration we chose the 0, 0 4 . . .
respectively 1 branch. 0 02 04 06 08 1
Figure 12.3: Convergence of Newton method)( 0 Fag T
. . . . . 5+ . ,
VS. inverse |teraﬂjn+(). The error aftem iterations T
searching for th@1-cycle of the logistic mag (x) = bl T

-15 + u

4x(1 - xX) with an initial starting guess ok; = 2

0.2,x, = 0.8. y-axis is log, of the error. The

difference between the exponential convergence of s i
the inverse iteration method and the super-exponential sor R i
convergence of Newton method is dramatic. '350 2 4 6 8 10 12 14 16 18 20

12.2 One-dimensional mappings

(F. Christiansen)

12.2.1 Inverse iteration

Let us first consider a very simple method to find unstablessyof a 1-dimensional
map such as the logistic map. Unstable cycles dfrhaps are attracting cycles
of the inverse map. The inverse map is not single valued, sact backward
iteration we have a choice of branch to make. By choosingdbraccording to
the symbolic dynamics of the cycle we are trying to find, wd atiltomatically
converge to the desired cycle. The rate of convergence éndiy the stability of
the cycle, i.e., the convergence is exponentially fastugi@2.2shows such path

to theO1-cycle of the logistic map. fexercise 12.10]

The method of inverse iteration is fine for finding cycles fed inaps and
some 2d systems such as the repeller of exerdi&elQ It is not particularly fast,
especially if the inverse map is not known analytically. Hweer, it completely
fails for higher dimensional systems where we have bothlestabd unstable
directions. Inverse iteration will exchange these, but vilesiill be left with both
stable and unstable directions. The best strategy is totljirattack the problem
of finding solutions off T(x) = x.

12.2.2 Newton method

Newton method for determining a zerd of a functionF(x) of one variable is
based on a linearization around a starting gugss

F(X) ~ F(x0) + F'(X0)(X = o). (12.3)
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An approximate solutiorx; of F(x) = 0 is

X1 = Xo — F(X0)/F’ (o). (12.4)

The approximate solution can then be used as a new startexs gu an iterative
process. A fixed point of a map is a solution toF(x) = x— f(x) = 0. We
determinex by iterating

Xm = O(Xm-1) = Xm-1— F(Xm-1)/F (Xm-1)
1
Xm-1— m(xm—l - f(Xm-1))- (12.5)

Provided that the fixed point is not marginally stablgx) # 1 at the fixed point

X, a fixed point off is a super-stable fixed point of the Newton-Raphson map
g (x) = 0, and with a sfliciently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the #iciency of the Newton method we compare it to the inverse
iteration method in figuré2.3 Newton method wins hands down: the number of
significant digits of the accuracy afestimate doubles with each iteration.

In order to avoid jumping too far from the desirad (see figurel2.4), one

often initiates the search by tllamped Newton methpd

F(Xm)
AT, O<AT<1,
F’(Xm)

AXm = Xm1 — Xm = —

takes smallAr steps at the beginning, reinstating to the il = 1 jumps only
when stficiently close to the desirext.

12.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengti are fixed points off" so in principle we could use
the simple Newton method described above to find them. Hawthis is not an
optimal strategy. f" will be a highly oscillating function with perhaps as many
as 2 or more closely spaced fixed points, and finding a specifioggripoint,
for example one with a given symbolic sequence, requiresragood starting
guess. For binary symbolic dynamics we must expect to ingtiog accuracy of
our initial guesses by at least a factor &ftd find orbits of lengthn. A better
alternative is thenultipoint shooting method While it might very hard to give
a precise initial point guess for a long periodic orbit, it gquesses are informed
by a good state space partition, a rough guess for each pgomy ¢he desired
trajectory might sffice, as for the individual short trajectory segments thergrro
have no time to explode exponentially.
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FX)

Figure 12.4: Newton method: bad initial
guess X leads to the Newton estimate®? far
away from the desired zero of(x). Sequence
co, XM Xm0 starting with a good  guess \/\/\
converges super-exponentially 6. The method M’)" >
diverges if it iterates into the basin of attraction of a \/
local minimumx®.

xm [ xR
LA X X xe)

A cycle of lengthnis a zero of ther-dimensional vector functioF:

X1 X1 — f(Xn)
F = F| @ || % f(x1)
Xn Xn = f(Xn-1)

The relations between the temporal symbol sequences arsp#tial layout of
the topologically distinct regions of the state space dised in chaptel0enable
us to guess location of a series of periodic points along Ecyamed with such
informed initial guesses we can initiate a Newton-Raphtemation. The iteration
in the Newton method now takes the form of

d
Ix FOX)(X = X) = —=F(x), (12.6)

where 2 F(X) is an  x n] matrix:

1 —1"(%n)
-f'(xa) 1

d_dxF(X) - 1 L . (12.7)

_f’(xn—l) 1
This matrix can easily be inverted numerically by first ehiaing the elements

below the diagonal. This creates non-zero elements innthecolumn. We
eliminate these and are done.

Example 12.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:

1 0 —f'(x3) AXq F1
[ —f/(X]_) 1 0 ][ AXz]Z—{ Fo ],
0 — /(%) 1 AX3 Fs

where Ax; = X — X; Is the correction to our initial guess x;, and Fi = x — f(xi_1) is the
error at ith cycle point. Eliminate the sub-diagonal elements by adding f’(X1) times the
first row to the second row, then adding f’(x2) times the second row to the third row:

10 —f/(x3) Axy
{ 0 1 =17 (x) £/ (x3) ]{ AXo ]:
0O 0 1- f’(xz)f’(xllzf’(xg) AX3

1
— [ Fo + f'(X]_)F]_ ] .
Fa+ f'(x)F2 + /(x2) f/(x0)F1
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The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1 — f/(x2)f’(x1) f'(x3). If this element is zero at the periodic orbit this step cannot
work. As f/(x2) f'(xq) f’(xs) is the stability of the cycle (when the Newton iteration has
converged), this is not a good method to find marginally stable cycles. We now have

10 —f/(x3) AXy
{ 0 1 —f'(x)f’(x3) ][ AXo ]:
0O 0 1 AX3

Fa+ 1 (x)Fa+f" (%) ' (x1)F1
1-1/(x2) F (x0) ' (Xs)

F1
_[ Fo+ f/(X]_)F]_

Finally we add f’(x3) times the third row to the first row and f’(x;) f’(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, the right hand
side is an explicit formula for the corrections to our initial guess. We have gone through
one Newton iteration.

When one sets up the Newton iteration on the computer it ismaoessary
to write the left hand side as a matrix. All one needs is a veoboitaining the
f’(x)’s, a vector containing the'th column, i.e., the cumulative product of the
f’(x)’s, and a vector containing the right hand side. After teeaition the vector

containing the right hand side should be the correctionéddrthial guess. _
[exercise 12.1]

12.3.1 d-dimensional mappings

O3

Armed with clever, symbolic dynamics informed initial gges we can easily
extend the Newton-Raphson iteration method-imensional mappings. In this
casef’(x) is a [d x d] matrix, and%(F(x) is an jnd x nd] matrix. In each of the
steps that we went through above we are then manipuldtingss of the left hand
side matrix. (Remember that matrices do not commute - alwaysply from the
left.) In the inversion of theth element of the diagonal we are invertingdaqd]
matrix (1- [T f’(x)) which can be done if none of the eigenvalueq pf’(x;)
equals 1, i.e., if the cycle has no marginally stable eigesctions.

Example 12.4 Newton method for time delay maps. Some d-dimensional mappings
(such as the Hénon map (3.18)) can be written as 1-dimensional time delay mappings
of the form

f(x) = f(X-1, X2, ..., Xi-q)- (12.8)

In this case di'xF(x) is an [n x n] matrix as in the case of usual 1-dimensional maps
but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the final
cleaning of the diagonal we will need to invert a [d x d] matrix. In this respect, nothing
is gained numerically by looking at such maps as 1-dimensional time delay maps.
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12.4 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that doperiodic orbit
the stability eigenvalue corresponding to the flow dirattad necessity equals
unity; the separation of any two points along a cycle remaimshanged after a
completion of the cycle. More unit eigenvalues can arisddf flow satisfies
conservation laws, such as the energy invariance for Hanmlh systems. We
now show how such problems are solved by increasing the nuafitieed point
conditions.

[section 5.2.1]

12.4.1 Newton method for flows

A flow is equivalent to a mapping in the sense that one can eetheflow to a
mapping on the Poincaré surface of section. An autonomouws(#.6) is given as

X = V(X), (12.9)

The corresponding fundamental matiik (4.43 is obtained by integrating the
linearized equatior¥(9)

oVvi(X)
8Xj

M=AM,  Aj(X) =

along the trajectory. The flow and the corresponding funddatematrix are
integrated simultaneously, by the same numerical routingegrating an initial
condition on the Poincaré surface until a later crossintp@same and linearizing
around the flow we can write

f(X) = f(X) + M(X — X). (12.10)

Notice here, that, even though all ®f, x and f(x) are on the Poincaré surface,
f(X') is usually not. The reason for this is thit corresponds to a specific
integration time and has no explicit relation to the arlpjtrahoice of Poincaré
section. This will become important in the extended Newtathod described
below.

To find a fixed point of the flow near a starting guesw/e must solve the
linearized equation

(L M)(X - X) = —(x— (X)) = —F(X) (12.11)
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wheref (X) corresponds to integrating from one intersection of thie€uwé surface
to another andM is integrated accordingly. Here we run into problems with th
direction along the flow, since - as shown in séc?..1- this corresponds to a unit
eigenvector oM. The matrix (- M) does therefore not have full rank. A related
problem is that the solutio®’ of (12.1]) is not guaranteed to be in the Poincaré
surface of section. The two problems are solved simultasigdiy adding a small
vector along the flow plus an extra equation demandingHee in the Poincaré
surface. Let us for the sake of simplicity assume that thed2oé surface is a
(hyper)-plane, i.e., it is given by the linear equation

(X—%)-a=0, (12.12)

wherea is a vector normal to the Poincaré section a@gds any point in the
Poincaré section.1@.11) then becomes

1-M v(X) X =X -F(X)
() )-(50)

The last row in this equation ensures tlawill be in the surface of section, and
the addition ofv(x)6T, a small vector along the direction of the flow, ensures that
such anx can be found at least ¥is suficiently close to a solution, i.e., to a fixed
point of f.

To illustrate this little trick let us take a particularlyngple example; consider
a 3-d flow with the &, y, 0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e., with (0, 0, v,), which means that the
marginally stable direction is also perpendicular to thm@aré section. Furthermore,
let the unstable direction be parallel to tlkeaxis and the stable direction be
parallel to they-axis. In this case the Newton setup looks as follows

1-A 0 0 0/ & _F,
0 1-As 0 0|4 | | -F
0 o ov| s || -F (12.14)
0 o 1 0)lsr 0

If you consider only the upper-left [8 3] matrix (which is what we would have
without the extra constraints that we have introduced) thenmatrix is clearly

not invertible and the equation does not have a unique solukiowever, the full

[4x4] matrix is invertible, as det) = v,det (1- M, ), whereM, is the monodromy

matrix for a surface of section transverse to the orbit, see’s.3.

For periodic orbits 12.13 generalizes in the same way d£(7), but withn
additional equations — one for each point on the Poincarasa The Newton
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setup looks like this

1 —Jn s -F
1 1
—h 1 " 62 -F2

1
1 Vi ‘

_Jn_l 1 6n = —Fn

a oty 0

otp 0

Solving this equation resembles the corresponding task&ms. However, in the
process we will need to invert ard[¢ 1)n x (d + 1)n] matrix rather than ad x d]
matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind bfepns if
other eigenvalues of the fundamental matrix equal 1. Thigpeas if the flow has
an invariant of motion, the most obvious example being gneanservation in
Hamiltonian systems. In this case we add an extra equation fo be on the
energy shell plus and extra variable corresponding to gdaismall vector along
the gradient of the Hamiltonian. We then have to solve

1-M v VHOO \[ X% [ =x= ()
B A )[ o ]:( ) 1215)

simultaneously with
H(xX) - H(x) = 0. (12.16)

The last equation is nonlinear. It is often best to treateljisation separately and
solve it in each Newton step. This might mean putting in antexchl Newton
routine to solve the single step af4.15 and (L2.19 together. One might be
tempted to linearizel@.16 and put it into (2.19 to do the two diferent Newton
routines simultaneously, but this will not guarantee atsmtuon the energy shell.
In fact, it may not even be possible to find any solution of thebined linearized
equations, if the initial guess is not very good.

12.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-shgpimethods and
their variational cousins of chapt@7 enable us to compute periodic orbits of
arbitrary length. A notion that errors somehow grow expaiaéy with the cycle
length at Lyapunov exponent rate cannot be right. So how dohaeacterize the
accuracy of an orbit of arbitrary length?

The numerical round4d errors along a trajectory are uncorrelated and act
as noise, so the errors(f + At) — fA{(x(t))? are expected to accumulate as the
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sum of squares of uncorrelated steps, linearly with timendddghe accumulated
numerical noise along an orbit sliced by intermediate sections separated by
Aty = 1 — tx ~ Tp/N can be characterized by affective difusion constant

N

1 1

D =—§ — — AK(x))2. 12.17
P 2T D) 24 Atk(xk+1 (%)) ( )

For hyperbolic flows errors are exponentially amplified glonstable and contracted
along stable eigen-directions, dot+ 1 stands for the number of unstable directions
of the flow together with the single marginal direction alahg flow. An honest
calculation requires an honest error estimate. If you anepeting a large set of
periodic orbitsp, list D along withT,, and other properties of cycles.

Résum é

There is no general computational algorithm that is guaethto find all solutions
(up to a given period'max) to the periodic orbit condition

" Tx) = f'(9, T>0

for a general flow or mapping. Due to the exponential divetgeaf nearby
trajectories in chaotic dynamical systems, direct solutd the periodic orbit
condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle searalgmod (but hard
to come by) understanding of the topology of the flow. Usualhe starts by
- possibly analytic - determination of the equilibria of tth@w. Their locations,
stabilities, stability eigenvectors and invariant malui$ooffer skeletal information
about the topology of the flow. Next step is numerical lomgetievolution of
“typical” trajectories of the dynamical system under inigetion. Such numerical
experiments build up the “natural measure,” and reveabregimost frequently
visited. The periodic orbit searches can then be initidlibg taking nearly
recurring orbit segments and deforming them into a closbitisoiWith a sifficiently
good initial guess the Newton-Raphson formula

(1—M V(X) )( 5x)_( f(x)—x)
a 0 oT |~ 0

yields improved estimat& = x+6x, T’ = T +4T. Iteration then yields the period
T and the location of a periodic poin, in the Poincaré surface{ — xo) - a = 0,
wherea is a vector normal to the Poincaré sectiorxat

[section 14.4.1]

The problem one faces with high-dimensional flows is thair tt@pology
is hard to visualize, and that even with a decent startingsgdier a point on
a periodic orbit, methods like the Newton-Raphson methad liely to fail.
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Methods that start with initial guesses for a number of Eoatbng the cycle, sucf}]

. . ._[chapter 27]
as the multipoint shooting method of set®.3 are more robust. The relaxatio

(or variational) methods take this strategy to its logicak@me, and start by a

guess of not a few points along a periodic orbit, but a guedissoéntire orbit. As

these methods are intimately related to variational ppiesi and path integrals,

we postpone their introduction to chapgt.

Commentary

Remark 12.1 Close recurrence searches.  For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial ggses for periodic orbits from
close recurrences of a long ergodic trajectory seems likebaious idea. Nevertheless,
ref. [1] is frequently cited. Such methods have been deployed bynsmnong them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. iBelvack P, 13, 14, 10]
(see also sect.8.5. Sometimes one can determine most of the admissibledtiresrand
their weights without working too hard, but method comeswib guarantee.

Remark 12.2 Piecewise linear maps. The Lozi map 8.20) is linear, and 100,000’s
of cycles can be easily computed byq2] matrix multiplication and inversion.

Remark 12.3 Newton gone wild. Skowronek and Goré&[|] offer an interesting discussion
of Newton iterations gone wild while searching for roots @fymomials as simple as
x>+ 1=0.
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Exercises

12.1. Cycles of the Ulam map. Test your cycle-searching12.7. Rossler flow cycles.

12.2.

12.3.

12.4.

12.5.

12.6.

routines by computing a bunch of short cycles and their
stabilities for the Ulam map

f(x) =

Cycles stabilities for the Ulam map, exact. In
exercise 12.1 you should have observed that the
numerical results for the cycle stability eigenvalues
(4.50 are exceptionally simple: the stability eigenvalue
of thexy = O fixed pointis 4, while the eigenvalue of any
othern-cycle is+2". Prove this. (Hint: the Ulam map
can be conjugated to the tent ma@®(§. This problem

is perhaps too hard, but give it a try - the answer is in
many introductory books on nonlinear dynamics.)

Ax(1-X). (12.18)

Stability of billiard cycles.
simple cycles.

Compute stabilities of few

(@) A simple scattering billiard is the two-disk
billiard. It consists of a disk of radius one centered
at the origin and another disk of unit radius located
atL+2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in exercis&.2; at least now you will
be able to see where you went wrong when you

knew nothing about cycles and their extraction.) 12.8

(b) Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagoryat x and one

of the hyperbola branchgs= -1/x.

12.9.

12.10.

Cycle stability. Add to the pinball simulator of
exercise8.1 a routine that evaluates the expanding
eigenvalue for a given cycle.

12.11.

Pinball cycles.  Determine the stability and length
of all fundamental domain prime cycles of the binary
symbol string lengths up to ®( longen) forR: a=6
3-disk pinball.

Newton-Raphson method. Implement the Newton-

Raphson method in @d-and apply it to determination of
pinball cycles.
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(continuation of exercisé.4)
Determine all cycles up to 5 Poincaré sections returns
for the Rossler flowZ.17), as well as their stabilities.

(Hint: implement (2.13, the multipoint shooting
methods for flows; you can cross-check your shortest
cycles against the ones listed in the table.)

Table: The Rossler flowZ17): The itinerary p, a

periodic point % = (0,yp,zy) and the expanding
eigenvalue\, for all cycles up to the topological length
7. (J. Mathiesen G. Simon A. Bas)

wm:g

2 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923
011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4162799 3.303903 -23.19958
01111 3.278914 4.890452  36.88633
6 001011 2.122094 7.886173 -6.857665
010111  4.059211 3.462266 61.64909
011111  3.361494 4.718206 -92.08255
7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

. Cycle stability, helium. Add to the helium integrator

of exercise2.10a routine that evaluates the expanding
eigenvalue for a given cycle.

Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up to
symbol sequence length 5 or longer for collinear helium
of figure7.2

Uniqueness of unstable cycles'. Prove that there
exists only one 3-disk prime cycle for a given finite
admissible prime cycle symbol string. Hints: look at the
Poincaré section mappings; can you show that there is
exponential contraction to a unique periodic point with
a given itinerary? Exercisg7.1might be helpful in this
effort.

Inverse iteration method for a Hamiltonian repeller.

Table: All periodic orbits up to 6 bounces for the
Hamiltonian H&non mappindl@.19 with a= 6. Listed
are the cycle itinerary, its expanding eigenvalug and

its “center of mass.” The “center of mass” is listed
because it turns out the “center of mass” is often a
simple rational or a quadratic irrational.


http://ChaosBook.org/projects/joachim.ps.gz
http://ChaosBook.org/extras/simon/Roessler.html
http://ChaosBook.org/projects/index.shtml#Basu
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P Ap 5 2 Xpi (“Hamiltonian”) parameter valueds = -1. The
2 8;32;32101 82%232 coordinates of a periodic orbit of length, satisfy the
10 -0.98989810"  0.333333 equation
100 -0.13190%10° -0.206011 .
110 0.558978107  0.539345 Xpist + Xpi-1 = 1-ax, i=1..np, (12.19)
1000 -0.10443Q10" -0.816497 _ o - _
1100 0.57799810* 0.000000 with the periodic boundary conditiog,o = Xpn,. Verify
1110 -0.10368810° 0.816497 that the itineraries and the stabilities of the short peciod
10000 -0.76065810" -1.426032 orbits for the Hénon repellei.19 ata = 6 are as listed
11000 0.44455210* -0.606654 above.
10100 0.77020210° 0.151375 , . . .
11100 -0.71068810° 0248463 Hint : you can use any cycle-searching routine you wish,
11010 -0.58949910° 0.870695 but for the complete repeller case (all binary sequences
11110 0.39099410° 1.095485 are realized), the cycles can be evaluated simply by
100000 -0.54574610° -2.034134 inverse iteration, using the inverse a2(19
110000 0.32222210° -1.215250
101000 0.51376210" -0.450662 1-x . —x..
111000 -0.47846410* -0.366025 g 4Pt TR g

Xpl [oX} P’ | 9 seesy np

110100 -0.63940010* 0.333333 ' a
101100 -0.63940010* 0.333333 _ ) )
111100 0.39019410* 0.548583 HereSp; are the signs of the corresponding cycle point
111010 0.10949410° 1.151463 coordinatesSp; = Xp,i/|Xpil. (G. Vattay)

111110 -0.10433810" 1.366025
12.12. “Center of mass” puzzle™. Why is the “center of

Consider the Hénon mamB.(9 for area-preserving mass,” tabulated in exercid®.11,
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