
Chapter 13

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15

W   in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This is
the simplest illustration of the raison d’etre of periodic orbit theory; we

shall develop a duality transformation that relateslocal information - in this case
the next admissible symbol in a symbol sequence - toglobalaverages, in this case
the mean rate of growth of the number of admissible itineraries with increasing
itinerary length. We shall transform the topological dynamics of chapter10 into
a multiplicative operation by means of transition matrices/Markov graphs, and
show that thenth power of a transition matrix counts all itineraries of length n.
The asymptotic growth rate of the number of admissible itineraries is therefore
given by the leading eigenvalue of the transition matrix; the leading eigenvalue is
in turn given by the leading zero of the characteristic determinant of the transition
matrix, which is - in this context - called thetopological zeta function. For flows
with finite Markov graphs this determinant is a finite polynomial which can be
read off the Markov graph.

The method goes well beyond the problem at hand, and forms thecore of the
entire treatise, making tangible a rather abstract notion of “spectral determinants”
yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectories doubles with every
iterate: there areKn = 3 · 2n distinct itineraries of lengthn. If disks are too
close and some part of trajectories is pruned, this is only anupper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the formKn ≥ Cenĥ. Bounded exponentially by
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CHAPTER 13. COUNTING 213

3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by thetopological entropy:

h = lim
n→∞

1
n

ln Kn . (13.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix elementTi j ∈ {0, 1} in (10.2) indicates whether the
transition from the starting partitionj into partition i in one step is allowed or
not, and the (i, j) element of the transition matrix iteratedn times

[exercise 13.1]

(Tn)i j =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . .Tkn−1 j

receives a contribution 1 from every admissible sequence oftransitions, so (Tn)i j

is the number of admissiblen symbol itineraries starting withj and ending withi.

Example 13.1 3-disk itinerary counting.

The (T2)13 = 1 element of T2 for the 3-disk transition matrix (10.5)
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. (13.2)

corresponds to 3→ 2→ 1, the only 2-step path from 3 to 1, while (T2)33 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itineraries ofn symbols is

Kn =
∑

i j

(Tn)i j = ( 1, 1, . . . , 1 ) Tn
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. (13.3)

We can also count the number of prime cycles and pruned periodic points,
but in order not to break up the flow of the main argument, we relegate these
pretty results to sects.13.5.2and13.7. Recommended reading if you ever have to
compute lots of cycles.

The matrix T has non-negative integer entries. A matrixM is said to be
Perron-Frobeniusif some powerk of M has strictly positive entries, (Mk)rs > 0.
In the case of the transition matrixT this means that every partition eventually
reaches all of the partitions, i.e., the partition is dynamically transitive or indecomposable,
as assumed in (2.2). The notion oftransitivity is crucial in ergodic theory: a
mapping is transitive if it has a dense orbit. This notion is inherited by the
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CHAPTER 13. COUNTING 214

shift operation once we introduce a symbolic dynamics. If that is not the case,
state space decomposes into disconnected pieces, each of which can be analyzed
separately by a separate indecomposable Markov graph. Hence it suffices to
restrict our considerations to transition matrices of Perron-Frobenius type.

A finite [N×N] matrix T has eigenvaluesTϕα = λαϕα and (right) eigenvectors
{ϕ0, ϕ1, · · · , ϕM−1}. Expressing the initial vector in (13.3) in this basis (which
might be incomplete,M ≤ N),

Tn
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= Tn
N−1
∑

α=0

bαϕα =
N−1
∑

α=0

bαλ
n
αϕα ,

and contracting with( 1, 1, . . . , 1 ), we obtain

Kn =

N−1
∑

α=0

cαλ
n
α .

[exercise 13.2]

The constantscα depend on the choice of initial and final partitions: In this
example we are sandwichingTn between the vector( 1, 1, . . . , 1 ) and its transpose,
but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvectorϕ0. In a experiment the vector( 1, 1, . . . , 1 ) would be replaced
by a description of the initial state,and the right vector would describe the measure
time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
positive real eigenvalueλ0 > 1 (with a positive eigenvector) which exceeds the
moduli of all other eigenvalues. Therefore asn increases, the sum is dominated
by the leading eigenvalue of the transition matrix,λ0 > |Reλα|, α = 1, 2, · · · ,N−1,
and the topological entropy (13.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[

1+
c1

c0

(

λ1

λ0

)n

+ · · ·
]

= ln λ0 + lim
n→∞

[

ln c0

n
+

1
n

c1

c0

(

λ1

λ0

)n

+ · · ·
]

= ln λ0 . (13.4)

What have we learned? The transition matrixT is a one-stepshort timeoperator,
advancing the trajectory from a partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly countingK1,K2,K3, . . . and estimating
(13.1) from a slope of a log-linear plot, we have theexact topological entropy
if we can compute the leading eigenvalue of the transition matrix T. This is
reminiscent of the way the free energy is computed from transfer matrix for 1-
dimensional lattice models with finite range interactions.Historically, it is analogy
with statistical mechanics that led to introduction of evolution operator methods
into the theory of chaotic systems.
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CHAPTER 13. COUNTING 215

13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of a matrix - by evaluating
the trace trTn =

∑

λn
α, or by evaluating the determinant det (1− zT). We start by

evaluating the trace of transition matrices.

Consider anM-step memory transition matrix, like the 1-step memory example
(10.13). The trace of the transition matrix counts the number of partitions that map
into themselves. In the binary case the trace picks up only two contributions on
the diagonal,T0···0,0···0 + T1···1,1···1, no matter how much memory we assume. We
can even take infinite memoryM → ∞, in which case the contributing partitions
are shrunk to the fixed points, trT = T0,0 + T1,1.

[exercise 10.7]

More generally, each closed walk throughnconcatenated entries ofT contributes
to trTn a product of the matrix entries along the walk. Each step in such a walk
shifts the symbolic string by one symbol; the trace ensures that the walk closes
on a periodic stringc. Define tc to be thelocal trace, the product of matrix
elements along a cyclec, each term being multiplied by a book keeping variable
z. zntr Tn is then the sum oftc for all cycles of lengthn. For example, for an

[exercise 10.7]
[8×8] transition matrixTs1s2s3,s0s1s2 version of (10.13), or any refined partition
[2n×2n] transition matrix,n arbitrarily large, the periodic point100 contributes
t100 = z3T100,010T010,001T001,100 to z3tr T3. This product is manifestly cyclically
symmetric,t100 = t010 = t001, and so a prime cyclep of length np contributes
np times, once for each periodic point along its orbit. For the binary labeled
non–wandering set the first few traces are given by (consult tables10.1and13.2)

ztr T = t0 + t1,

z2tr T2 = t20 + t21 + 2t10,

z3tr T3 = t30 + t31 + 3t100+ 3t101,

z4tr T4 = t40 + t41 + 2t210+ 4t1000+ 4t1001+ 4t1011. (13.5)

For complete binary symbolic dynamicstp = znp for every binary prime cyclep;
if there is pruningtp = znp if p is admissible cycle andtp = 0 otherwise. Hence
tr Tn counts the number ofadmissible periodic pointsof periodn. In general, the
nth order trace (13.5) picks up contributions from all repeats of prime cycles, with
each cycle contributingnp periodic points, so the total number of periodic points
of periodn is given by

znNn = zntr Tn =
∑

np|n
npt

n/np
p =

∑

p

np

∞
∑

r=1

δn,npr t
r
p . (13.6)

Herem|n means thatm is a divisor ofn, and (takingz = 1) tp = 1 if the cycle is
admissible, andtp = 0 otherwise.

In order to get rid of the awkward divisibility constraintn = npr in the above
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CHAPTER 13. COUNTING 216

Table 13.1: The total numbers of periodic pointsNn of period n for binary symbolic
dynamics. The numbers of prime cycles contributing illustrates the preponderance of
long prime cycles of lengthn over the repeats of shorter cycles of lengthsnp, n = rnp.
Further listings of binary prime cycles are given in tables10.1and13.5.2. (L. Rondoni)

n Nn # of prime cycles of lengthnp

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

sum, we introduce the generating function for numbers of periodic points

∞
∑

n=1

znNn = tr
zT

1− zT
. (13.7)

Substituting (13.6) into the left hand side, and replacing the right hand side bythe
eigenvalue sum trTn =

∑

λn
α, we obtain our first example of a trace formula, the

topological trace formula

∑

α=0

zλα
1− zλα

=
∑

p

nptp

1− tp
. (13.8)

A trace formula relates the spectrum of eigenvalues of an operator - in this case the
transition matrix - to the spectrum of periodic orbits of thedynamical system. The
zn sum in (13.7) is a discrete version of the Laplace transform (see chapter16),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (16.10) and (16.23).We shall now use this result to compute the
spectral determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of thespectral determinantof an [M × M]
transition matrix

det (1− zT) =
M−1
∏

α=0

(1− zλα) . (13.9)
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CHAPTER 13. COUNTING 217

We could now proceed to diagonalizeT on a computer, and get this over with. It
pays, however, to dissect det (1−zT) with some care; understanding this computation
in detail will be the key to understanding the cycle expansion computations of
chapter18 for arbitrary dynamical averages. ForT a finite matrix, (13.9) is just
the characteristic equation forT. However, we shall be able to compute this object
even when the dimension ofT and other such operators goes to∞, and for that
reason we prefer to refer to (13.9) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix;they mostly
reduce to the statement that the determinant is a certain sumover all possible
permutation cycles composed of the traces trTk, in the spirit of the determinant–
trace relation (1.15):

[exercise 4.1]

det (1− zT) = exp(tr ln(1− zT)) = exp















−
∑

n=1

zn

n
tr Tn















= 1− ztr T − z2

2

(

(tr T)2 − tr (T2)
)

− . . . (13.10)

This is sometimes called a cumulant expansion. Formally, the right hand is an
infinite sum over powers ofzn. If T is an [M×M] finite matrix, then the characteristic
polynomial is at most of orderM. In that case the coefficients ofzn, n > M must
vanishexactly.

We now proceed to relate the determinant in (13.10) to the corresponding
Markov graph of chapter10: to this end we start by the usual algebra textbook
expression for a determinant as the sum of products of all permutations

det (1− zT) =
∑

{π}
(−1)π (1− zT)1,π1(1− zT)2,π2 · · · (1− zT)M,πM (13.11)

whereT is a [M×M] matrix, {π} denotes the set of permutations ofM symbols,
πk is whatk is permuted into by the permutationπ, and (−1)π = ±1 is the parity
of permutationπ. The right hand side of (13.11) yields a polynomial of orderM
in z: a contribution of ordern in z picks upM − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)π̃Tη1,π̃η1 · · ·Tηn,π̃ηn (13.12)

whereπ̃ is the permutation of the subset ofn distinct symbolsη1 . . . ηn indexingT
matrix elements. As in (13.5), we refer to any combinationtc = Tη1η2Tη2η3 · · ·Tηkη1,
for a given itineraryc = η1η2 · · · , ηk, as thelocal traceassociated with a closed
loop c on the Markov graph. Each term of form (13.12) may be factored in terms
of local tracestc1tc2 · · · tck, that is loops on the Markov graph. These loops are non-
intersecting, as each node may only be reached byone link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
singlelink, as eachη j must appear exactlyonceas a row and column index.
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So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the caseof loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appearon (13.12), that is,
only the diagonal elements ofT are picked up. We havek = n loops and an even
permutation ˜π so the sign is given by (−1)k, k being the number of loops. Now
take the case in which we havei single loops andj loops of lengthn = 2 j + i.
The parity of the permutation gives (−1) j and the first factor in (13.12) gives
(−1)n = (−1)2 j+i . So once again these terms combine into (−1)k, wherek = i + j
is the number of loops. We may summarize our findings as follows:

[exercise 13.3]

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions π of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

det (1− zT) =
f

∑

k=0

∑′

π

(−1)ktp1 · · · tpk (13.13)

Any self-intersecting loop isshadowedby a product of two loops that share the
intersection point. As both the long looptab and its shadowtatb in the case at hand
carry the same weightzna+nb, the cancellation is exact, and the loop expansion
(13.13) is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting loops{tp1, tp2, · · · tpf } as the
fundamental cycles. This is not a very good definition, as the Markov graphs
are not unique – the most we know is that for a given finite-grammar language,
there exist Markov graph(s) with the minimal number of loops. Regardless of how
cleverly a Markov graph is constructed, it is always true that for any finite Markov
graph the number of fundamental cyclesf is finite. If you know a better way to
define the “fundamental cycles,” let us know.

fast track:

sect. 13.4, p. 220

13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily grasped by
working through a few examples. The complete binary dynamics Markov graph
of figure10.11(b) is a little bit too simple, but let us start humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There are
only two non-intersecting loops, yielding

det (1− zT) = 1− t0 − t1 = 1− 2z. (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy eh = 2. As we know that there are Kn = 2n binary strings of length N, we
are not surprised by this result.
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Figure 13.1: The golden mean pruning rule Markov
graph, see also figure10.13.

1 0

Figure 13.2: (a) An incomplete Smale horseshoe:
the inner forward fold does not intersect the two
rightmost backward folds. (b) The primary pruned
region in the symbol square and the corresponding
forbidden binary blocks. (c) An incomplete Smale
horseshoe which illustrates (d) the monotonicity of
the pruning front: the thick line which delineates
the left border of the primary pruned region is
monotone on each half of the symbol square. The
backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are further
missing intersections, all obtained by the forward
and backward iterations of the primary pruned
region.

Similarly, for complete symbolic dynamics ofN symbols the Markov graph has
one node andN links, yielding

det (1− zT) = 1− Nz, (13.15)

whence the topological entropyh = ln N.

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topological

[exercise 13.4]
polynomial is given by

det (1− zT) = 1− t1 − t01 = 1− z− z2 . (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the
logarithm of the golden mean, h = ln 1+

√
5

2 .

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3 (d) are indicated in figure 13.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1− zT) = 1− t0 − t0011− t0001− t00011

+t0t0011+ t0011t0001. (13.17)

With tp = znp, where np is the length of the p-cycle, the smallest root of

0 = 1− z− 2z4 + z8 (13.18)

yields the topological entropy h = − ln z, z= 0.658779. . ., h = 0.417367. . ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
h = ln 2 = 0.693. . .

[exercise 13.9]
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Figure 13.3: Conversion of the pruning front
of figure 13.2 (d) into a finite Markov graph.
(a) Starting with the start node “.”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. Ends
of forbidden strings are marked with×. Label
all internal nodes by reading the bits connecting
“.”, the base of the tree, to the node. (b) Indicate
all admissible starting blocks by arrows. (c)
Drop recursively the leading bits in the admissible
blocks; if the truncated string corresponds to an
internal node in (a), connect them. (d) Delete
the transient, non-circulating nodes; all admissible
sequences are generated as walks on this finite
Markov graph. (e) Identify all distinct loops and
construct the determinant (13.17).

13.4 Topological zeta function

What happens if there is no finite-memory transition matrix,if the Markov graph
is infinite? If we are never sure that looking further into future will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by itscumulant
expansion (13.10)

[exercise 4.1]

det (1− zT) = 1−
∞
∑

n=1

ĉnzn . (13.19)

For finite dimensional matrices the expansion is a finite polynomial, and (13.19)
is an identity; however, for infinite dimensional operatorsthe cumulant expansion
coefficientsĉn definethe determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transition
matrix. In order to obtain an expression for the spectral determinant (13.9) in
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terms of cycles, substitute (13.6) into (13.19) and sum over the repeats of prime
cycles using ln(1− x) =

∑

r xr/r ,

det (1− zT) = exp

















−
∑

p

∞
∑

r=1

trp
r

















=
∏

p

(1− tp) , (13.20)

where for the topological entropy the weight assigned to a prime cyclep of length
np is tp = znp if the cycle is admissible, ortp = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazurzeta function, conventionally denoted
by

1/ζtop =
∏

p

(1− znp) = 1−
∑

n=1

ĉnzn . (13.21)

Counting cycles amounts to giving each admissible prime cycle p weighttp = znp

and expanding the Euler product (13.21) as a power series inz. As the precise
expression for coefficientsĉn in terms of local tracestp is more general than the
current application to counting, we shall postpone its derivation to chapter18.

The topological entropyh can now be determined from the leading zeroz =
e−h of the topological zeta function. For a finite [M×M] transition matrix, the
number of terms in the characteristic equation (13.13) is finite, and we refer to this
expansion as thetopological polynomialof order≤ M. The power of defining a
determinant by the cumulant expansion is that it works even when the partition is
infinite, M → ∞; an example is given in sect.13.6, and many more later on.

fast track:

sect. 13.6, p. 226

13.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (16.23) to the
problem of deriving the topological zeta functions for flows. The time-weighted
density of prime cycles of periodt is

Γ(t) =
∑

p

∑

r=1

Tp δ(t − rTp) . (13.22)

As in (16.22), a Laplace transform smooths the sum over Dirac delta spikes
and yields thetopological trace formula

∑

p

∑

r=1

Tp

∫ ∞

0+
dt e−st δ(t − rTp) =

∑

p

Tp

∞
∑

r=1

e−sTpr (13.23)
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and thetopological zeta functionfor flows:

1/ζtop(s) =
∏

p

(

1− e−sTp
)

, (13.24)

related to the trace formula by

∑

p

Tp

∞
∑

r=1

e−sTpr = − ∂
∂s

ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(13.21) for maps; its leading zeros= −h yields the topological entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to topological
lengthn, so it is handy to know their exact number.

13.5.1 Counting periodic points

Nn, the number of periodic points of periodn can be computed from (13.19) and
(13.7) as a logarithmic derivative of the topological zeta function

∑

n=1

Nnzn = tr

(

−z
d
dz

ln(1− zT)

)

= −z
d
dz

ln det (1− zT)

=
−z d

dz1/ζtop

1/ζtop
. (13.25)

We see that the trace formula (13.8) diverges atz→ e−h, as the denominator has
a simple zero there.

Example 13.5 Complete N-ary dynamics: As a check of formula (13.19) in the
finite grammar context, consider the complete N-ary dynamics (10.3) for which the
number of periodic points of period n is simply tr Tn

c = Nn. Substituting

∞
∑

n=1

zn

n
tr Tn

c =

∞
∑

n=1

(zN)n

n
= ln(1− zN) ,

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

∑

n=1

Nnzn =
Nz

1− Nz
.
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3 (e).
Substituting (13.18) we obtain

∑

n=1

Nnzn =
z+ 8z4 − 8z8

1− z− 2z4 + z8
. (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of Nn; it actually yields the exact and not entirely trivial recursion relation for the
numbers of periodic points: N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, 8, and
Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number ofprimecyclesMn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findingMn is classical in combinatorics
(counting necklaces made out ofn beads out ofN different kinds) and is easily
solved. There areNn possible distinct strings of lengthn composed ofN letters.
TheseNn strings include allMd primed-cycles whose periodd equals or divides
n. A prime cycle is a non-repeating symbol string: for example, p = 011= 101=
110 = . . .011011. . . is prime, but0101 = 010101. . . = 01 is not. A primed-
cycle contributesd strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of lengthn
is therefore related to the number of prime cycles by

Nn =
∑

d|n
dMd , (13.27)

whereNn equals trTn. The number of prime cycles can be computed recursively

Mn =
1
n

















Nn −
d<n
∑

d|n
dMd

















,

or by theMöbius inversion formula
[exercise 13.10]

Mn = n−1
∑

d|n
µ

(n
d

)

Nd . (13.28)

where the Möbius functionµ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to length 10 for 2-, 3- and4-letter
complete symbolic dynamics in table13.5.2. The number ofprimecycles follows
by Möbius inversion (13.28).

[exercise 13.11]
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Table 13.2: Number of prime cycles for various alphabets and grammars upto length 10.
The first column gives the cycle length, the second the formula (13.28) for the number
of prime cycles for completeN-symbol dynamics, columns three through five give the
numbers forN = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

Example 13.7 Counting N-disk periodic points: A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = tr Tn.
The pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the
number of the N-disk periodic points is

Nn = tr Tn
N−disk = (N − 1)n + (−1)n(N − 1) (13.29)

(here Tc is the complete symbolic dynamics transition matrix (10.3)). For the N-disk
pruned case (13.29) Möbius inversion (13.28) yields

MN−disk
n =

1
n

∑

d|n
µ

(n
d

)

(N − 1)d +
N − 1

n

∑

d|n
µ

(n
d

)

(−1)d

= M(N−1)
n for n > 2 . (13.30)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of period 2 is

N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of length 2; for lengths

n > 2, the number of prime cycles is the same as for the complete (N−1)-ary dynamics
of table 13.5.2.

Example 13.8 Pruning individual cycles: Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the binary
1- and 2-cycles (1− zt0)(1− zt1)(1− z2t01) and multiply with the correct 3-disk 2-cycles
(1− z2t12)(1− z2t13)(1− z2t23): [exercise 13.14]

[exercise 13.15]
1/ζ3−disk = (1− 2z)

(1− z2)3

(1− z)2(1− z2)

= (1− 2z)(1+ z)2 = 1− 3z2 − 2z3 . (13.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (19.25).
As we shall see in chapter 19, symmetries lead to factorizations of topological polynomials
and topological zeta functions.
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Table 13.3: List of the 3-disk prime cycles up to length 10. Heren is the cycle length,
Mn the number of prime cycles,Nn the number of periodic points andSn the number
of distinct prime cycles under theC3v symmetry (see chapter19 for further details).
Column 3 also indicates the splitting ofNn into contributions from orbits of lengths that
divide n. The prefactors in the fifth column indicate the degeneracymp of the cycle; for
example, 3·12 stands for the three prime cycles12, 13 and23 related by 2π/3 rotations.
Among symmetry related cycles, a representative ˆp which is lexically lowest was chosen.
The cycles of length 9 grouped by parenthesis are related by time reversal symmetry, but
not by any otherC3v transformation.

n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213+ 3·121323
7 18 126=18·7 3 6·1212123+ 6·1212313+ 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213+ 3·12121313+ 6·12121323

+ 6·12123123+ 6·12123213+ 3·12132123
9 56 510=2·3+56·9 10 6·121212123+ 6·(121212313+ 121212323)

+ 6·(121213123+ 121213213)+ 6·121231323
+ 6·(121231213+ 121232123)+ 2·121232313
+ 6·121321323

10 99 1022 18

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaning of the symbols
is the same as in table13.5.2. Orbits related by time reversal symmetry (but no other
symmetry) already appear at cycle length 5. List of the cycles of length 7 and 8 has been
omitted.

n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12+ 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213+ 4·1214+ 2·1234+ 4·1243
5 48 240=48·5 6 8·(12123+ 12124)+ 8·12313

+ 8·(12134+ 12143)+ 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213+ 8·121214+ 8·121234

+ 8·121243+ 8·121313+ 8·121314
+ 4·121323+ 8·(121324+ 121423)
+ 4·121343+ 8·121424+ 4·121434
+ 8·123124+ 8·123134+ 4·123143
+ 4·124213+ 8·124243

7 312 2184 39
8 810 6564 108
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Example 13.9 Alphabet {a, cbk; b}: (continuation of exercise 13.16) In the cycle
[exercise 13.16]

counting case, the dynamics in terms of a → z, cbk → z
1−z is a complete binary

dynamics with the explicit fixed point factor (1− tb) = (1− z):

1/ζtop = (1− z)
(

1− z− z
1− z

)

= 1− 3z+ z2 .

[exercise 13.19]

13.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far aswe
know - there is no proof) has an infinite partition, or an infinity of longer and
longer pruning rules. Take the 1-d quadratic map

f (x) = Ax(1− x)

with A = 3.8. It is easy to check numerically that the itinerary or the “kneading
sequence” of the critical pointx = 1/2 is

K = 1011011110110111101011110111110. . .

where the symbolic dynamics is defined by the partition of figure 10.6. How this
kneading sequence is converted into a series of pruning rules is a dark art.For
the moment it suffices to state the result, to give you a feeling for what a “typical”
infinite partition topological zeta function looks like. Approximating the dynamics
by a Markov graph corresponding to a repeller of the period 29attractive cycle
close to theA = 3.8 strange attractor yields a Markov graph with 29 nodes and
the characteristic polynomial

1/ζ(29)
top = 1− z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11− z12− z13+ z14− z15+ z16− z17 − z18+ z19+ z20

−z21+ z22− z23+ z24+ z25− z26+ z27 − z28 . (13.32)

The smallest real root of this approximate topological zetafunction is
[exercise 13.21]

z= 0.62616120. . . (13.33)

Constructing finite Markov graphs of increasing length corresponding toA→ 3.8
we find polynomials with better and better estimates for the topological entropy.
For the closest stable period 90 orbit we obtain our best estimate of the topological
entropy of the repeller:
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Figure 13.4: The logarithm of the difference
between the leading zero of the finite polynomial
approximations to topological zeta function and our
best estimate, as a function of the length for the
quadratic mapA = 3.8.

Figure 13.5: The 90 zeroes of the characteristic
polynomial for the quadratic mapA = 3.8
approximated by symbolic strings up to length 90.
(from ref. [8])

h = − ln 0.62616130424685. . . = 0.46814726655867. . . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (13.34), plotted as a function of the
length of the stable periodic orbit. The error of the estimate (13.33) is expected
to be of orderz29 ≈ e−14 because going from length 28 to a longer truncation
yields typically combinations of loops with 29 and more nodes giving terms±z29

and of higher order in the polynomial. Hence the convergenceis exponential,
with exponent of−0.47 = −h, the topological entropy itself. In figure13.5
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin.
Most of the other zeroes are close to the unit circle; we conclude that for infinite
Markov partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeedλ1/λ0 = 1/eh = e−h.

13.7 Shadowing

The topological zeta function is a pretty function, but the infinite product (13.20)
should make you pause. For finite transfer matrices the left hand side is a determinant
of a finite matrix, therefore a finite polynomial; so why is theright hand side an
infinite product over the infinitely many prime periodic orbits of all periods?

The way in which this infinite product rearranges itself intoa finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (18.7) of chapter18; all cycles beyond the fundamentalt0
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andt1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we
are counting cycles as we do here, or if the dynamics is piecewise linear, as in
exercise17.3. As we have already argued in sect.1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combinations
almost cancel, and the spectral determinant is dominated by the fundamental
cycles from (13.13), with longer cycles contributing only small “curvature” corrections.

These exact or nearly exact cancelations depend on the flow being smooth
and the symbolic dynamics being a subshift of finite type. If the dynamics
requires infinite Markov partition with pruning rules for longer and longer blocks,
most of the shadowing combinations still cancel, but the fewcorresponding to the
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant as in figure13.5.

One striking aspect of the pruned cycle expansion (13.32) compared to the
trace formulas such as (13.7) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergencee−h, in
the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (13.19) increases theanalyticity domain:
the pole in the trace (13.8) at z= e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

The very sensitive dependence of spectral determinants on whether the symbolic
dynamics is or is not a subshift of finite type is the bad news that we should
announce already now. If the system is generic and not structurally stable (see
sect.11.3), a smooth parameter variation is in no sense a smooth variation of
topological dynamics - infinities of periodic orbits are created or destroyed, Markov
graphs go from being finite to infinite and back. That will imply that the global
averages that we intend to compute are generically nowhere differentiable functions
of the system parameters, and averaging over families of dynamical systems can
be a highly nontrivial enterprise; a simple illustration isthe parameter dependence
of the diffusion constant computed in a remark in chapter24.

You might well ask: What is wrong with computing the entropy from (13.1)?
Does all this theory buy us anything? An answer: If we countKn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure10.13, or
the cycle expansion of (13.26) - and the finite estimates ofhn = ln Kn/n converge
nonuniformly toh, and on top of that with a slow rate of convergence,|h− hn| ≈
O(1/n) as in (13.4). The determinant (13.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yields theasymptotic value ofh
with no need for any finiten extrapolations.

So, the main lesson of learning how to count well, a lesson that will be
affirmed over and over, is that while the trace formulas are a conceptually essential
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step in deriving and understanding periodic orbit theory, the spectral determin-
ant is the right object to use in actual computations. Instead of resumming all
of the exponentially many periodic points required by traceformulas at each
level of truncation, spectral determinants incorporate only the small incremental
corrections to what is already known - and that makes them more convergent and
economical to use.

Résum é

What have we accomplished? We have related the number of topologically distinct
paths from “this region” to “that region” in a chaotic systemto the leading eigenvalue
of the transition matrixT. The eigenspectrum ofT is given by a certain sum over
traces trTn, and in this way the periodic orbit theory has entered the arena, already
at the level of the topological dynamics, the crudest description of dynamics.

The main result of this chapter is the cycle expansion (13.21) of the topologi-
cal zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1−
∑

k=1

ĉkz
k .

For subshifts of finite type, the transition matrix is finite,and the topological zeta
function is a finite polynomial evaluated by the loop expansion (13.13) of det (1−
zT). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropyh is given by the smallest zeroz = e−h. This
expression for the entropy isexact; in contrast to the definition (13.1), non→ ∞
extrapolations of lnKn/n are required.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to theproblem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter16, a weighted generalization of the topological
zeta function.

Contrary to claims one sometimes encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules,or the “algorithmic
complexity,” as illustrated by sect.13.6, and figure13.5in particular.

Commentary

Remark 13.1 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of the
dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat applies
to other entropies.In order to obtain proper invariants oneneeds to evaluate a supremum
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over all possible partitions. The key mathematical point that eliminates the need of such
search is the existence ofgenerators, i.e., partitions that under dynamics are able to probe
the whole state space on arbitrarily small scales: more precisely a generator is a finite
partitionΩ = ω1 . . . ωN, with the following property: takeM the subalgebra of the
state space generated byΩ, and consider the partition built upon all possible intersections
of setsφk(βi), whereφ is dynamical evolution,βi is an element ofM and k takes all
possible integer values (positive as well as negative), then the closure of such a partition
coincides with the algebra of all measurable sets. For a thorough (and readable) discussion
of generators and how they allow a computation of the Kolmogorov entropy, see ref. [1].

Remark 13.2 Perron-Frobenius matrices. For a proof of Perron theorem on the
leading eigenvalue see ref. [22]. Sect. A4.1 of ref. [2] offers a clear discussion of the
spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks offer derivations of the loop
expansions of characteristic polynomials for transition matrices and their Markov graphs,
see for example refs. [3, 4, 5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition matrixT
(in the infinite partition limit (13.19)) is not trace class.Still the trace is well defined in the
n→ ∞ limit.

Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function for
the Frobenius map [8], Artin and Mazur [12] introduced the zeta function (13.21) that
counts periodic points for diffeomorphisms (see also ref. [9] for their evaluation for maps
of the interval). Smale [10] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheimer [11] and Manning [12]. See remark17.4
on page296for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect.18.5we will introduce an
alternative way of hierarchically organizing cumulant expansions, in which the order is
dictated by stability rather than cycle length: such a procedure may be better suited to
perform computations when the symbolic dynamics is not wellunderstood.

Exercises

13.1. A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-

disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition
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matrix results in two coupled linear difference
equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate trTn to
tr Tn−1 + . . ..)

b) Solve the above difference equation and obtain the
number of periodic orbits of lengthn. Compare
with table13.5.2.

c) Find the eigenvalues of the transition matrixT for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics{0, 1}.

13.2. Sum of Ai j is like a trace. Let A be a matrix with
eigenvaluesλk. Show that

Γn =
∑

i, j

[An] i j =
∑

k

ckλ
n
k .

(a) Use this to show that ln|tr An| and ln|Γn| have the
same asymptotic behavior asn → ∞, i.e., their
ratio converges to one.

(b) Do eigenvaluesλk need to be distinct,λk , λl for
k , l?

13.3. Loop expansions. Prove by induction the sign rule in
the determinant expansion (13.13):

det (1− zT) =
∑

k≥0

∑

p1+···+pk

(−1)ktp1tp2 · · · tpk .

13.4. Transition matrix and cycle counting. Suppose you
are given the Markov graph



0 1a

b

c
This diagram can be encoded by a matrixT, where the
entryTi j means that there is a link connecting nodei to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given the weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[

a b
c 0

]

.

b) Enumerate all the walks of length three on the
Markov graph. Now computeT3 and look at the
entries. Is there any relation between the terms in
T3 and all the walks?

c) Show thatTn
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

d) Try to estimate the numberN(n) of walks of length
n for this simple Markov graph.

e) The topological entropyh measures the rate of
exponential growth of the total number of walks
N(n) as a function ofn. What is the topological
entropy for this Markov graph?

13.5. 3-disk prime cycle counting. A prime cycle p
of lengthnp is a single traversal of the orbit; its label
is a non-repeating symbol string ofnp symbols. For
example,12 is prime, but2121 is not, since it is21 =
12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9,· · · prime
cycles of length 2, 3, 4, 5, 6,· · ·.

13.6. “Golden mean” pruned map. Continuation of
exercise10.6: Show that the total number of periodic
orbits of lengthn for the “golden mean” tent map is

(1+
√

5)n + (1−
√

5)n

2n
.

For continuation, see exercise17.2. See also
exercise13.8.

13.7. Alphabet {0,1}, prune 00 . The Markov diagram
figure 10.13 (b) implements this pruning rule. The
pruning rule implies that “0” must always be bracketed
by “1”s; in terms of a new symbol 2= 10, the
dynamics becomes unrestricted symbolic dynamics with
with binary alphabet{1,2}. The cycle expansion (13.13)
becomes

1/ζ = (1− t1)(1− t2)(1− t12)(1− t112) . . .(13.35)

= 1− t1 − t2 − (t12 − t1t2)

−(t112− t12t1) − (t122− t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1− t1 − t10 − (t110− t1t10)

−(t1110− t110t1) − (t11010− t110t10) . . .(13.36)

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For
unimodal maps this symbolic dynamics is realized by
the tent map of exercise13.6.

13.8. A unimodal map example. Consider a unimodal
map, this Figure (a):
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Figure: (a) A unimodal map for which the critical point
maps into the right hand fixed point in three iterations,
and (b) the corresponding Markov graph (K.T. Hansen).
for which the critical point maps into the right hand

fixed point in three iterations,S+ = 1001. Show that
the admissible itineraries are generated by the Markov
graph of the Figure (b).

(Kai T. Hansen)

13.9. Glitches in shadowing.∗∗ Note that the combination
t00011 minus the “shadow”t0t0011 in (13.17) cancels
exactly, and does not contribute to the topological zeta
function (13.18). Are you able to construct a smaller
Markov graph than figure13.3(e)?

13.10. Whence Möbius function? To understand where the
Möbius function comes from consider the function

f (n) =
∑

d|n
g(d) (13.37)

whered|n stands for sum over all divisorsd of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑

d|n
µ(n/d) f (d) (13.38)

13.11. Counting prime binary cycles. In order to get
comfortable with Möbius inversion reproduce the results
of the second column of table13.5.2.

Write a program that determines the number of prime
cycles of lengthn. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

13.12. Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (10.6)
with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
t0 for each 0, and factort1 for each 1 in its symbol string.
Prove that the transition matrix traces (13.5) collapse to
tr(Tk) = (t0 + t1)k, and 1/ζ is simply

∏

p

(

1− tp

)

= 1− t0 − t1 (13.39)

Substituting (13.39) into the identity

∏

p

(

1+ tp

)

=
∏

p

1− tp
2

1− tp

we obtain

∏

p

(

1+ tp

)

=
1− t20 − t21
1− t0 − t1

= 1+ t0 + t1 +
2t0t1

1− t0 − t1
= 1+ t0 + t1

+

∞
∑

n=2

n−1
∑

k=1

2

(

n− 2
k− 1

)

tk0tn−k
1 .

Hence forn ≥ 2 the number of terms in the cumulant
expansion withk 0’s and n − k 1’s in their symbol
sequences is 2

(

n−2
k−1

)

.

In order to count the number of prime cycles in each
such subset we denote withMn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n− 1 for n ≥ 2) the number
of prime n-cycles whose labels containk zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n− 1

nMn,k =
∑

m
∣

∣

∣

n
k

µ(m)

(

n/m
k/m

)

where the sum is over allm which divide bothn andk.
(Continued as exercise18.7.)

13.13. Logarithmic periodicity of ln Nn
∗. Plot lnNn − nh

for a system with a nontrivial finite Markov graph. Do
you see any periodicity? If yes, why?

13.14. 4-disk pinball topological zeta function. Show that
the 4-disk pinball topological zeta function (the pruning
affects only the fixed points and the 2-cycles) is given by

1/ζ4−disk
top = (1− 3z)

(1− z2)6

(1− z)3(1− z2)3

= (1− 3z)(1+ z)3

= 1− 6z2 − 8z3 − 3z4 . (13.40)

13.15. N-disk pinball topological zeta function. Show
that for anN-disk pinball, the topological zeta function
is given by

1/ζN−disk
top = (1− (N − 1)z) ×

(1− z2)N(N−1)/2

(1− z)N−1(1− z2)(N−1)(N−2)/2

= (1− (N − 1)z) (1+ z)N−1 .(13.41)

The topological zeta function has a rootz−1 = N − 1,
as we already know it should from (13.29) or (13.15).
We shall see in sect.19.4that the other roots reflect the
symmetry factorizations of zeta functions.

13.16. Alphabet {a, b, c}, prune ab . The pruning rule
implies that any string of “b”s must be preceeded by a
“c”; so one possible alphabet is{a, cbk; b}, k=0,1,2. . ..
As the rule does not prune the fixed pointb, it is
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explicitly included in the list. The cycle expansion
(13.13) becomes

1/ζ = (1− ta)(1− tb)(1− tc) ×
(1− tcb)(1− tac)(1− tcbb) . . .

= 1− ta − tb − tc + tatb − (tcb− tctb)

−(tac− tatc) − (tcbb− tcbtb) . . .

The effect of the ab pruning is essentially to unbalance
the 2 cycle curvaturetab−tatb; the remainder of the cycle
expansion retains the curvature form.

13.17. Alphabet {0,1}, prune n repeats of “0” 000. . .00 .

This is equivalent to then symbol alphabet{1, 2,
. . ., n} unrestricted symbolic dynamics, with symbols
corresponding to the possible 10. . .00 block lengths:
2=10, 3=100, . . ., n=100. . .00. The cycle expansion
(13.13) becomes

1/ζ = 1−t1−t2 . . .−tn−(t12−t1t2) . . .−(t1n−t1tn) . . . .(13.42)

13.18. Alphabet {0,1}, prune 1000 , 00100, 01100.

Show that the topological zeta function is given by

1/ζ = (1− t0)(1− t1 − t2 − t23− t113) (13.43)

with the unrestricted 4-letter alphabet{1, 2, 23, 113}.
Here 2, 3, refer to 10, 100 respectively, as in
exercise13.17.

13.19. Alphabet {0,1}, prune 1000 , 00100, 01100,
10011. The first three pruning rules were

incorporated in the preceeding exercise.

(a) Show that the last pruning rule10011 leads (in a
way similar to exercise13.18) to the alphabet{21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23+ t1t23− t2113)(13.44)

Note that this says that 1, 23, 2, 2113 are the
fundamental cycles; not all cycles up to length 7 are
needed, only 2113.

(b) Show that the topological zeta function is

1/ζtop = (1− z)(1− z− z2 − z5 + z6 − z7) (13.45)

and check that it yields the exact value of the entropy
h = 0.522737642. . ..

13.20. Topological zeta function for alphabet {0,1}, prune
1000 , 00100, 01100. (continuation of

exercise11.9) Show that topological zeta function is

1/ζ = (1− t0)(1− t1 − t2 − t23− t113) (13.46)

for unrestricted 4-letter alphabet{1, 2, 23, 113}.

13.21. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to theinfinite alphabet{1, 2, 3, 4, . . .}
unrestricted symbolic dynamics. The prime cycles
are labeled by all non-repeating sequences of integers,
ordered lexically:tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m> 0, . . . (see sect.23.3). Now the number
of fundamental cycles is infinite as well:

1/ζ = 1−
∑

n>0

tn −
∑

n>m>0

(tmn− tntm)

−
∑

n>m>0

(tmmn− tmtmn)

−
∑

n>m>0

(tmnn− tmntn) (13.47)

−
∑

r>n>m>0

(tmnr + tmrn− tmntr

− tmrtn − tmtnr + tmtntr ) · · · (13.48)

As shown in table23.3, this grammar plays an important
role in description of fixed points of marginal stability.
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