Chapter 13

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15

the easiest problem in theory of chaotic systems: cycletazyinThis is

the simplest illustration of the raison d’etre of periodibibtheory; we
shall develop a duality transformation that reldtesal information - in this case
the next admissible symbol in a symbol sequenceglabal averages, in this case
the mean rate of growth of the number of admissible itinegviith increasing
itinerary length. We shall transform the topological dymesrof chapterl0 into
a multiplicative operation by means of transition matridésrkov graphs, and
show that thenth power of a transition matrix counts all itineraries ofdémn.
The asymptotic growth rate of the number of admissible itiries is therefore
given by the leading eigenvalue of the transition matrig; lgading eigenvalue is
in turn given by the leading zero of the characteristic deteant of the transition
matrix, which is - in this context - called thiepological zeta functionFor flows
with finite Markov graphs this determinant is a finite polynahwhich can be
read df the Markov graph.

WE ARE Now in a position to apply the periodic orbit theory to the firstian

The method goes well beyond the problem at hand, and formsotteeof the
entire treatise, making tangible a rather abstract notfdapectral determinants”
yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectorimsbtbs with every
iterate: there ar&k, = 3 - 2" distinct itineraries of lengtn. If disks are too
close and some part of trajectories is pruned, this is only@wer bound and
explicit formulas might be hard to discover, but we still imigpe able to establish
a lower exponential bound of the foriy, > Ceé™. Bounded exponentially by
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CHAPTER 13. COUNTING 213

3¢""2 > K, > CéM the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by ttawoological entropy

h= lim SinK, . (13.1)

n—oo N

We shall now relate this quantity to the spectrum of the items matrix, with
the growth rate of the number of topologically distinct étpries given by the
leading eigenvalue of the transition matrix.

The transition matrix elemen;; € {0,1} in (10.2 indicates whether the
transition from the starting partitiof into partitioni in one step is allowed or

not, and thei( j) element of the transition matrix iteratedimes .
[exercise 13.1]

(T = }S Tk, Tiko - - T s
Ki.K2,....Kn-1

receives a contribution 1 from every admissible sequen¢ensitions, soT");;
is the number of admissiblesymbol itineraries starting withand ending with.

Example 13.1 3-disk itinerary counting.
The (T?)13 = 1 element of T2 for the 3-disk transition matrix (10.5)

0 1 1y 2 1 1
[101]{121} (13.2)
110 11 2

corresponds to 3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)33 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itinerariesrofymbols is

KH:Z(T”)ij:(l,l,...,l)T” - (13.3)
ij :
1

We can also count the number of prime cycles and pruned pernpmints,
but in order not to break up the flow of the main argument, wegatle these
pretty results to sect43.5.2and13.7. Recommended reading if you ever have to
compute lots of cycles.

The matrix T has non-negative integer entries. A mathkis said to be
Perron-Frobeniusf some powerk of M has strictly positive entriesMK),s > 0.
In the case of the transition matrix this means that every partition eventually
reaches all of the partitions, i.e., the partition is dynzatty transitive or indecomposable,
as assumed in2(2). The notion oftransitivity is crucial in ergodic theory: a
mapping is transitive if it has a dense orbit. This notionrikerited by the
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CHAPTER 13. COUNTING 214

shift operation once we introduce a symbolic dynamics. dt ik not the case,
state space decomposes into disconnected pieces, eaclcbfaah be analyzed
separately by a separate indecomposable Markov graph. eHemstffices to
restrict our considerations to transition matrices of ®effrobenius type.

A finite [NxN] matrix T has eigenvalueby, = 1,¢, and (right) eigenvectors
{eo, 1, +,om-1}. Expressing the initial vector inlB.3 in this basis (which
might be incompleteM < N),

1
. 1 . N-1 N-1
T =T Z ba‘pa = Z ba/la’pa s
:'L a=0 a=0

and contracting witl§1,1,...,1), we obtain

N-1
Ky = Z Codl .
a=0
[exercise 13.2]

The constantg, depend on the choice of initial and final partitions: In this
example we are sandwichifid' between the vectdrl, 1, ..., 1) and its transpose,
but any other pair of vectors would do, as long as they are ribbgonal to the
leading eigenvectapg. In a experiment the vectdd, 1, ..., 1) would be replaced
by a description of the initial state,and the right vectoulgdadescribe the measure
time n later.

Perron theorem states that a Perron-Frobenius matrix hamd@egenerate
positive real eigenvalugy > 1 (with a positive eigenvector) which exceeds the
moduli of all other eigenvalues. Thereforerasicreases, the sum is dominated
by the leading eigenvalue of the transition matrix,> |Red,|,a =1,2,---,N-1,
and the topological entropy.8.]) is given by

1 1\
lim ﬁlnco/lg[1+&( 1) +]

>
Il

n—oo Co /l_o
. [In 1cy (A1)"
In g + lim [—C°+__1(_1) +]
n—oo n N Co /10
In Ao. (13.4)

What have we learned? The transition mafriis a one-steghort timeoperator,
advancing the trajectory from a partition to the next adihiespartition. Its
eigenvalues describe the rate of growth of the total numbé&agectories at the
asymptotic timesinstead of painstakingly countiri€y, Ko, Ks, . .. and estimating
(13.1 from a slope of a log-linear plot, we have tegacttopological entropy
if we can compute the leading eigenvalue of the transitiortrim&. This is
reminiscent of the way the free energy is computed from fesimmatrix for 1-
dimensional lattice models with finite range interactiadsstorically, it is analogy
with statistical mechanics that led to introduction of exmn operator methods
into the theory of chaotic systems.
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CHAPTER 13. COUNTING 215

13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of eExndty evaluating
the trace tT" = ), A7, or by evaluating the determinant det{ZT). We start by
evaluating the trace of transition matrices.

Consider arM-step memory transition matrix, like the 1-step memory gxiam
(10.13. The trace of the transition matrix counts the number diifi@ns that map
into themselves. In the binary case the trace picks up ontydwntributions on
the diagonalTo..00..0 + T1..1,1.-1, NO matter how much memory we assume. We
can even take infinite memoiM — oo, in which case the contributing partitions
are shrunk to the fixed points,Tr= T6,6 + Tﬂ. fexercise 10.7]

More generally, each closed walk througiboncatenated entries dfcontributes
to trT" a product of the matrix entries along the walk. Each step @ suwalk
shifts the symbolic string by one symbol; the trace ensurasthe walk closes
on a periodic stringc. Definet. to be thelocal trace the product of matrix
elements along a cycle each term being multiplied by a book keeping variable
z Z'tr T" is then the sum of; for all cycles of lengtm. For example, for an
[8%8] transition matrixTs;s,s; 555, Version of (0.13, or any refined partition
[2"x 2"] transition matrix,n arbitrarily large, the periodic poirt00 contributes
t100 = 2> Tron510 610001 Noo1100 10 2t T°. This product is manifestly cyclically
symmetric,tioo = to10 = too1, and so a prime cycl@ of length n, contributes
np times, once for each periodic point along its orbit.  For theaty labeled
non—wandering set the first few traces are given by (consble$10.1and13.2)

[exercise 10.7]

ztrT = to+tg,
ZuT? = 5+ + 2,
ZuT?® = 3+ + 3tio+ o1,
2T =+t + 25, + 4tio00 + Ataoo1 + Aio11. (13.5)

For complete binary symbolic dynamits= 2" for every binary prime cycle;

if there is pruningt, = z"™ if p is admissible cycle anty = 0 otherwise. Hence
tr T" counts the number @fdmissible periodic pointsf periodn. In general, the
nth order trace13.5 picks up contributions from all repeats of prime cycleghwi
each cycle contributing, periodic points, so the total number of periodic points
of periodn s given by

ZNg = 2T = 3 npty™ = 3 g > ety (13.6)
r=1

Npln p

Heremin means thamis a divisor ofn, and (takingz = 1) t, = 1 if the cycle is
admissible, andl, = 0 otherwise.

In order to get rid of the awkward divisibility constraint= npr in the above
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CHAPTER 13. COUNTING 216

Table 13.1: The total numbers of periodic points, of periodn for binary symbolic
dynamics. The numbers of prime cycles contributing illatgs the preponderance of
long prime cycles of length over the repeats of shorter cycles of lengtisn = rnp.
Further listings of binary prime cycles are given in tabll@sland13.5.2 (L. Rondoni)

n N, # of prime cycles of length,
1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56
10 1024 2 1 6 99

sum, we introduce the generating function for numbers abgder points

. zT
2Ny = t . 13.7
; s (13.7)

Substituting {3.6) into the left hand side, and replacing the right hand sidéhby

eigenvalue sum ff" = Y A, we obtain our first example of a trace formula, the
topological trace formula

; 1?;(1 = Zpl 1n'°tp (13.8)

_tp'

A trace formula relates the spectrum of eigenvalues of aredpe- in this case the
transition matrix - to the spectrum of periodic orbits of tymamical system. The
Z" sum in (L3.7) is a discrete version of the Laplace transform (see chder

and the resolvent on the left hand side is the antecedeneahtre sophisticated

trace formulas 16.10 and (16.23.We shall now use this result to compute the
spectral determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of spectral determinamf an [M x M]
transition matrix

M-1

det(1-zT) = [ [ (1-2L) . (13.9)
a=0
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CHAPTER 13. COUNTING 217

We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{AT) with some care; understanding this computation
in detail will be the key to understanding the cycle expamsiomputations of
chapterl8 for arbitrary dynamical averages. Fbra finite matrix, (3.9 is just

the characteristic equation fér However, we shall be able to compute this object
even when the dimension df and other such operators goesedo and for that
reason we prefer to refer ta3.9 loosely as the “spectral determinant.”

There are various definitions of the determinant of a mattirey mostly
reduce to the statement that the determinant is a certainosemall possible
permutation cycles composed of the traceg trin the spirit of the determinant—

trace relation1.15): [exercise 4.1]

det (1- zT)

exp(tr In(1-zT)) = exp(— %trT”)
n=1

1-ztrT - § ((r T)? - tr (1)) - ... (13.10)

This is sometimes called a cumulant expansion. Formaley,rigiht hand is an
infinite sum over powers af'. If T is an [MxM] finite matrix, then the characteristic
polynomial is at most of orde. In that case the cdiécients ofZ?, n > M must
vanishexactly

We now proceed to relate the determinant 113.(0 to the corresponding
Markov graph of chaptetO: to this end we start by the usual algebra textbook
expression for a determinant as the sum of products of athpitions

det(1-2T) = > (-1Y (1= ZN1n(1 - 2Nom, - (L= 2Dwm,  (13.12)
{m}

whereT is a [Mx M] matrix, {x} denotes the set of permutationsMfsymbols,
nx is whatk is permuted into by the permutatian and 1) = +1 is the parity
of permutationr. The right hand side ofl3.11) yields a polynomial of ordeMm

in z a contribution of orden in z picks upM — n unit factors along the diagonal,
the remaining matrix elements yielding

"1 Tz, - Ty (13.12)

n7nn

whereris the permutation of the subsetrmflistinct symbolsy; ... 7, indexingT
matrix elements. Asinl3.5, we refer to any combinatioy = T, Trons - -+ T

for a given itineraryc = n1m2 - - -, 1k, as thelocal trace associated with a closed
loop ¢ on the Markov graph. Each term of forB(12 may be factored in terms

of local traces,t, - - - tg,, that is loops on the Markov graph. These loops are non-
intersecting, as each node may only be reachednaglink, and they are indeed
loops, as if a node is reached by a link, it has to be the stppoint of another
singlelink, as eachy; must appear exactignceas a row and column index.
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CHAPTER 13. COUNTING 218

So the general structure is clear, a little more thinkingnky eequired to get
the sign of a generic contribution. We consider only the addeops of length
1 and 2, and leave to the reader the task of generalizing thet tey induction.
Consider first a term in which only loops of unit length appeai(13.129), that is,
only the diagonal elements @f are picked up. We have= nloops and an even
permutationz™so the sign is given by<1)¥, k being the number of loops. Now
take the case in which we haveingle loops and loops of lengthn = 2j + i.
The parity of the permutation gives—1)! and the first factor in13.19 gives
(-1)" = (-1)?*. So once again these terms combine inth){, wherek = i + |

is the number of loops. We may summarize our findings as fallow _
[exercise 13.3]

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions = of the graph into
products of non-intersecting loops, with each loop trace t, carrying
a minus sign:

f
det(1-2T) = 3 (-1t -1, (13.13)
k=0 m

Any self-intersecting loop ishadoweddy a product of two loops that share the
intersection point. As both the long lodg, and its shadowvsty, in the case at hand
carry the same weigtt=*™, the cancellation is exact, and the loop expansion
(13.13 is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting lodps, tp,,---tp,} as the
fundamental cycles This is not a very good definition, as the Markov graphs
are not unique — the most we know is that for a given finite-gramlanguage,
there exist Markov graph(s) with the minimal number of laoRegardless of how
cleverly a Markov graph is constructed, it is always true tbhaany finite Markov
graph the number of fundamental cycless finite. If you know a better way to
define the “fundamental cycles,” let us know.

fast track:
W sect. 13.4, p. 220
13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of tracesastreasily grasped by
working through a few examples. The complete binary dynarivarkov graph
of figure10.11(b) is a little bit too simple, but let us start humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There are
only two non-intersecting loops, yielding
det(1-zT)=1-tg—t; =1-2z. (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy € = 2. As we know that there are K, = 2" binary strings of length N, we
are not surprised by this result.

count - 13jun2008.tex



CHAPTER 13. COUNTING 219

Figure 13.1: The golden mean pruning rule Markov o

graph, see also figurk.13
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Figure 13.2:(a) An incomplete Smale horseshoe: mm-uuw ’P
the inner forward fold does not intersect the twc ‘m..‘,m,, i
rightmost backward folds. (b) The primary pruned

region in the symbol square and the correspondin

forbidden binary blocks. (c) An incomplete Smale

horseshoe which illustrates (d) the monotonicity o

the pruning front: the thick line which delineates 5
the left border of the primary pruned region is =
monotone on each half of the symbol square. Th
backward folding in figures (a) and (c) is only ra -
schematic - in invertible mappings there are furthe
missing intersections, all obtained by the forwarc
and backward iterations of the primary prunec
region.
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Similarly, for complete symbolic dynamics &f symbols the Markov graph has
one node and links, yielding

det(1-2zT) =1- Nz, (13.15)
whence the topological entrogy= In N.

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topolf)g(lca[

S ercise 13.4]
polynomial is given by

det(l-zN=1-t1 —-toy =1-2z- 2. (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the
logarithm of the golden mean, h = In 1+T‘/§

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3 (d) are indicated in figure 13.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det(1-2zT) = 1-to— toor1— tooo1— tooo11
+totoo11 + too11tooos - (13.17)
With t, = 2%, where ny is the length of the p-cycle, the smallest root of
0=1-z-22+7 (13.18)

yields the topological entropy h = —Inz, z= 0.658779..., h =0.417367.. ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift

h=In2 = 0.693... .
[exercise 13.9]
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Figure 13.3: Conversion of the pruning front
of figure 13.2 (d) into a finite Markov graph.
(a) Starting with the start node “.”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. Ends
of forbidden strings are marked witk. Label
all internal nodes by reading the bits connecting
“”, the base of the tree, to the node. (b) Indicate
all admissible starting blocks by arrows. (c)
Drop recursively the leading bits in the admissible
blocks; if the truncated string corresponds to ai_ -
internal node in (a), connect them. (d) Delete®.
the transient, non-circulating nodes; all admissibl
sequences are generated as walks on this fini
Markov graph. (e) Identify all distinct loops and
construct the determinant3.17).

13.4 Topological zeta function

What happens if there is no finite-memory transition maifithe Markov graph
is infinite? If we are never sure that looking further intoui will reveal no
further forbidden blocks? There is still a way to define thiedminant, and this
idea is central to the whole treatise: the determinant is tledined by itsumulant

expansion13.10 [exercise 4.1]

det(1-zT) = 1- Z &2 (13.19)
n=1

For finite dimensional matrices the expansion is a finite pofygial, and {3.19
is an identity; however, for infinite dimensional operattitrs cumulant expansion
codlicientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces forl@itrary transition
matrix. In order to obtain an expression for the spectratmeinant (3.9 in
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terms of cycles, substituté 8.6 into (13.19 and sum over the repeats of prime
cycles using In(t x) = 3, X' /r,

0 r
tp

det(1-zT) = exp[— > T] =[[a-1), (13.20)
p r=1 p

where for the topological entropy the weight assigned tarag@cyclep of length
np istp = Z™ if the cycle is admissible, dp = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazur zeta function, conventionally denoted

by

Yaop=| [1-2%)=1-) &2 (13.21)
p n=1

Counting cycles amounts to giving each admissible priméeqyeveightt, = z'»
and expanding the Euler produdt3(2]) as a power series in As the precise
expression for cdécientsc, in terms of local traces, is more general than the
current application to counting, we shall postpone itsvddion to chaptef.8.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finith[x M] transition matrix, the
number of terms in the characteristic equativ8. (3 is finite, and we refer to this
expansion as thmpological polynomiabf order< M. The power of defining a
determinant by the cumulant expansion is that it works evieanithe partition is
infinite, M — oo; an example is given in sect3.6 and many more later on.

fast track:
W sect. 13.6, p. 226
13.4.1 Topological zeta function for flows

,
J We now apply the method that we shall use in derivit§.23 to the
problem of deriving the topological zeta functions for flovilhe time-weighted
density of prime cycles of periods

T = > > Tpolt—rTp). (13.22)
p r=1

As in (16.229, a Laplace transform smooths the sum over Dirac delta spike
and yields thdopological trace formula

2.2 fow dtestot—rTp) = > Tp i e ST (13.23)
por=l ’ p r=1
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and thetopological zeta functiofor flows:

Yaop(s) = | |(1-€e7), (13.24)
p

related to the trace formula by

DTy e = _aﬁ In 1/Ztop(9) -
p r=1 S

This is the continuous time version of the discrete time kogical zeta function
(13.2]) for maps; its leading zer®= —hyields the topological entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute allegap to topological
lengthn, so it is handy to know their exact number.

13.5.1 Counting periodic points

Nn, the number of periodic points of periodcan be computed fromlg.19 and
(13.7) as a logarithmic derivative of the topological zeta fuouati

Z NnZ"
n=1

d d
tr (—zd—zln(l - zT)) = —zd—zln det (1-zT)

—Zdizl/ftop
= —— 13.25
1/&top ( )

We see that the trace formula3 9 diverges az — e ", as the denominator has
a simple zero there.

Example 13.5 Complete N-ary dynamics: As a check of formula (13.19) in the
finite grammar context, consider the complete N-ary dynamics (10.3) for which the
number of periodic points of period n is simply tr T{ = N". Substituting

=) Zn - [« (ZN)n -
ZﬁtrTQ = ZT =In(1-2zN),
n=1 n=1

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

Nz
Z NnZ" = 1-Nz
n=1
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3 (e).
Substituting (13.18) we obtain

z+ 82 -87
Zan”—l et (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of N,; it actually yields the exact and not entirely trivial recursion relation for the
numbers of periodic points: N; = N, = N3 =1, N, = 2n+ 1 forn = 4,5,6,7,8, and
Nn = Nn-1 + 2Np—4 — Nj_g forn > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our nej¢dtive is to evaluate
the number oprimecyclesM,, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findinlyl,, is classical in combinatorics
(counting necklaces made out mbeads out ofN different kinds) and is easily
solved. There ar&" possible distinct strings of lengthcomposed oN letters.
TheseN" strings include alMq prime d-cycles whose period equals or divides
n. A prime cycle is a non-repeating symbol string: for example 011=101=
110 = ...011011.. is prime, but0101 = 010101.. = 01 is not. A primed-
cycle contributesj strings to the sum of all p033|ble strings, one for each cycli
permutation. The total number of possible periodic symkglugnces of length

is therefore related to the number of prime cycles by

N, = Z dMg, (13.27)
din

whereN, equals tiT". The number of prime cycles can be computed recursively

d<n
[Nn Z dMy| ,

din

or by theMobius inversion formula

=t > ( ) (13.28)

din

[exercise 13.10]

where the Mobius functiom(1) = 1, u(n) = 0 if n has a squared factor, and
w(p1pz ... pe) = (1)K if all prime factors are dferent.

We list the number of prime cycles up to length 10 for 2-, 3- drletter
complete symbolic dynamics in takl&.5.2 The number oprimecycles follows
by Mobius inversion 13.28.

[exercise 13.11]
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Table 13.2: Number of prime cycles for various alphabets and grammats lgngth 10.
The first column gives the cycle length, the second the foan(L8.2§ for the number

of prime cycles for complet®&l-symbol dynamics, columns three through five give the
numbers folN = 2,3 and 4.

n Mn(N) Mn(2) Mn(3)  Mn(4)
1 N 2 3 4
2 N(N - 1)/2 1 3 6
3 N(N? - 1)/3 2 8 20
4 N2(N? - 1)/4 3 18 60
5 (N®>-N)/5 6 48 204
6 (N® = N3 - N?+ N)/6 9 116 670
7 (N" = N)/7 18 312 2340
8 N4(N* - 1)/8 30 810 8160
9 N3(N® - 1)/9 56 2184 29120
10 (N'°—N°®-N?+N)/10 99 5880 104754
}
Example 13.7 Counting N-disk periodic points: J A simple example of

pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn-disk = Tc — 1, so the
number of the N-disk periodic points is

Np = tr T i = (N = 1)+ (<1)"(N — 1) (13.29)

(here T is the complete symbolic dynamics transition matrix (10.3)). For the N-disk
pruned case (13.29) Mébius inversion (13.28) yields

RO R LI

dn din
MN-D for n> 2. (13.30)

There are no fixed points, MY~ = 0. The number of periodic points of period 2 is
N? — N, hence there are M;\“d'Sk = N(N — 1)/2 prime cycles of length 2; for lengths

n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 13.5.2.

.
Example 13.8 Pruning individual cycles: J Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the binary
1- and 2-cycles (1 — zto)(1 - zt,)(1 — Z’to1) and multiply with the correct 3-disk 2-cycles
(1-Zt2)(1 - Zt13)(1 - Zta):

[exercise 13.14]

o (1-2)3 [exercise 13.15]
1/{5-disk = (1 - Zz)m
= (1-29(1+2?=1-37-22. (13.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive itin (19.25).
As we shall see in chapter 19, symmetries lead to factorizations of topological polynomials
and topological zeta functions.
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Table 13.3: List of the 3-disk prime cycles up to length 10. Herés the cycle length,
My the number of prime cycles\, the number of periodic points ar}, the number
of distinct prime cycles under th€;, symmetry (see chapte for further details).
Column 3 also indicates the splitting b, into contributions from orbits of lengths that
divide n. The prefactors in the fifth column indicate the degeneragwf the cycle; for
example, 8.2 stands for the three prime cycl&, 13 and23 related by 2/3 rotations.
Among symmetry related cycles, a representagpivéhich is lexically lowest was chosen.
The cycles of length 9 grouped by parenthesis are relatemngyreversal symmetry, but
not by any othefs, transformation.

n M, N Sh mp-p

1 0 O 0

2 3 632 1 312

3 2 623 1 2123

4 3 1832+34 1 31213

5 6 3065 1 612123

6 9 66=32+2-3+96 2 6121213+3-121323

7 18 126187 3 61212123+6:1212313+ 6-1213123

8 30 25832+34+308 6 612121213+3-12121313+6:12121323
+6-12123123+ 6:12123213+ 3-12132123

9 56 516-2.3+569 10 6121212123 6-(121212313+ 121212323)
+ 6-(121213123- 121213213} 6-121231323
+6-(121231213+ 121232123) 2-:121232313
+6-:121321323

10 99 1022 18

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaninghaf $ymbols
is the same as in table3.5.2 Orbits related by time reversal symmetry (but no other
symmetry) already appear at cycle length 5. List of the yoldength 7 and 8 has been

omitted.

n M, N Sh mp-p

1 0 0 0

2 6 1262 2 412+ 213

3 8 2483 1 8123

4 18 84-6-2+184 4 81213+ 41214+ 2-1234+ 4.1243

5 48 2406-485 6 8(12123+ 12124)+ 812313
+8(12134+ 12143)+ 812413

6 116 7326-2+83+1166 17 8121213+ 8-121214+8-:121234
+ 8121243+ 8121313+ 8121314
+ 4121323+ 8(121324+ 121423)
+ 4121343+ 8121424+ 4121434
+ 8123124+ 8123134+ 4.123143
+ 4124213+ 8124243

7 312 2184 39

8 810 6564 108



CHAPTER 13. COUNTING 226

Example 13.9 Alphabet {a,cb‘; b}: (continuation of exerglse 13.16) In the g}(/grlceise 13.16]

counting case, the dynamics in terms of a — z, cbf — 15 Is a complete lgmary

dynamics with the explicit fixed point factor (1 — tp) = (1 - 2):

1/gtop=(1—z)(1—z—1%2)=1—3z+22.

[exercise 13.19]

13.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanovit)

,
J Now consider an example of a dynamical system which (as faveas
know - there is no proof) has an infinite partition, or an irtfindf longer and
longer pruning rules. Take thedlguadratic map

f(X) = AX(1-X)

with A = 3.8. It is easy to check numerically that the itinerary or thaé&ding
sequence” of the critical point=1/2 is

K =1011011110110111101011110111110

where the symbolic dynamics is defined by the partition ofrediD.6 How this
kneading sequence is converted into a series of pruning isla dark art.For
the moment it sfiices to state the result, to give you a feeling for what a “@gpic
infinite partition topological zeta function looks like. ppximating the dynamics
by a Markov graph corresponding to a repeller of the periogt&@ctive cycle
close to theA = 3.8 strange attractor yields a Markov graph with 29 nodes and
the characteristic polynomial

iy = 1-2-2+2-2-2+F-7+2-7-7°
+Z -2 A A AT A8 A9 O
AR -+ - (13.32)

The smallest real root of this approximate topological Zetetion is _
[exercise 13.21]

z=0.62616120.. (13.33)

Constructing finite Markov graphs of increasing length esponding tA — 3.8
we find polynomials with better and better estimates for tpological entropy.
For the closest stable period 90 orbit we obtain our beshesti of the topological
entropy of the repeller:
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approximated by symbolic strings up to length 9C ' "Relz) ’

(from ref. [3])

h=-1In0.62616130424685 . = 0.46814726655867. . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approxiomatito the
topological zeta function as a plot of the logarithm of th&edence between the
zero of a polynomial and our best estimale.34), plotted as a function of the
length of the stable periodic orbit. The error of the estan@B.33 is expected
to be of order?® ~ e 14 because going from length 28 to a longer truncation
yields typically combinations of loops with 29 and more redesing terms+z>°
and of higher order in the polynomial. Hence the convergaaaxponential,
with exponent of-0.47 = —h, the topological entropy itself. In figur&3.5
we plot the zeroes of the polynomial approximation to theotogical zeta func-
tion obtained by accounting for all forbidden strings ofddn 90 or less. The
leading zero giving the topological entropy is the pointselst to the origin.
Most of the other zeroes are close to the unit circle; we aalecthat for infinite
Markov partitions the topological zeta function has a uiritle as the radius of
convergence. The convergence is controlled by the ratih@fleading to the
next-to-leading eigenvalues, which is in this case indegdg = 1/€" = e M.

13.7 Shadowing

The topological zeta function is a pretty function, but thinite product {3.20
should make you pause. For finite transfer matrices thedeft iside is a determinant
of a finite matrix, therefore a finite polynomial; so why is thight hand side an
infinite product over the infinitely many prime periodic dgof all periods?

The way in which this infinite product rearranges itself iatfinite polynomial
is instructive, and crucial for all that follows. You caneddy take a peek at the
full cycle expansion 18.7) of chapterl8; all cycles beyond the fundamental
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andt; appear in the shadowing combinations such as

ls155 ~ tsyspsnlsmnsy -

For subshifts of finite type such shadowing combinationscebexactly if we

are counting cycles as we do here, or if the dynamics is piseelnear, as in
exercisel7.3 As we have already argued in sett5.4 for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shéidg combinations
almostcancel, and the spectral determinant is dominated by thdafaental
cycles from (L3.13, with longer cycles contributing only small “curvaturesrcections.

These exact or nearly exact cancelations depend on the flimg benooth
and the symbolic dynamics being a subshift of finite type. h# tynamics
requires infinite Markov partition with pruning rules fomiger and longer blocks,
most of the shadowing combinations still cancel, but thedewesponding to the
forbidden blocks do not, leading to a finite radius of conearg for the spectral
determinant as in figurg&3.5

One striking aspect of the pruned cycle expansib® 32 compared to the
trace formulas such a4 3.7) is that codicients are not growing exponentially -
indeed they all remain of order 1, so instead having a radiosnvergence™, in
the example at hand the topological zeta function has thecirnie as the radius
of convergence. In other words, exponentiating the spgutodlem from a trace
formula to a spectral determinant as IB(19 increases thanalyticity domain
the pole in the tracel@.9 atz = e is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

The very sensitive dependence of spectral determinanthether the symbolic
dynamics is or is not a subshift of finite type is the bad nevet tiee should
announce already now. If the system is generic and not atallt stable (see
sect.11.3, a smooth parameter variation is in no sense a smooth izariat
topological dynamics - infinities of periodic orbits areated or destroyed, Markov
graphs go from being finite to infinite and back. That will imphat the global
averages that we intend to compute are generically nowh&esahtiable functions
of the system parameters, and averaging over families ddrdical systems can
be a highly nontrivial enterprise; a simple illustratiothe parameter dependence
of the difusion constant computed in a remark in chagter

You might well ask: What is wrong with computing the entropgm (13.1)?
Does all this theory buy us anything? An answer: If we cdGnlievel by level, we
ignore the self-similarity of the pruned tree - examine earaple figurel0.13 or
the cycle expansion ofL.3.26 - and the finite estimates bf, = In K,,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenbe; h,| ~
O(1/n) asin (L3.4). The determinantl@3.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yieldsasgmptotic value oh
with no need for any finit& extrapolations.

So, the main lesson of learning how to count well, a lesson whkh be
affirmed over and over, is that while the trace formulas are agminelly essential
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step in deriving and understanding periodic orbit thedng $pectral determin-
ant is the right object to use in actual computations. Imsefaresumming all
of the exponentially many periodic points required by trémemulas at each
level of truncation, spectral determinants incorporatly ¢tme small incremental
corrections to what is already known - and that makes thene mamvergent and
economical to use.

Résum é

What have we accomplished? We have related the number dbtipally distinct
paths from “this region” to “that region” in a chaotic systémthe leading eigenvalue
of the transition matriX'. The eigenspectrum df is given by a certain sum over
traces tiT", and in this way the periodic orbit theory has entered thearalready

at the level of the topological dynamics, the crudest dpsori of dynamics.

The main result of this chapter is the cycle expansith4J) of the topologi-
cal zeta function (i.e., the spectral determinant of thediteon matrix):

1/¢top(2 = 1- Z &2
=]

For subshifts of finite type, the transition matrix is finiteyd the topological zeta
function is a finite polynomial evaluated by the loop expangil3.13 of det (1—
zT). For infinite grammars the topological zeta function is wiedi by its cycle
expansion. The topological entropyis given by the smallest zem= e ™. This
expression for the entropy exact in contrast to the definitionl@.1), non — oo
extrapolations of IiK,,/n are required.

Historically, these topological zeta functions were thapimation for applying
the transfer matrix methods of statistical mechanics t@tbblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chaptés, a weighted generalization of the topological
zeta function.

Contrary to claims one sometimes encounters in the litexratexponential
proliferation of trajectories” is not the problem; what limithe convergence of
cycle expansions is the proliferation of the grammar rutesthe “algorithmic
complexity,” as illustrated by sect3.6 and figurel3.5in particular.

Commentary

Remark 13.1 “Entropy” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead tovamiamt characterization of the
dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat applies
to other entropies.In order to obtain proper invariants weeds to evaluate a supremum
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over all possible partitions. The key mathematical poiat #liminates the need of such
search is the existence géneratorsi.e., partitions that under dynamics are able to probe
the whole state space on arbitrarily small scales: moreigaiyca generator is a finite
partition Q = w;...wN, with the following property: takeM the subalgebra of the
state space generated@yand consider the partition built upon all possible intetiems

of sets¢X(8;), where¢ is dynamical evolutiong; is an element ofM andk takes all
possible integer values (positive as well as negativej the closure of such a partition
coincides with the algebra of all measurable sets. For athgir (and readable) discussion
of generators and how they allow a computation of the Kolnnogentropy, see refl].

Remark 13.2 Perron-Frobenius matrices.  For a proof of Perron theorem on the
leading eigenvalue see reR7]. Sect. A4.1 of ref. ] offers a clear discussion of the
spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks ffer derivations of the loop
expansions of characteristic polynomials for transiticatmices and their Markov graphs,
see for example refs3[4, 5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition mafrix
(in the infinite partition limit (3.19) is nottrace class.Still the trace is well defined in the
n — oo limit.

Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil's zeta function for
the Frobenius map3], Artin and Mazur [L7] introduced the zeta functiori8.2]) that
counts periodic points for fieomorphisms (see also ref] for their evaluation for maps
of the interval). Smalel[(] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheimél pnd Manning 7. See remark 7.4
on page296for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect.18.5we will introduce an
alternative way of hierarchically organizing cumulant arpions, in which the order is
dictated by stability rather than cycle length: such a pdoce may be better suited to
perform computations when the symbolic dynamics is not wedlerstood.

Exercises

13.1. A transition matrix for 3-disk pinball. disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition

a) Draw the Markov graph corresponding to the 3-
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matrix results in two coupled linear ftierence
equations, - one for the diagonal and one for
the df diagonal elements. (Hint: relateTf to
trTt4.0)

b) Solve the above fference equation and obtain the
number of periodic orbits of length. Compare
with table13.5.2

¢) Find the eigenvalues of the transition matfFixor
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamicg), 1}.

13.2. Sum of Ajj is like a trace. Let A be a matrix with
eigenvaluegy. Show that

I'n= Z[An]ij = ZCk/lE.
i 3

(a) Use this to show that |tr A"| and In[[| have the
same asymptotic behavior as— oo, i.e., their
ratio converges to one.

13.6.

(b) Do eigenvaluedy need to be distinctly # A for
k#1?

13.7.

13.3. Loop expansions. Prove by induction the sign rule in
the determinant expansioh3.13:

det(1-2T) = > > (~1ftpty, -y,

k>0 pr+-+px

13.4. Transition matrix and cycle counting. Suppose you
are given the Markov graph
b

SSOWRO

[
This diagram can be encoded by a mafrixwhere the
entryT;; means that there is a link connecting nade

nodej. The value of the entry is the weight of the link.

a) Walks on the graph are given the weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a b

T=l¢co

b) Enumerate all the walks of length three on the
Markov graph. Now comput&® and look at the
entries. Is there any relation between the terms in
T2 and all the walks?

c) Show thafT}} is the number of walks from point
i to pointj in n steps. (Hint: one might use the
method of induction.)
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d) Tryto estimate the numbal(n) of walks of length
n for this simple Markov graph.

e) The topological entropyr measures the rate of
exponential growth of the total number of walks
N(n) as a function ofh. What is the topological
entropy for this Markov graph?

3-disk prime cycle counting. A primecycle p
of lengthn, is a single traversal of the orbit; its label
is a non-repeating symbol string af, symbols. For
example,12 is prime, bu2121 is not, since it i21 =
12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, prime
cycles of length 2, 3, 4, 5, 6; -.

“Golden mean” pruned map. Continuation of
exercisel0.6 Show that the total number of periodic
orbits of lengthn for the “golden mean” tent map is

(1+ VB)'+ (1- VB
2n '

For continuation, see exercisé7.2 See also
exercisel3.8

Alphabet {0,1}, prune .00..  The Markov diagram
figure 10.13 (b) implements this pruning rule. The
pruning rule implies that “0” must always be bracketed
by “1"s; in terms of a new symbol 2= 10, the
dynamics becomes unrestricted symbolic dynamics with
with binary alphabetl,2}. The cycle expansiori.13
becomes

(1= t1)(1 - t2)(1 - t12)(1 - t112(13.35)
1-t -t - (tiz— 1)

—(t112 — toots) — (tr22 — tiolo) . ..

1/¢

In the original binary alphabet this corresponds to:

1/ = 1-t1—tio— (t110— tatio)
—(t1110 - t110t1) — (t11010— t110t16)3.36)

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For
unimodal maps this symbolic dynamics is realized by
the tent map of exercisE3.a

A unimodal map example. Consider a unimodal
map, this Figure (a):

075 10
o

fix)

025 0.5

0.0

0.0 0.25 05 075 1.0 1
X
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13.9.

13.10.

13.11.

13.12.

Figure: (a) A unimodal map for which the critical point
maps into the right hand fixed point in three iterations,
and (b) the corresponding Markov graph (K.T. Hansen).
for which the critical point maps into the right hand

fixed point in three iterationsS* = 100L. Show that
the admissible itineraries are generated by the Markov
graph of the Figure (b).

(Kai T. Hansen)

Glitches in shadowing:* Note that the combination
tooo11 Minus the “shadow™otoorz in (13.17 cancels
exactly, and does not contribute to the topological zeta
function (13.1§. Are you able to construct a smaller
Markov graph than figuré3.3(e)?

Whence Mobius function? To understand where the
Mobius function comes from consider the function

f(n) =) o(d)

din

(13.37)

whered|n stands for sum over all divisodsof n. Invert
recursively this infinite tower of equations and derive the
Maobius inversion formula

o(n) = > u(n/d)f(d)

din

13.13.

(13.38)

Counting prime binary cycles.
comfortable with Mobius inversion reproduce the results
of the second column of table3.5.2

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical

system with a complete binary tree, arepeller nidp® 13.15.

with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
to for each 0, and factdg for each 1 in its symbol string.
Prove that the transition matrix tracels3(5 collapse to
tr(T%) = (to + t1)%, and 1/ is simply

[T(1-to)=1-to-1

p

(13.39)

Substituting £3.39 into the identity

I_l(1+tp)=l:l

p

1-tp2

we obtain

I_l(1+tp) =

p

1-t2-t2
1-t—1;
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2tots
1-tg—1;

1+tg+t+

1+to+t1

N N—2\ 4 nk
+> z(k_l)totl.

n
n=2 k=1

Hence forn > 2 the number of terms in the cumulant
expansion withk 0's andn — k 1's in their symbol
sequences is(2°).

In order to count the number of prime cycles in each
such subset we denote witl,x (n = 1,2,...; k =
{0,1} forn=1; k=1,...,n—1 for n > 2) the number
of prime n-cycles whose labels contaknzeros. Show
that

Mo = Mz =1, n>=2,k=1,...,n-1

me@ﬁ

m|

n Mnyk

n
k

where the sum is over ath which divide bothn andk.
(Continued as exercisis.7)

Logarithmic periodicity of In N,*. Plot INN, — nh
for a system with a nontrivial finite Markov graph. Do
you see any periodicity? If yes, why?

4-disk pinball topological zeta function.  Show that
the 4-disk pinball topological zeta function (the pruning
affects only the fixed points and the 2-cycles) is given by

(1-2)°
(1-32)(1+2)°3
1-62-82-32.

1/{4—disk

top 1-32

(13.40)

N-disk pinball topological zeta function. Show
that for anN-disk pinball, the topological zeta function
is given by

l/gN_diSk

top 1-(N-1)2 x

(1- ZZ)N(N—l)/Z
(1-2N-1(1- ZZ)(N—l)(N—Z)/Z
(1-(N-1)2 1+2N 1 .(13.41)

The topological zeta function has a raot = N - 1,
as we already know it should froni§.29 or (13.15.
We shall see in secL9.4that the other roots reflect the
symmetry factorizations of zeta functions.

Alphabet {a, b, c}, prune _ab_ . The pruning rule
implies that any string of “b”s must be preceeded by a
“c”: so one possible alphabet {g, cb*; b}, k=0,1,2. ..

As the rule does not prune the fixed point it is
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explicitly included in the list. The cycle expansion Note that this says that 1, 23, 2, 2113 are the
(13.13 becomes fundamental cycles; not all cycles up to length 7 are

needed, only 2113.
e (1- )1 - b)(1-t) (b) Show that the topological zeta function is
(1 - tcb)(l - tac)(l - tcbb) s

1—ta—tp — to + talp — (ten — tolb) Yitop=(1-2(1-2-7Z -2 + 2 - 7) (13.45)
~(tac — tate) — (teob — teoly) - - - and check that it yields the exact value of the entropy

The dfect of the_ ab_ pruning is essentially to unbalance h=0522737642. ..
the 2 cycle curvaturg,—tats; the remainder of the cycle13.20. Topological zeta function for alphabet{0,1}, prune

expansion retains the curvature form. _100Q, _0010Q, _0110Q. (continuation of
13.17. Alphabet {0,1}, prune nrepeats of “0 _000...00. . exercisel1.9 Show that topological zeta function is

This is equivalent to then symbol alphabet{l, 2, 1/¢ = (L—to)(1 -ty — tp — trz — t113) (13.46)

.., n} unrestricted symbolic dynamics, with symbols

corresponding to the possible .1M0 block lengths: for unrestricted 4-letter alphabgit, 2, 23 113.

2=10, 3=100,...,

n=100..00. The cycle expansion 3 54, Alphabet {0,1}, prune only the fixed point0.  This

is equivalent to thenfinite alphabet{1, 2, 3, 4,...}
1/¢ = 1-t1—tp . . —ty—(ti—tit) . . .—(t—taty) . .. .(13.42)unrestricted symbolic dynamics. The prime cycles
are labeled by all non-repeating sequences of integers

(13.13 becomes

13.18. Alphabet {0,1}, prune _100Q, _0010Q, _0110Q. ordered lexically:tp,n > O; tmn, tmmn ...,N > m > 0;
Show that the topological zeta function is given by tonr, T > N> m> 0, ... (see sec3.3. Now the number
of fundamental cycles is infinite as well:
1/0=(1-t)(1-ti -t —trz—tnz)  (13.43)
. . /¢ = 1_Ztn - Z (tmn—tntm)
with the unrestricted 4-letter alphabft, 2, 23 113. =0 a0
Here 2, 3, refer to 10, 100 respectively, as in B B
exercisel3.17 Z (tmmn— tmtmn)
n>m>0
13.19. Alphabet {0,1}, prune _100Q, _0010Q, _0110Q, - Z (tmnn — tmrtn) (13.47)
_10011. The first three pruning rules were NS0
incorporated in the preceeding exercise. _ Z (tmnr + toorn =tk
mnr mrn mntr
(a) Show that the last pruning rul@0011 leads (in a r>n>m>0
way similar to exercisé3.19 to the alphabe21, 23 — tmrtn = tmtnr + ttnty) -+ (13.48)

21113 1,0}, and the cycle expansion _ _ _
As shown in tabl&3.3 this grammar plays an important

1/¢ = (1-to)(L—ty —tr —toz+tatrz —t2113)(13.44) role in description of fixed points of marginal stability.

References

[13.1] V.I. Arnold and A. Avez, “Ergodic Problems of ClasaicMechanics,”
Addison-Wesley, Redwood C{ty089).

[13.2] J. Zinn-Justin, “Quantum Field Theory and Criticahehomena,”
Clarendon Press, Oxfor(l996).

[13.3] A. Salomaa, “Formal Languagegtademic Press, San Die¢b973).

[13.4] J.E. Hopcroft and J.D. Ullman, “Introduction to Autata Theory,
Languages and Computatio®tidison-Wesley, Reading M#979).

[13.5] D.M. Cvektovic, M. Doob and H. Sachs, “Spectra of @rs,” Academic
Press, New York1980).

refsCount - 22jan2005.tex



