Chapter 13

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15

the easiest problem in theory of chaotic systems: cycletomyinThis is

the simplest illustration of the raison d’etre of periodibibtheory; we
shall develop a duality transformation that reldtesal information - in this case
the next admissible symbol in a symbol sequencegidbal averages, in this case
the mean rate of growth of the number of admissible itinesaviith increasing
itinerary length. We shall transform the topological dynesrof chapterlO into
a multiplicative operation by means of transition matritéeskov graphs, and
show that thenth power of a transition matrix counts all itineraries ofdémn.
The asymptotic growth rate of the number of admissible iitiries is therefore
given by the leading eigenvalue of the transition matri; ldading eigenvalue is
in turn given by the leading zero of the characteristic deteant of the transition
matrix, which is - in this context - called thepological zeta functianFor flows
with finite Markov graphs this determinant is a finite polyriahwhich can be
read df the Markov graph.

WE ARE Now in a position to apply the periodic orbit theory to the firstian

The method goes well beyond the problem at hand, and formsotfeeof the
entire treatise, making tangible a rather abstract notfdspectral determinants”
yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectoriesbtes with every
iterate: there ar&, = 3- 2" distinct itineraries of lengt. If disks are too
close and some part of trajectories is pruned, this is only@wer bound and
explicit formulas might be hard to discover, but we still imidpe able to establish
a lower exponential bound of the foriy, > Ce™. Bounded exponentially by
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3¢"2 > K, > CéM the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by ttepological entropy

1
h= lim ZInK, . (13.1)

We shall now relate this quantity to the spectrum of the ftenmsmatrix, with
the growth rate of the number of topologically distinct é@tpries given by the
leading eigenvalue of the transition matrix.

The transition matrix element;; € {0,1} in (10.2 indicates whether the
transition from the starting partitiof into partitioni in one step is allowed or

not, and thei( j) element of the transition matrix iteratedimes )
[exercise 13.1]

M= D, TiaThke: T
k.ko,....kn-1

receives a contribution 1 from every admissible sequendeansitions, soT");;
is the number of admissiblesymbol itineraries starting withand ending with.

Example 13.1 3-disk itinerary counting.
The (T?)13 = 1 element of T2 for the 3-disk transition matrix (10.5)

01 12 (211
(101]:[121]. (13.2)
110 11 2

corresponds to 3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)s3 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itinerariesro$ymbols is

Kn= (T =(11,...,1) T"| /. (13.3)
ij

We can also count the number of prime cycles and pruned perpmints,
but in order not to break up the flow of the main argument, wegate these
pretty results to sectd3.5.2and13.7. Recommended reading if you ever have to
compute lots of cycles.

The matrix T has non-negative integer entries. A mathkis said to be
Perron-Frobeniusif some powerk of M has strictly positive entriesM¥);s > 0.
In the case of the transition matrix this means that every partition eventually
reaches all of the partitions, i.e., the partition is dyneatly transitive orindecomposable,
as assumed in2(2). The notion oftransitivity is crucial in ergodic theory: a
mapping is transitive if it has a dense orbit. This notionrikerited by the
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shift operation once we introduce a symbolic dynamics. at ik not the case,
state space decomposes into disconnected pieces, eaclicbfagh be analyzed
separately by a separate indecomposable Markov graph. eHemcffices to
restrict our considerations to transition matrices of &eiffrobenius type.

Afinite [NxN] matrix T has eigenvalueByp, = 1,¢, and (right) eigenvectors
{p0, 91, -+, pm-1}. Expressing the initial vector in18.3 in this basis (which
might be incompleteM < N),

1
N 1 N N-1 N-1 N
T = T Z oo = Z bn/i(ﬁpa B
i a=0 a=0

and contracting witff1,1,...,1), we obtain

N-1
Kn= > Cad].
a=0
[exercise 13.2]

The constants, depend on the choice of initial and final partitions: In this
example we are sandwichifid' between the vectdrl, 1,...,1)and its transpose,
but any other pair of vectors would do, as long as they are ribbgonal to the
leading eigenvectapy. In a experiment the vect¢d. 1, ..., 1)would be replaced
by a description of the initial state,and the right vectouldalescribe the measure
time n later.

Perron theorem states that a Perron-Frobenius matrix hamdegenerate
positive real eigenvalugy > 1 (with a positive eigenvector) which exceeds the
moduli of all other eigenvalues. Thereforeragcreases, the sum is dominated
by the leading eigenvalue of the transition matiix,> |Red,|, @ = 1,2,---,N-1,
and the topological entropy.8.1) is given by

n
Co \do
- 1 "
InAp + lim [ﬂ+—&(ﬂ) +]
n-oo| N nco \Ag
InAg. (13.4)

=y
Il

1 N
I £ incol

What have we learned? The transition maffiis a one-steghort timeoperator,
advancing the trajectory from a partition to the next adibiespartition. Its
eigenvalues describe the rate of growth of the total numbeajectories at the
asymptotic timesinstead of painstakingly countirt§;, K2, Ks, ... and estimating
(13.1) from a slope of a log-linear plot, we have tegacttopological entropy
if we can compute the leading eigenvalue of the transitiotrima . This is
reminiscent of the way the free energy is computed from feanmatrix for 1-
dimensional lattice models with finite range interactiodsstorically, it is analogy
with statistical mechanics that led to introduction of enmn operator methods
into the theory of chaotic systems.
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13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of Exmdty evaluating
the trace tT" = 3, 2], or by evaluating the determinant det{%T). We start by
evaluating the trace of transition matrices.

Consider arM-step memory transition matrix, like the 1-step memory epiam
(10.13. The trace of the transition matrix counts the number dfifpams that map
into themselves. In the binary case the trace picks up ontydwntributions on
the diagonalTo..00.-0 + T1..1.1.-1, NO Matter how much memory we assume. We
can even take infinite memoiy — oo, in which case the contributing partitions
are shrunk to the fixed points,Tr= Ts5+ T11- )

d > [exercise 10.7]

More generally, each closed walk througboncatenated entries dfcontributes
to tr T a product of the matrix entries along the walk. Each step ah suwalk
shifts the symbolic string by one symbol; the trace ensurasthe walk closes
on a periodic stringc. Definet. to be thelocal trace the product of matrix
elements along a cycle each term being multiplied by a book keeping variable
z Ztr T" is then the sum of; for all cycles of lengthn. For example, for an )

. . . . ... [exercise 10.7]
[8x8] transition matrixTs;s,s, 5,55, Version of (L0.13, or any refined partition
[2"x 2" transition matrix,n arbitrarily large, the periodic poift00 contributes
t100 = 2 T1oq010 T o001 oot 100 10 2t T3 This product is manifestly cyclically
symmetric,tioo = to10 = too1, @and so a prime cycl@ of lengthny, contributes
np times, once for each periodic point along its orbit.  For theaty labeled
non—-wandering set the first few traces are given by (consble$10.1and13.2)

zZtrT = to+ty,
2rT? = G+ + 2
2rTé = tg + t? + 3t100 + 3t101,
ZtrT4 = té + t‘l1 + 2@0 + 4t1000 + 4t1001 + Al1011- (13.5)

For complete binary symbolic dynamits= 2" for every binary prime cycle;

if there is pruningtp, = Z if p is admissible cycle ang, = 0 otherwise. Hence
tr T counts the number @fdmissible periodic pointsf periodn. In general, the
nth order trace13.5 picks up contributions from all repeats of prime cycleshwi
each cycle contributing,, periodic points, so the total number of periodic points
of periodn is given by

2Ny =2 T" = Z nptg/np = Z np Z Snnprth - (13.6)
P r=1

npin

Heremjn means tham s a divisor ofn, and (takingz = 1) t, = 1 if the cycle is
admissible, and, = 0 otherwise.

In order to get rid of the awkward divisibility constraint= npr in the above
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Table 13.1: The total numbers of periodic points, of periodn for binary symbolic
dynamics. The numbers of prime cycles contributing illatgs the preponderance of
long prime cycles of length over the repeats of shorter cycles of lengthsn = rnp,.
Further listings of binary prime cycles are given in tatlésland13.5.2 (L. Rondoni)

n Ny # of prime cycles of length,
1 2 3 45 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 6 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56
10 1024 2 1 6 99

sum, we introduce the generating function for numbers abgér points

= zT
2Ny = t 4 13.7
HZ{ =TT (13.7)

Substituting {3.6) into the left hand side, and replacing the right hand sidéhby
eigenvalue sum " = ¥ A7, we obtain our first example of a trace formula, the
topological trace formula

Zly Nptp
= . 13.8
1-2, Z 1-tp (138)
a=0 P

A trace formula relates the spectrum of eigenvalues of aretge- in this case the
transition matrix - to the spectrum of periodic orbits of thh@amical system. The
Z" sum in (L3.7) is a discrete version of the Laplace transform (see chdier
and the resolvent on the left hand side is the antecedeneahtre sophisticated
trace formulas 16.10 and (L6.23.We shall now use this result to compute the
spectral determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of gpectral determinandf an [M x M]
transition matrix

M-1

det(1-zT) = [ [ (1-21) . (13.9)

a=0
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We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{AT) with some care; understanding this computation
in detail will be the key to understanding the cycle expamsiomputations of
chapterl18 for arbitrary dynamical averages. Fbra finite matrix, (3.9 is just
the characteristic equation fér However, we shall be able to compute this object
even when the dimension df and other such operators goescto and for that
reason we prefer to refer ta§.9 loosely as the “spectral determinant.”

There are various definitions of the determinant of a matifrey mostly
reduce to the statement that the determinant is a certainosemall possible
permutation cycles composed of the trac€E*trin the spirit of the determinant—
trace relation 1.15):

[exercise 4.1]

det(1-2zT)

exp(tr In(1-zT) = exp[— %trT"]
n=1

1-ztr T - ;((tr TZ-tr(T?)-... (13.10)

This is sometimes called a cumulant expansion. Formallyrigtht hand is an
infinite sum over powers af'. If T is an [MxM] finite matrix, then the characteristic
polynomial is at most of ordel¥. In that case the cdiécients ofz", n > M must
vanishexactly

We now proceed to relate the determinant 113.(.0 to the corresponding
Markov graph of chaptetO: to this end we start by the usual algebra textbook
expression for a determinant as the sum of products of athpetions

det(1-2T) = > (-1f' (1= ZNam( - ZNom, - (1= 2Dy (13.12)

{m)

whereT is a [M x M] matrix, {x} denotes the set of permutationsMfsymbols,
7k is whatk is permuted into by the permutatian and 1)" = +1 is the parity
of permutationr. The right hand side of13.17) yields a polynomial of ordeM

in z a contribution of orden in z picks upM — n unit factors along the diagonal,
the remaining matrix elements yielding

D" Ty, - T, (13.12)

wherer is the permutation of the subsetroflistinct symbols;; . .. n, indexingT
matrix elements. Asinl@.5, we refer to any combinatioy = T, Tyons - - - Tons

for a given itineraryc = mny - - -, 7, as thelocal trace associated with a closed
loop ¢ on the Markov graph. Each term of fori8(12 may be factored in terms

of local traces, tc, - - - tg,, that is loops on the Markov graph. These loops are non-
intersecting, as each node may only be reachedngfink, and they are indeed
loops, as if a node is reached by a link, it has to be the stapaint of another
singlelink, as eachy; must appear exactlgnceas a row and column index.
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So the general structure is clear, a little more thinkingrily sequired to get
the sign of a generic contribution. We consider only the addeops of length
1 and 2, and leave to the reader the task of generalizing tugt gy induction.
Consider first a term in which only loops of unit length appeai(13.19, that is,
only the diagonal elements @f are picked up. We have= nloops and an even
permutationz™so the sign is given by—(1)%, k being the number of loops. Now
take the case in which we havesingle loops and loops of lengthn = 2j + i.
The parity of the permutation gives—1)! and the first factor in13.19 gives
(-1)" = (-1)3*. So once again these terms combine int)f, wherek = i + |
is the number of loops. We may summarize our findings as feliow

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions 7 of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

f
det(1-2T) = > >V (-1t -1, (13.13)
k=0 =«

Any self-intersecting loop ishadoweddy a product of two loops that share the
intersection point. As both the long lodg and its shadowsty, in the case at hand
carry the same weight™=*™, the cancellation is exact, and the loop expansion
(13.13 is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting lodps. tp,. - - tp,} as the
fundamental cycles This is not a very good definition, as the Markov graphs
are not unique — the most we know is that for a given finite-gnamlanguage,
there exist Markov graph(s) with the minimal number of laoRegardless of how
cleverly a Markov graph is constructed, it is always trug¢ fbaany finite Markov
graph the number of fundamental cycless finite. If you know a better way to
define the “fundamental cycles,” let us know.

fast track:
@ sect. 13.4, p. 220
13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of tracesdstreasily grasped by
working through a few examples. The complete binary dynarvlarkov graph
of figure 10.11(b) is a little bit too simple, but let us start humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There are
only two non-intersecting loops, yielding
det(1-zT)=1-to-t; =1-2z. (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy & = 2. As we know that there are K, = 2" binary strings of length N, we
are not surprised by this result.
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[exercise 13.3]

Figure 13.2:(a) An incomplete Smale horseshoe:
the inner forward fold does not intersect the twc
rightmost backward folds. (b) The primary pruned
region in the symbol square and the correspondin
forbidden binary blocks. (c) An incomplete Smale
horseshoe whichiillustrates (d) the monotonicity o
the pruning front: the thick line which delineates =
the left border of the primary pruned region is =
monotone on each half of the symbol square. Th
backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are furthe
missing intersections, all obtained by the forwarc
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Figure 13.1: The golden mean pruning rule Markov °

graph, see also figurk.13

M. —ioeio

— 0

]

i — 10110

and backward iterations of the primary prunec

region.

Similarly, for complete symbolic dynamics &f symbols the Markov graph has
one node andl links, yielding

det(1-2zT)=1- Nz, (13.15)

whence the topological entrofy= In N.

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topolfg(ical

R ercise 13.4]
polynomial is given by

det(1-zT)=1-ti —tyy = 1-2- 7. (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the

logarithm of the golden mean, h = In 1+T\/§

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3 (d) are indicated in figure 13.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det(1-2zT) = 1-to—too11— tooor— tooo11
+totoo11 + too11tooo1- (13.17)
With t, = Z%, where ny, is the length of the p-cycle, the smallest root of
0=1-z-22+7 (13.18)

yields the topological entropy h = —Inz, z = 0.658779.. ., h =0.417367.. ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift

h=In2 = 0.693... [exercise 13.9]
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(a} )

Figure 13.3: Conversion of the pruning front
of figure 13.2 (d) into a finite Markov graph.

(a) Starting with the start node “.", delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. Ends

of forbidden strings are marked witk. Label -

all internal nodes by reading the bits connecting 1

4
“”, the base of the tree, to the node. (b) Indicate e B | | ] v, -
¢

all admissible starting blocks by arrows. (c) ,*‘)c "y
Drop recursively the leading bits in the admissible .~ ﬁ"‘?“\r\o o~ “) I
blocks; if the truncated string corresponds to ar _,
internal node in (a), connect them. (d) Delete".‘ -
the transient, non-circulating nodes; all admissibli %, . ¥ -
sequences are generated as walks on this fini - ... __3 - anoIl

Markov graph. (e) Identify all distinct loops and o )
construct the determinant§.17.

13.4 Topological zeta function

What happens if there is no finite-memory transition matfithe Markov graph
is infinite? If we are never sure that looking further intoufiet will reveal no
further forbidden blocks? There is still a way to define theedwinant, and this
idea is central to the whole treatise: the determinant is tledined by itcumulant
expansion13.10

[exercise 4.1]

det(1-zT)=1- Z &2, (13.19)
n=1

For finite dimensional matrices the expansion is a finite pafyial, and {3.19
is an identity; however, for infinite dimensional operattivs cumulant expansion
codficientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces foritrary transition
matrix. In order to obtain an expression for the spectraémeinant (3.9 in
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terms of cycles, substitutd 8.6 into (13.19 and sum over the repeats of prime
cycles using In(t x) = 3, X'/r,

det(1-zT) = exp[— Z i %] = ﬂ (1-tp), (13.20)
p r=1 P

where for the topological entropy the weight assigned taragrcyclep of length
np ist, = 2 if the cycle is admissible, dy, = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazur zeta function, conventionally denoted
by

Yaop=[ [@-2")=1-> &7 (13.21)
p n=1

Counting cycles amounts to giving each admissible priméegyeveightt, = z%
and expanding the Euler producdt3(2]) as a power series in As the precise
expression for cdécientscy in terms of local traces, is more general than the
current application to counting, we shall postpone its\dion to chapted.8.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finité[x M] transition matrix, the
number of terms in the characteristic equatid®. (3 is finite, and we refer to this
expansion as thepological polynomiabf order< M. The power of defining a

determinant by the cumulant expansion is that it works evieenithe partition is
infinite, M — oo; an example is given in sect3.6 and many more later on.

fast track:
@ sect. 13.6, p. 226
13.4.1 Topological zeta function for flows

X
J We now apply the method that we shall use in derivifi§.23 to the
problem of deriving the topological zeta functions for flovilhe time-weighted
density of prime cycles of periods

(M) =) Y Tpdlt—rTp). (13.22)
p r=1

As in (16.22), a Laplace transform smooths the sum over Dirac delta spike
and yields theopological trace formula

Z Z Tp jo“” dteSts(t — Tp) = Z Tp i e sTer (13.23)
por=1 * p r=1
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and thetopological zeta functioffor flows:

Yaop® = [ [(1-€=7). (13.24)
p

related to the trace formula by

Z To Z e STl = _62 In1/Ztop(9) -
p r=1 S

This is the continuous time version of the discrete time logical zeta function
(13.27) for maps; its leading zers= —hyields the topological entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute alleyeip to topological
lengthn, so it is handy to know their exact number.

13.5.1 Counting periodic points

Npn, the number of periodic points of periadcan be computed froni8.19 and
(13.7) as a logarithmic derivative of the topological zeta fuoiti

>N
n=1

d d
tr (—zd—zln(l - zT)) = —zd—zln det(1-2zT)

d
~z5;1/dtop
= — 13.25
1/¢top ( )

We see that the trace formula3 ) diverges az — e ™, as the denominator has
a simple zero there.

Example 13.5 Complete N-ary dynamics: As a check of formula (13.19) in the
finite grammar context, consider the complete N-ary dynamics (10.3) for which the
number of periodic points of period n is simply tr T = N". Substituting

)

n=1

n=1

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

Nz
Z NnZ' = 1-Nz’
n=1
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3 (e).
Substituting (13.18) we obtain

z+87 - 82
2N = (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of Ny, it actually yields the exact and not entirely trivial recursion relation for the
numbers of periodic points: Ny = N = N3 = 1, N, = 2n+ 1 forn = 4,5,6,7,8, and
Nn = Np-1 4+ 2Np—4 — Nj_g forn > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our nejédive is to evaluate
the number oprimecyclesM,, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findiniyl, is classical in combinatorics
(counting necklaces made out wbeads out oN different kinds) and is easily
solved. There ar&l" possible distinct strings of lengthcomposed of letters.
TheseN" strings include alMq4 prime d-cycles whose period equals or divides
n. A prime cycle is a non-repeating symbol string: for example 011=101=
110 = ...011011.. is prime, but0101 = 010101.. = 01 is not. A primed-
cycle contributed strings to the sum of all possible strings, one for each cycli
permutation. The total number of possible periodic symbeglgnces of length

is therefore related to the number of prime cycles by

Ny = Z dMg, (13.27)
din

whereN, equals tiT". The number of prime cycles can be computed recursively

1 d<n
Mn = H[NH—Z de],

din

r by theMobius inversion formul
or by theMdbius inversion formula [exercise 13.10]

My = nt ) Ng. 13.28
n=n dzmju(d) a (13.28)

where the Mobius functiop(1) = 1, u(n) = 0 if n has a squared factor, and
wu(p1p2... px) = (-1)Kif all prime factors are dferent.

We list the number of prime cycles up to length 10 for 2-, 3- drétter
complete symbolic dynamics in takl®.5.2 The number oprimecycles follows

by Mobius inversion 13.29. [exercise 13.11]
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Table 13.2: Number of prime cycles for various alphabets and grammats igngth 10.
The first column gives the cycle length, the second the foan{8.29 for the number

of prime cycles for complet&l-symbol dynamics, columns three through five give the
numbers folN = 2,3 and 4.

Table 13.3: List of the 3-disk prime cycles up to length 10. Herés the cycle length,
M, the number of prime cycled\, the number of periodic points arfsh the number
of distinct prime cycles under th€s, symmetry (see chaptet9 for further details).
Column 3 also indicates the splitting bif, into contributions from orbits of lengths that
divide n. The prefactors in the fifth column indicate the degeneragyf the cycle; for
example, 3.2 stands for the three prime cyci®&®, 13 and23 related by 2/3 rotations.
Among symmetry related cycles, a representaivehich is lexically lowest was chosen.
The cycles of length 9 grouped by parenthesis are relateingyreversal symmetry, but
not by any othes, transformation.

n Mn(N) Mn(2) Mn(3)  Mn(4)
1 N 2 3 1
2 N(N - 1)/2 1 3 6
3 N(N2 - 1)/3 2 8 20
4 N2(N2 - 1)/4 3 18 60
5 (N5 - N)/5 6 48 204
6 (NS—N3—N2+N)/6 9 116 670
7 (N7 = N)/7 18 312 2340
8 N4(N4 - 1)/8 30 810 8160
9 N3(NS — 1)/9 56 2184 29120
10 (N10— N5 — N2+ N)/10 99 5880 104754

3

Example 13.7 Counting N-disk periodic points: & A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn-disk = Tc — 1, so the
number of the N-disk periodic points is

Np = tr T gige = (N = 1) + (=1)%(N = 1) (13.29)

(here T, is the complete symbolic dynamics transition matrix (10.3)). For the N-disk
pruned case (13.29) Mébius inversion (13.28) yields

MN-dsk %dzln: ﬂ(g) (N-1)°+ NT_l dzm: ﬂ(g) (-1

= MY for n>2. (13.30)

There are no fixed points, MY~ = 0. The number of periodic points of period 2 is
N2 — N, hence there are MY~9isk = N(N — 1)/2 prime cycles of length 2; for lengths
n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 13.5.2.

\
Example 13.8 Pruning individual cycles: J Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the binary
1- and 2-cycles (1 - z)(1 - zty)(1 - Z’to1) and multiply with the correct 3-disk 2-cycles
(1- Zt12)(1 - 2t13)(1 - Zoa):

[exercise 13.14]
1-2)32 [exercise 13.15]

1/a-disk = (1-220——F—"——<
/(3 disk ( Z) (1 —_ Z)Z(l _ 22)
= (1-29(1+2%*=1-32-27. (13.31)
The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (19.25).

As we shall see in chapter 19, symmetries lead to factorizations of topological polynomials
and topological zeta functions.
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n M, N, Sn mp-p

1 0 O 0

2 3 632 1 312

3 2 623 1 2123

4 3 1832+34 1 31213

5 6 3065 1 612123

6 9 66=32+2:3+9-6 2 6121213+ 3121323

7 18 126:187 3 61212123+ 6:1212313+ 6:1213123

8 30 25832+34+308 6 612121213+ 312121313+ 6:12121323
+6-12123123+ 6-:12123213+ 312132123

9 56 516-2-3+569 10 6121212123+ 6-(121212313+ 121212323)
+6-(121213123r 121213213) 6-121231323
+6-(121231213+ 121232123} 2-:121232313
+6-121321323

10 99 1022 18

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaninghef symbols

is the same as in table3.5.2 Orbits related by time reversal symmetry (but no other
symmetry) already appear at cycle length 5. List of the yofdength 7 and 8 has been
omitted.

n M, N, Sn mp-p

1 0 0 0

2 6 1262 2 412+213

3 8 2483 1 8123

4 18 846-2+184 4 81213+ 41214+ 2:1234+ 4-1243

5 48 24G:485 6 8(12123+ 12124)+ 812313
+8:(12134+ 12143)+ 812413

6 116 7326-2+83+1166 17 8121213+ 8121214+ 8121234
+ 8121243+ 8121313+ 8:121314
+4-121323+ 8:(121324+ 121423)
+4-121343+ 8121424+ 4-121434
+ 8123124+ 8123134+ 4-123143
+ 4124213+ 8124243

7 312 2184 39

8 810 6564 108
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Example 13.9 Alphabet {a,cb’; b}: (continuation of exercise 13.16) In the S)(/cle_
counting case, the dynamics in terms of a — z, cb¢ — £

15 Is a complete lgmary
dynamics with the explicit fixed point factor (1 - tp) = (1 - 2):

1/§rop:(1fz)(1+ 1%2):1732#_

[exercise 13.19]

13.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanovic)

X
J Now consider an example of a dynamical system which (as faveas
know - there is no proof) has an infinite partition, or an infindf longer and
longer pruning rules. Take thedlguadratic map

f(X) = AX(1-X)

with A = 3.8. It is easy to check numerically that the itinerary or the¢&ding
sequence” of the critical point=1/2 is

K =1011011110110111101011110111110

where the symbolic dynamics is defined by the partition ofrBdiD.6 How this
kneading sequence is converted into a series of pruning isle dark art.For
the moment it sffices to state the result, to give you a feeling for what a “igic
infinite partition topological zeta function looks like. ppximating the dynamics
by a Markov graph corresponding to a repeller of the perioct@ctive cycle
close to theA = 3.8 strange attractor yields a Markov graph with 29 nodes and
the characteristic polynomial

l/{t(gg) = 1-2-2+2-2-2+P-7+82-2-°
T S R el R e T AR T R
R i B AR B Ak T AT (13.32)

The smallest real root of this approximate topological fetetion is
z=0.62616120.. (13.33)

Constructing finite Markov graphs of increasing length esponding t&A — 3.8
we find polynomials with better and better estimates for dpmlogical entropy.
For the closest stable period 90 orbit we obtain our bestasti of the topological
entropy of the repeller:
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C
exercise 13.16]

[exercise 13.21]
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Figure 13.4: The logarithm of the dference _30 F © o,
between the leading zero of the finite polynomie °°‘%°
approximations to topological zeta function and oo~ ~*°[ X
best estimate, as a function of the length for th 0 20 40 60 80

length

quadratic mapA = 3.8.

1.5 T T
o
1 R E
_osE }g %%% 1
g0 $
P f ]
-1 030%3900“ E
Figure 13.5: The 90 zeroes of the characteristic o
polynomial for the quadratc mapA = 38 s T s
approximated by symbolic strings up to length 9C : "Re(z) ’
(from ref. [2])
h=-1In0.62616130424685 . = 0.46814726655867. . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approxiomatito the
topological zeta function as a plot of the logarithm of thBetence between the
zero of a polynomial and our best estimals.34, plotted as a function of the
length of the stable periodic orbit. The error of the esteBn@s.33 is expected
to be of order2’ ~ e* because going from length 28 to a longer truncation
yields typically combinations of loops with 29 and more redering terms+z2°
and of higher order in the polynomial. Hence the convergesaxponential,
with exponent of-0.47 = —h, the topological entropy itself. In figurg3.5
we plot the zeroes of the polynomial approximation to thetogical zeta func-
tion obtained by accounting for all forbidden strings ofdémn 90 or less. The
leading zero giving the topological entropy is the pointselst to the origin.
Most of the other zeroes are close to the unit circle; we eatecthat for infinite
Markov partitions the topological zeta function has a unitle as the radius of
convergence. The convergence is controlled by the ratihefléading to the
next-to-leading eigenvalues, which is in this case indagd, = 1/€" = e™.

13.7 Shadowing

The topological zeta function is a pretty function, but thnite product {3.20
should make you pause. For finite transfer matrices thedeftlIside is a determinant
of a finite matrix, therefore a finite polynomial; so why is tlight hand side an
infinite product over the infinitely many prime periodic debof all periods?

The way in which this infinite product rearranges itself iatiinite polynomial

is instructive, and crucial for all that follows. You caneddy take a peek at the
full cycle expansion 18.7) of chapter18; all cycles beyond the fundamentg|
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andt; appear in the shadowing combinations such as

tsisys — oo slsmorsy -

For subshifts of finite type such shadowing combinationscebexactly if we

are counting cycles as we do here, or if the dynamics is piseelinear, as in
exercisel7.3 As we have already argued in sett5.4 for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shéig combinations
almostcancel, and the spectral determinant is dominated by thdafuaental
cycles from (3.13, with longer cycles contributing only small “curvaturedrcections.

These exact or nearly exact cancelations depend on the flmg Benooth
and the symbolic dynamics being a subshift of finite type. h# tynamics
requires infinite Markov partition with pruning rules fomiger and longer blocks,
most of the shadowing combinations still cancel, but thedewesponding to the
forbidden blocks do not, leading to a finite radius of coneexe for the spectral
determinant as in figuré3.5

One striking aspect of the pruned cycle expansib® 32 compared to the
trace formulas such a43.7) is that codicients are not growing exponentially -
indeed they all remain of order 1, so instead having a radicssrvergence™, in
the example at hand the topological zeta function has thtecirnle as the radius
of convergence. In other words, exponentiating the spgatodlem from a trace
formula to a spectral determinant as r8(19 increases thanalyticity domain
the pole in the tracel@.8 atz = e " is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

The very sensitive dependence of spectral determinanthether the symbolic
dynamics is or is not a subshift of finite type is the bad nevet the should
announce already now. If the system is generic and not stallyt stable (see
sect.11.3, a smooth parameter variation is in no sense a smooth izariat
topological dynamics - infinities of periodic orbits areated or destroyed, Markov
graphs go from being finite to infinite and back. That will imphat the global
averages that we intend to compute are generically nowlhgesehtiable functions
of the system parameters, and averaging over families adirdical systems can
be a highly nontrivial enterprise; a simple illustratiorthe parameter dependence
of the diffusion constant computed in a remark in chagter

You might well ask: What is wrong with computing the entropgrh (13.1)?
Does all this theory buy us anything? An answer: If we cdGnlevel by level, we
ignore the self-similarity of the pruned tree - examine faraple figurel0.13 or
the cycle expansion ofl3.26 - and the finite estimates bf, = In K,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenbe; hy| ~
O(1/n) as in (L3.4). The determinantl(3.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yieldsasgmptotic value oh
with no need for any finite extrapolations.

So, the main lesson of learning how to count well, a lesson it be
affirmed over and over, is that while the trace formulas are aemnally essential
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step in deriving and understanding periodic orbit thedmg $pectral determin-
ant is the right object to use in actual computations. Imstaresumming all
of the exponentially many periodic points required by tréoenulas at each
level of truncation, spectral determinants incorporatly tire small incremental
corrections to what is already known - and that makes thene manvergent and
economical to use.

Résum é

What have we accomplished? We have related the number dbtppally distinct
paths from “this region” to “that region” in a chaotic systémthe leading eigenvalue
of the transition matrixT. The eigenspectrum df is given by a certain sum over
traces tiT", and in this way the periodic orbit theory has entered thearalready

at the level of the topological dynamics, the crudest dpson of dynamics.

The main result of this chapter is the cycle expansithZJ) of the topologi-
cal zeta function (i.e., the spectral determinant of thediteon matrix):

Ydop(@) = 1- ) &
k=1

For subshifts of finite type, the transition matrix is finigad the topological zeta
function is a finite polynomial evaluated by the loop expangL3.13 of det (1-
zT). For infinite grammars the topological zeta function is wedi by its cycle
expansion. The topological entropyis given by the smallest zem= e™. This
expression for the entropy éxact in contrast to the definitionl3.1), non — oo
extrapolations of IiK,/n are required.

Historically, these topological zeta functions were trepiration for applying
the transfer matrix methods of statistical mechanics tptbblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chapté6, a weighted generalization of the topological
zeta function.

Contrary to claims one sometimes encounters in the litexatiexponential
proliferation of trajectories” is not the problem; what limthe convergence of
cycle expansions is the proliferation of the grammar ruéesthe “algorithmic
complexity,” as illustrated by sect3.6 and figurel3.5in particular.

Commentary

Remark 13.1 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead tovaniamt characterization of the
dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat applies
to other entropies.In order to obtain proper invariants meeds to evaluate a supremum
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over all possible partitions. The key mathematical poiat #liminates the need of such
search is the existence géneratorsi.e., partitions that under dynamics are able to probe
the whole state space on arbitrarily small scales: moreigglgca generator is a finite
partitionQ = w1 ...wn, With the following property: takeM the subalgebra of the
state space generated@Qyand consider the partition built upon all possible intetiems

of sets¢X(8), where¢ is dynamical evolutiong; is an element of\ andk takes all
possible integer values (positive as well as negativel the closure of such a partition
coincides with the algebra of all measurable sets. For atigir (and readable) discussion
of generators and how they allow a computation of the Kolrmogentropy, see refl].

Remark 13.2 Perron-Frobenius matrices.  For a proof of Perron theorem on the
leading eigenvalue see ref27]. Sect. A4.1 of ref. ] offers a clear discussion of the
spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks fer derivations of the loop
expansions of characteristic polynomials for transiticatnses and their Markov graphs,
see for example refs3[4, 5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition maffix
(in the infinite partition limit (.3.19) is nottrace class.Still the trace is well defined in the
n — oo limit.

Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil's zeta function for
the Frobenius map?], Artin and Mazur [L7] introduced the zeta functiorl8.2]) that
counts periodic points for ieomorphisms (see also ref] for their evaluation for maps
of the interval). Smalel[0] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheini€l pnd Manning L 7]. See remarl7.4
on page296for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect.18.5we will introduce an
alternative way of hierarchically organizing cumulant arpions, in which the order is
dictated by stability rather than cycle length: such a pdoce may be better suited to
perform computations when the symbolic dynamics is not wedlerstood.

Exercises

13.1. A transition matrix for 3-disk pinball. disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition

a) Draw the Markov graph corresponding to the 3-
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13.2. Sum of A is like a trace.
eigenvaluedy. Show that

matrix results in two coupled linear fékrence
equations, - one for the diagonal and one for
the df diagonal elements. (Hint: relateTtf to
trT™ 4.

Solve the above fference equation and obtain the
number of periodic orbits of length. Compare
with table13.5.2

Find the eigenvalues of the transition mafFifor
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamicg0, 1}.

b

=

C

N3

Let A be a matrix with

13.6.

o= D IAT; = Doy
ij k

(a) Use this to show that |tr A"| and In|[| have the

same asymptotic behavior as— o, i.e., their
ratio converges to one.

(b) Do eigenvaluedy need to be distinctly # A for

k#1?

13.7.

13.3. Loop expansions. Prove by induction the sign rule in

13.4.

the determinant expansioh3.13:

det(1-21) =" > (-Dpty, o

k=0 pr+-+pc

Transition matrix and cycle counting. Suppose you

are given the Markov graph

b

SSONRO

C

This diagram can be encoded by a maffixwhere the
entry Tj; means that there is a link connecting node
nodej. The value of the entry is the weight of the link.

a) Walks on the graph are given the weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a b ]

T=l¢co

b) Enumerate all the walks of length three on the
Markov graph. Now comput&® and look at the
entries. Is there any relation between the terms in
T2 and all the walks?

c) Show thafT}} is the number of walks from point
i to point j in n steps. (Hint: one might use the
method of induction.)
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d) Try to estimate the numbai(n) of walks of lengt
n for this simple Markov graph.

e) The topological entropj measures the rate
exponential growth of the total number of w:
N(n) as a function ofh. What is the topologic
entropy for this Markov graph?

. 3-disk prime cycle counting. A prime cycle
of lengthn, is a single traversal of the orbit; its la
is a non-repeating symbol string af, symbols. F
example 12 is prime, bu2121 is not, since it i¥1 =
12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, prime
cycles of length 2, 3,4, 5, 6; -.

“Golden mean” pruned map. Continuation ¢
exercisel0.6 Show that the total number of peric
orbits of lengthn for the “golden mean” tent map is

1+ VB +(1- VB
2n .

For continuation, see exercisé7.2
exercisel3.8

Alphabet {0,1}, prune _00. . The Markov diagra
figure 10.13 (b) implements this pruning rule. T
pruning rule implies that “0” must always be brack
by “1"s; in terms of a new symbol 2= 10, th
dynamics becomes unrestricted symbolic dynamic:
with binary alphabetl,2}. The cycle expansiori@.13
becomes

See al

/¢ = (1-t)(1-t2)(1—ta2)(1— t112)(13.35
1-t1—tp— (tiz - tat)

=(t112 = taot) — (tiz2 — tr2t) . ..

In the original binary alphabet this corresponds to:
17 = 1-t;—tyo— (t110— tatio)
—(t1110~— ta1ots) — (t11010— t110ti6)-3-36

This symbolic dynamics describes, for example,
maps with the golden mean winding number.
unimodal maps this symbolic dynamics is realize
the tent map of exercisk3.6

A unimodal map example. Consider a unimoc

map, this Figure (a):

fix)

025 05

0o

0025 05 075 10 1
X
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13.9.

13.10.

13.11.

13.12.

Figure: (a) A unimodal map for which the critical point
maps into the right hand fixed point in three iterations,
and (b) the corresponding Markov graph (K.T. Hansen).
for which the critical point maps into the right hand

fixed point in three iterationsS* = 100L. Show that
the admissible itineraries are generated by the Markov
graph of the Figure (b).

(Kai T. Hansen)

Glitches in shadowing:*  Note that the combination
tooor1 Minus the “shadowtptpe11 in (13.17 cancels
exactly, and does not contribute to the topological zeta
function (13.19. Are you able to construct a smaller
Markov graph than figur&3.3(e)?

Whence Mobius function?  To understand where the
Mobius function comes from consider the function

f(n =>"g(d)

dn

(13.37)

whered|n stands for sum over all divisotsof n. Invert
recursively this infinite tower of equations and derive the
Mbbius inversion formula

g(n) = " u(n/d)f(d)

din

13.13.

(13.38)

Counting prime binary cycles.
comfortable with Mdbius inversion reproduce the results
of the second column of tabli3.5.2

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical

system with a complete binary tree, arepeller mi&p§ 13.15.

with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
to for each 0, and factdg for each 1 in its symbol string.
Prove that the transition matrix traceis3(5 collapse to
tr(TK) = (to + ), and ¥¢ is simply

[Ja-t)=1-to-t (13.39)
p
Substituting £3.39 into the identity
1-tp?
l_[(l+tp) = 1—[ 1-t,
P P
we obtain 13.16.

1-2-2
1-to—-t

l_[ (1+tp)

p
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2toty

= 1l+to+th+ ——m—
0T T -t

= l+t0+11

N n=2\ 0k
) z(k_l)totl.

n=2 k=1

n-1

Hence forn > 2 the number of terms in the cumulant
expansion withk 0's andn — k 1's in their symbol
sequencesis(273).

In order to count the number of prime cycles in each
such subset we denote wiM,x (n = 1,2,...;k =
{0,1} forn=1; k=1,...,n-1 for n > 2) the number
of prime n-cycles whose labels contaknzeros. Show
that

Mo = Mgy =1, n>2,k=1,...,n-1

20

m|

NMnk

n
k

where the sum is over ath which divide bothn andk.
(Continued as exercisis.7.)

Logarithmic periodicity of In Ny*. Plot InN,, — nh
for a system with a nontrivial finite Markov graph. Do
you see any periodicity? If yes, why?

4-disk pinball topological zeta function.  Show that
the 4-disk pinball topological zeta function (the pruning
affects only the fixed points and the 2-cycles) is given by

dsk _ gy (=2
Uﬁ%p - (l 32) (l _ 2)3(1 _ 22)3
= (1-39)(1+2°
= 1-62-82-37. (13.40)
N-disk pinball topological zeta function. Show

that for anN-disk pinball, the topological zeta function
is given by

1/4}“(‘;';“5k (1-(N-1)2 x
(1 _ ZZ)N(Nfl)/Z
(1-2N-1(1- ZZ)(N—l)(N—Z)/Z

A-(N-1)2 @1+ .(13.41)

The topological zeta function has a raot = N - 1,
as we already know it should fromi§.29 or (13.19.
We shall see in secl9.4that the other roots reflect the
symmetry factorizations of zeta functions.

Alphabet {a, b,c}, prune _ab_ . The pruning rule
implies that any string of “b”s must be preceeded by a
“c"; so one possible alphabet {a, cb¥; b}, k=0,1,2. ..

As the rule does not prune the fixed point it is
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explicitly included in the list.
(13.13 becomes

1Y = (1-ta)1-tp)(1-t)x

(l - tch)(l - tac)(l - tcbh) s
1—ta— 1ty — tc + taly — (ten — tetp)
_(tac - tatc) - (tcbb - tcbtb) cee

The cycle expansion Note that this says that 1, 23, 2, 2113 are

fundamental cycles; not all cycles up to length 7
needed, only 2113.

(b) Show that the topological zeta function is

1dtop=(1-2(A-z2-Z -2 + 2 - 7') (13.4E

and check that it yields the exact value of the en

The dfect of the_ab_ pruning is essentially to unbalance h=0522737642...
the 2 cycle curvaturp—tatp; the remainder of the cycle13.20. Topological zeta function for alphabet{0,1}, prune
expansion retains the curvature form. -100Q, -0010Q, -0110Q. (continuation

13.17. Alphabet {0,1}, prune nrepeats of “0" _000. .00 exercisel1.9 Show that topological zeta function is

This is equivalent to then symbol alphabetl, 2,
.., N} unrestricted symbolic dynamics, with symbols
corresponding to the possible .1®M0 block lengths:

(Zli?icl)éfelc%()n’qé-s" n=100..00. The cycle expansmrla.zl. Alphabet {0,1}, prune only the fixed point0.  Thi

is equivalent to thanfinite alphabet{1, 2, 3, 4,...

1/¢ = 1-ti—tp . . ~ty—(tro—titp) . . .—(tin—taty) . .. .(13.42)unrestricted symbolic dynamics. The prime cy

are labeled by all non-repeating sequences of int

ordered lexically:t,,n > 0; tmp, tymn -..,N > m > 0

tmn T >N>m> 0,...(see sec3.3. Now the numb
of fundamental cycles is infinite as well:

1/¢ = (1-to) (1~ t1 — t2 — to3 — t113)
for unrestricted 4-letter alphabft, 2, 23 113.

(13.46

13.18. Alphabet {0,1}, prune -100Q, -0010Q, -0110Q.
Show that the topological zeta function is given by

1i=(1-to)(1-ti—to—tozg—tung  (13.43)

X ) 1/( = 1- Ztn - Z (tmn*tntm)
with the unrestricted 4-letter alphabft, 2, 23 113. o om0
Here 2, 3, refer to 10, 100 respectively, as in _ _
exercisel3.17 Z (tmnn = Gntr)
n>m>0
13.19. Alphabet {0,1}, prune _100Q, -0010Q, _0110Q, — Z (tmnn — tmntn) (13.47
_10011. The first three pruning rules were NS0
incorporated in the preceeding exercise. _ Z (T ———
(a) Show that the last pruning rul#0011 leads (in a r>n>ms0
way similar to exercisé3.19 to the alphabe21¥, 23, —tmrtn — tmtar + tmtaty) -+ (13.48

21¥113 1,0}, and the cycle expansion . . )
As shown in tabl€3.3 this grammar plays an import

1/¢ = (1-to)(1 -ty —to —trz+tatoz —t2113)(13.44) role in description of fixed points of marginal stabili
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