Chapter 21

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovit)

sometimes very well. The question is: Why? And it still is.eTteuristic
manipulations of chapters6 and 6 were naive and reckless, as we are
facing infinite-dimensional vector spaces and singulagrdl kernels.

A S WE SHALL SEg, the trace formulas and spectral determinants work well,

We now outline the key ingredients of proofs that put thedratcd determinant
formulas on solid footing. This requires taking a closerkl@i the evolution
operators from a mathematical point of view, since up to nosvhave talked
about eigenvalues without any reference to what kind of &tfan space the
corresponding eigenfunctions belong to. We shall restrictonsiderations to the
spectral properties of the Perron-Frobenius operator fgganas proofs for more
general evolution operators follow along the same linesatMte refer to as a “the
set of eigenvalues” acquires meaning only within a pregispécified functional
setting: this sets the stage for a discussion of the andyypcooperties of spectral
determinants. In exampl&l.1we compute explicitly the eigenspectrum for the
three analytically tractable piecewise linear exampleselct.21.3we review the
basic facts of the classical Fredholm theory of integralagigns. The program
is sketched in sec21.4 motivated by an explicit study of eigenspectrum of
the Bernoulli shift map, and in se@.1.5generalized to piecewise real-analytic
hyperbolic maps acting on appropriate densities. We shova e@ery simple
example that the spectrum is quite sensitive to the regularoperties of the
functions considered.

For expanding and hyperbolic finite-subshift maps anatytieads to a very
strong result; not only do the determinants have betterycidy properties than
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CHAPTER 21. WHY DOES IT WORK? 348

the trace formulas, but the spectral determinants areesirait as entire functions

in the complexs plane.
P P [remark 21.1]

The goal of this chapter is not to provide an exhaustive ve\oé the rigorous
theory of the Perron-Frobenius operators and their spelgtarminants, but rather
to give you a feeling for how our heuristic considerations ba put on a firm
basis. The mathematics underpinning the theory is both dnaddorofound.

If you are primarily interested in applications of the péimorbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 12, p. 195
21.1 Linear maps. exact spectra

We start gently; in exampl2l.1we work out theexacteigenvalues and eigenfunctions
of the Perron-Frobenius operator for the simplest examiplmstable, expanding
dynamics, a linear & map with one unstable fixed point. . Ref] shows that

this can be carried over -dimensions. Not only that, but in exam@é.5we
compute the exact spectrum for the simplest example of andigad system with
aninfinity of unstable periodic orbits, the Bernoulli shift.

Example 21.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 17.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f(x) = AX, Al >1,

and only one fixed point X* = 0. The action of the Perron-Frobenius operator (14.10) is

L) = f dxs(y — AX) ¢(x) = Kﬂay/m. (21.1)

From this one immediately gets that the monomials Y are eigenfunctions:

1
Lyk—myk, k=0,1,2,... (21.2)

What are these eigenfunctions? Think of eigenfunctionsefSchrodinger
equation:k labels thekth eigenfunction® in the same spirit in which the number
of nodes labels thkth quantum-mechanical eigenfunction. A quantum-meclanic
amplitude with more nodes has more variability, hence adridgimetic energy.
Analogously, for a Perron-Frobenius operator, a higheigenvalue 1JA|AK is
getting exponentially smaller because densities thatwemme rapidly decay more
rapidly under the expanding action of the map.
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CHAPTER 21. WHY DOES IT WORK? 349

Example 21.2 The trace formula for a single fixed point: The eigenvalues A™1
fall off exponentially with k, so the trace of L is a convergent sum

= 1
“_KZ ~ AL Al) f0y -1

in agreement with (16.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (16.10):

>y zek > 7 1
= o — 21.3
; 1-zex ; I-AT T A (21.3)

The left hand side of41.3 is a meromorphic function, with the leading zero
atz=|A|. So what?

Example 21.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

h@ = 2=2

with a, b real and positive and a < b. Within the spectral radius |Z < b the function h
can be represented by the power series

o

h@ =" o,

k=0

where oo = a/b, and the higher order coefficients are given by oj = (a - b)/ bi+l,
Consider now the truncation of order N of the power series

Za-b)(1-2V/bN)
P2(1— z/b)

N
@ = ) o = 2+

k=0

Let zy be the solution of the truncated series hy(zy) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*1, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading gbke leéading
eigenvalue off) from a finite truncation of a trace formula converges exptady,
and (2) the non-leading eigenvaluesffie outside of the radius of convergence
of the trace formula and cannot be computed by means of suté expansion.
However, as we shall now see, the whole spectrum is reachahle extra &ort,
by computing it from a determinant rather than a trace.

Example 21.4 The spectral determinant for a single fixed point: The spectral
determinant (17.3) follows from the trace formulas of example 21.2:

00

VA
det(l—zz)zﬂ( |A|Ak) Z( 9", t=r (21.4)

k=0
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CHAPTER 21. WHY DOES IT WORK? 350

where the cummulants Qy are given explicitly by the Euler formula [exercise 21.3]

1 A—l A—n+1
1-AT1-A2 ~1-A

Qn = (21.5)

The main lesson to glean from this simple example is thatdinenculantsQy,
decay asymptoticalljasterthan exponentially, a& ""-1/2, For example, if we
approximate series such &sl(4) by the first 10 terms, the error in the estimate of
the leading zero is' 1/A0!

So far all is well for a rather boring example, a dynamicateyswith a single
repelling fixed point. What about chaos? Systems where th#auof unstable
cycles increases exponentially with their length? We nom to the simplest
example of a dynamical system with an infinity of unstableqakc orbits.

Example 21.5 Bernoulli shift: Consider next the Bernoulli shift map

X > 2X (mod 1), xe[0,1]. (21.6)

The associated Perron-Frobenius operator (14.9) assambles p(y) from its two preimages

£o0) = 3p(2)+ gp(&;) | (21.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B(X). These polynomials are
generated by the Taylor expansion of the generating function

text

g(xvt) = et_l

= tk 1
D B B =1, B =x-3....
k=0 ’

The Perron-Frobenius operator (21.7) acts on the generating function G as

1[teV2  tel/2ev? t e¥? - (t/2)
L60xY) = §(m+ﬁ) ST ; B

hence each By(x) is an eigenfunction of £ with eigenvalue 1/2~.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1)~* for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

det(1- L) = exp(— D % znzj 1] =11 (1— Z—Zk) : (21.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
1/2n, ...
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CHAPTER 21. WHY DOES IT WORK? 351

The Bernoulli map spectrum looks reminiscent of the singledipoint spectrum
(21.2), with the diference that the leading eigenvalue here is 1, rather tfian 1
The diference is significant: the single fixed-point map is a repeléh escape
rate (L.6) given by the/ leading eigenvalug = In|A|, while there is no escape
in the case of the Bernoulli map. As already noted in disowmssf the relation
(17.23, for bound systems the local expansion rate (hef&|ls In 2) is balanced
by the entropy (here In 2, the log of the number of preimdggs yielding zero
escape rate.

[section 17.4]

So far we have demonstrated that our periodic orbit formatascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixeaint, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We checkamulas on a
hyperbolic map next.

Example 21.6 The simplest of 2- d maps - a single hyperbolic fixed point: We
start by considering a very simple linear hyperbolic map with a single hyperbolic fixed
point,

f(X) = (fu(x1, X2), fa(X1, X2)) = (AsXy, AuX2), O <A <1, |Ay>1.

The Perron-Frobenius operator (14.10) acts on the 2-d density functions as

1
Lp(X1, X2) = mp(xl//\s, X2/ Au) (21.9)

What are good eigenfunctions? Cribbing the 1-d eigenfunctions for the stable, contracting
Xy direction from example 21.1 is not a good idea, as under the iteration of L the
high terms in a Taylor expansion of p(X1, X2) in the x; variable would get multiplied
by exponentially exploding eigenvalues 1/ A'g. This makes sense, as in the contracting
directions hyperbolic dynamics crunches up initial densities, instead of smoothing them.
So we guess instead that the eigenfunctions are of form

Pl (X1, X0) = X2/ X ki, ke =0,1,2,..., (21.10)

a mixture of the Laurent series in the contraction X direction, and the Taylor series in
the expanding direction, the X, variable. The action of Perron-Frobenius operator on
this set of basis functions

Ky

o Ag
Lok, (X1, X2) = T~ A_EZ Grako (X1, X2) o = As/|A4|

is smoothing, with the higher ki, ko eigenvectors decaying exponentially faster, by
A';l/AEZ+l factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (17.9)) that the trace of L indeed equals
1/|det@ - M)| = 1/|(1 - Ay)(1— Ag)|, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized
around the fixed point of form f(Xy...., Xg) = (A1X1, A2Xo, ..., AgXq).

So far we have checked the trace and spectral determinanufas derived
heuristically in chapter$6and17, but only for the case of 1- and@linear maps.
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CHAPTER 21. WHY DOES IT WORK? 352

But for infinite-dimensional vector spaces this game isdtdawvith dangers, and
we have already been mislead by piecewise linear examptespectral confusions:
contrast the spectra of examglé. 1and exampld5.2with the spectrum computed
in examplel6.l

We show next that the above results do carry over to a sizédss of piecewise
analytic expanding maps.

21.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes fkastiee way to look at
operators is through their matrix representations. Eimiubperators are moving
density functions defined over some state space, and asengg@re can implement
this only numerically, the temptation is to discretize ttaesspace as in sedt4.3
The problem with such state space discretization appreéttia they sometimes
yield plainly wrong spectra (compare exampfe2with the result of exampl#6.]),
so we have to think through carefully what is it that rgally measure.

An expanding mapf (X) takes an initial smooth density,(X), defined on a
subinterval, stretches it out and overlays it over a langgrval, resulting in a new,
smoother density,,1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

AOEDY ¢(nk’(0)% b= Y6005
k=0 ' =0 '

#80= [ dxa%y - (], . x=10),
and substitute the two Taylor series inial(6):

Dna(y) = (L) ) = fM dxs(y — F(¥) én(x)-

The matrix elements follow by evaluating the integral

(21.11)

of xK
La= 2L f dx £y, 95
ay° K|

we obtain a matrix representation of the evolution operator

k 4
X

fde(y,X)Ez E %Lk/k, kK =012...
k!
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CHAPTER 21. WHY DOES IT WORK? 353

which maps thet component of the density of trajectorieg(x) into the y
component of the densii, 1(y) one time step later, withi = f(X).

We already have some practice with evaluating derivatVeg)) = %5(y) from
sect.14.2 This yields a representation of the evolution operatotered on the
fixed point, evaluated recursively in terms of derivativethe mapf:

o X
fdxé (x—f(x))w
1(d 1 \'x
m(d_xwx)) Kt

The matrix elements vanish f@r < k, soL is a lower triangular matrix. The
diagonal and the successivéf-diagonal matrix elements are easily evaluated
iteratively by computer algebra

(L)ex

(21.12)
x=f(x)

x=f(X)

Lo = 1 L _ (k+2t”
kk = |A|Ak s k+l,k - 2k| |A|Ak+2 ’
For chaotic systems the map is expanding,> 1. Hence the diagonal terms drop

off exponentially, as JA[<1, the terms below the diagonal falff@ven faster, and
truncatingL to a finite matrix introduces only exponentially small escor

The trace formulaq1.3 takes now a matrix form

zL L
trl—zL _trl—zL . (21.13)

In order to illustrate how this works, we work out a few exaa®l

In example21.7we show that these results carry over to any analytic single-
branch 1d repeller. Further examples motivate the steps that leacptoat that
spectral determinants for general analytic 1-dimensiexabnding maps, and -
in sect.21.5 for 2-dimensional hyperbolic mappings - are also entiretions.

Example 21.7 Perron-Frobenius operator in a matrix representation: As in

example 21.1, we start with a map with a single fixed point, but this time with a nonlinear

piecewise analytic map f with a nonlinear inverse F = 1, sign of the derivative
o = o(F’) = F’/|F’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = w*,

Lo(y) = de5(y— f(x))8(X) = o F'(y) ¢(F(Y))-

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

IF(9l<0<1 and |F'(29<C<o for |14 <1, (21.14)
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CHAPTER 21. WHY DOES IT WORK? 354

f(w)
0.

Figure 21.1: A nonlinear one-branch repeller with a %
single fixed pointv*.

and expand ¢ in a polynomial basis with the Cauchy integral formula

I Y ) _ £ dw ¢w)
¢(z)_nz=(:)z”¢n_ omi o w_z" "= P oy wm

Combining this with (21.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

dw o F'(W)(FW))"

- T (21.15)

LoW) = > WL, Linn =
mn

Taking the trace and summing we get:

dw o F’(w)
L= tm= Do e Fg
n>0
This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).

Hence .
[exercise 21.6]

CoFw) 1
" LT Ew) T TPw -1

This super-exponential decay of cummula@is ensures that for a repeller
consisting of a single repelling point the spectral detaemt 1.4 is entire in
the complexz plane.

In retrospect, the matrix representation method for sgltfie density evolution
problems is eminently sensible — after all, that is the wag solves a close
relative to classical density evolution equations, ther&timger equationWhen
available, matrix representations férenable us to compute many more orders
of cumulant expansions of spectral determinants and mamg gigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas sucfild@s2 imply that
the dynamical zeta function is a meromorphic function. Thactical import of
this observation is that it guarantees that finite ordernegts of zeroes of dyn-
amical zeta functions and spectral determinants convergenentially, or - in
cases such a1.4 - super-exponentially to the exact values, and so the cycle
expansions to be discussed in chagigrepresent &rue perturbativeapproach to
chaotic dynamics.
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CHAPTER 21. WHY DOES IT WORK? 355

Before turning to specifics we summarize a few facts abowgsdal theory
of integral equations, something you might prefer to skipfiest reading. The
purpose of this exercise is to understand that the Fredhudwory, a theory that
works so well for the Hilbert spaces of quantum mechanics aat necessarily
work for deterministic dynamics - the ergodic theory is mhehnder.

fast track:
W sect. 21.4, p. 357
21.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.

—John BunyanPilgrim’s Progress
y
J The Perron-Frobenius operator

L6(3) = f dys(x— 1(y)) ¢()

has the same appearance as a classical Fredholm integralarpe

Ko(x) = fM dy T (x Y)e(y). (21.16)

and one is tempted to resort too classical Fredholm theooyder to establish
analyticity properties of spectral determinants. Thishpat enlightenment is
blocked by the singular nature of the kernel, which is a ifistion, whereas the
standard theory of integral equations usually conceredf igth regular kernels
K(x,y) € L2(M?). Here we briefly recall some steps of Fredholm theory, teefor
working out the example of examphd.5

The general form of Fredholm integral equations of the sedamd is
o9 = [ ayrouyet) + €09 (21.17)

where&(x) is a given function ir.?(M) and the kerneK (x,y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(21.16, acting on the Hilbert spade?(M): the fundamental property that follows
from theL?(Q) nature of the kernel is that such an operataois\pact that is close
to a finite rank operator.A compact operator has the propkatyfor everys > 0
only afinite number of linearly independent eigenvectors exist comedmg to
eigenvalues whose absolute value excéeds we immediately realize (figu&s.4)
that much work is needed to bring Perron-Frobenius oper@tto this picture.
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CHAPTER 21. WHY DOES IT WORK? 356
We rewrite £1.17) in the form
Ty =¢, 7T=1-%. (21.18)

The Fredholm alternative is now applied to this situatiofiodlews: the equation
T¢ = & has a unique solution for eveey e L2(M) or there exists a non-zero
solution of 7 ¢p = 0, with an eigenvector ok corresponding to the eigenvalue 1.
The theory remains the same if insteadoive consider the operatar, = 1-AK
with 2 # 0. AsK is a compact operator there is at most a denumerable g¢bof
which the second part of the Fredholm alternative holdsrtdpam this set the
inverse operator (417°)7! exists and is bounded (in the operator sense). When
is suficiently small we may look for a perturbative expression fatsan inverse,
as a geometric series

(1-2%K)t = 142K+ 22K? + - = 1+ AW, (21.19)

whereK™ is a compact integral operator with kernel

K(xy) = anl dz ...dz 1 K(Xz1) - K(zn-1.Y) »

andW is also compact, as it is given by the convergent sum of cohqparators.
The problem with 21.19 is that the series has a finite radius of convergence,
while apart from a denumerable set . the inverse operator is well defined.
A fundamental result in the theory of integral equationsststs in rewriting the
resolving kernefW as a ratio of twanalytic functions ofa

D(X,Y; )

W) = =g

If we introduce the notation

X, K(X,¥1) ... K(X1,¥n)
Yi... ) B

( X1..
K v
" (]<(Xﬂ5 yl) e (]((th yﬂ)

we may write the explicit expressions

- AN z...2
_ _1\n 1
D(1) = 1+;(1) - Mndzl...dzn‘K(Zlmzn)
-2 e
= exp|- —tr?() (21.20)
2

_ X o (=A)" X z ... Z
D(X,Y; ) W(y)+n§l ~ andzl...dzﬂ((y 2 ...z
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CHAPTER 21. WHY DOES IT WORK? 357

The quantityD() is known as the Fredholm determinant (s&&.24):it is an
entire analytic function oft, andD(1) = 0 if and only if 1/4 is an eigenvalue of
K.

Worth emphasizing again: the Fredholm theory is based ondhmpactness
of the integral operator, i.e., on the functional propertisummability) of its
kernel. As the Perron-Frobenius operator is not compaetetis a bit of wishful
thinking involved here.

21.4 Analyticity of spectral deter minants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrablée", or square-integrablé? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opeaatb in both cases
the constant functiogy = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention orL.? we also have a family df* eigenfunctions,

1

TP (21.21)

do(y) = > exp(2riky)

k#0

with complex eigenvalue 2, parameterized by complexwith Re > 0. By
varying 6 one realizes that such eigenvalues fill out the entire usi.diSuch
essential spectrunthe casek = 0 of figure 21.4, hides all fine details of the
spectrum.

What's going on? Spacés andL? contain arbitrarily ugly functions, allowing
any singularity as long as it is (square) integrable - andethg no way that
expanding dynamics can smooth a kinky function with a ndfedéntiable singularity,
let's say a discontinuous step, and that is why the eigetrigpads dense rather
than discrete. Mathematicians love to wallow in this kindnedick, but there
is no way to prepare a nowhereffdrentiableL! initial density in a laboratory.
The only thing we can prepare and measure are piecewise Isifreat-analytic)
density functions.

For a bounded linear operatc on a Banach spac®, the spectral radius
is the smallest positive numbpgpec such that the spectrum is inside the disk of
radiuspspec While the essential spectral radius is the smallest pesiiumber
PessSuch that outside the disk of radipsssthe spectrum consists only of isolated

eigenvalues of finite multiplicity (see figugd.4). fexercise 21.5]

We may shrink the essential spectrum by letting the Perrobdnius oper-
ator act on a space of smoother functions, exactly as in teebcanch repeller
case of sect21.1. We thus consider a smaller spac&;®, the space ok times
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CHAPTER 21. WHY DOES IT WORK? 358

differentiable functions whoskth derivatives are Holder continuous with an
exponent O< a < 1: the expansion property guarantees that such a space is
mapped into itself by the Perron-Frobenius operator. Irsthip 0< Ref < k+ «
mostgy will cease to be eigenfunctions in the spae®; the functiong,, survives

only for integer valued = n. In this way we arrive at a finite set ddolated
eigenvalues 1271, ..., 27K and an essential spectral raditggs= 2+,

We follow a simpler path and restrict the function space dueiher, namely
to a space of analytic functions, i.e., functions for whibl Taylor expansion is
convergent at each point of the interval] IQ. With this choice things turn out easy
and elegant. To be more specific, ¢ebe a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedR)12 < R so all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift 21.6), the corresponding action of the Perron-Frobenius operat
is given by Lsh(y) = o F5(y) ho Fs(y), using the Cauchy integral formula along
the 9D boundary contour:

dw  h(W)Fg(y)

Lshy) = o i ODW——FS(y) .

(21.22)

For reasons that will be made clear later we have introdusegnar = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shéft= 1,

but in general one is not allowed to take absolute valuesiasctiuld destroy
analyticity. In the above formula one may also replace thealno D by any
domaincontaining [Q 1] such that the inverse branches maps the closuieiotfo

the interior ofD. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevemw € 9D andy € Cl D. The problem

is now reduced to the standard theory for Fredholm detemsnaect21.3 The
integral kernel is no longer singular, traces and determiare well-defined, and
we can evaluate the trace 6 by means of the Cauchy contour integral formula:

dw oF’'(w)

tr = — .
Lr 21 w— F(w)

Elementary complex analysis shows that sikcenaps the closure db into its

own interior,F has a unique (real-valued) fixed pokitwith a multiplier strictly

smaller than one in absolute value. Residue calculus thrergfelds _
[exercise 21.6]

CoF(x) 1
WLr = TR P~

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 21.8 Perron-Frobenius operator in a matrix representation: As in
example 21.1, we start with a map with a single fixed point, but this time with a nonlinear
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piecewise analytic map f with a nonlinear inverse F = 1, sign of the derivative
o =0o(F)=F/|F

Lo(2) = f dx(z— f(X) () = o F'(2 ¢(F(2)-
Assume that F is a contraction of the unit disk, i.e.,

IF(@|<0<1 and |F'(29|<C<o for |74 <1, (21.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

_ _paw oW - _ fdw g(w)
¢(z)_Zz”¢n_ 27 wz" "= P wn

n>0

Combining this with (21.22), we see that in this basis L is represented by the matrix

dw o F/(W)(Fw))"

- e (21.24)

~£¢(W) = Z V\/ml-mn(ﬁn . Lmn=
mn

Taking the trace and summing we get:

) _ rdw o F'(w)
trL=) Lm= 2 W—FW)’

n>0

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence
tr £ o F'(w) _ 1 .
1-F(w) [f(w) -1

We worked out a very specific example, yet our conclusiondeageneralized,
provided a number of restrictive requirements are met bydfhreamical system

under investigation: .
[exercise 21.6]

1) the evolution operator imultiplicativealong the flow,

2) the symbolic dynamics isfiite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) iseal analytig i.e., it has a piecewise analytic
continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfiteldynamical
systems that we actually desire to understand. Still, theyat devoid of physical
interest; for example, nice repellers like our 3-disk garhpiball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topexs a finite
matrix in an appropriate basis; properties 3 and 4 enabl® lmund the size
of the matrix elements and control the eigenvalues. To ses wdn go wrong,
consider the following examples:
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1 ; 1
f(x) f(x)
0.5- ‘ B 0.5~
Figure 21.2: (a) A (hyperbolic) tent map without 0 ‘ 0 ‘
a finite Markov partition. (b) A Markov map with 0 05 1 0 , 95
a marginal fixed point. @ (b)

Property 1 is violated for flows in 3 or more dimensions by tbkofving
weighted evolution operator

Ly, %) = IA'0Ps(y - (%)

where Al(x) is an eigenvalue of the fundamental matrix transverse eoflthw.
Semiclassical quantum mechanics suggest operators édthisvith3 = 1/2.The
problem with such operators arises from the fact that whasidering the fundamental
matriceslay = JaJp fOr two successive trajectory segmeatmndb, the corresponding
eigenvalues are in genemabt multiplicative, Aap # AaAp (Unlessa, b are iterates

of the same prime cyclp, soJaJp = J[f‘”b). Consequently, this evolution operator

is not multiplicative along the trajectory. The theoremguiee that the evolution

be represented as a matrix in an appropriate polynomiakbasd thus cannot

be applied to non-multiplicative kernels, i.e., kernelatttio not satisfy the semi-
group propertyL! £t = £+,

Property 2 is violated by the dtent map (see figurgl.2(a))
fX)=a(l - 11-2xX), 1/2<a<1l.

All cycle eigenvalues are hyperbolic, but in general théaai pointx, = 1/2 is
not a pre-periodic point, so there is no finite Markov pastitend the symbolic
dynamics does not have a finite grammar (see skct for definitions). In
practice, this means that while the leading eigenvalug ofight be computable,
the rest of the spectrum is very hard to control; as the paemds varied, the
non-leading zeros of the spectral determinant move wilbdtyud

Property 3 is violated by the map (see fig@rfe2 (b))

[ x+2x | xelg=10,3]
f()‘)‘{2—2x , xelp=[41]

Here the interval [01] has a Markov partition into two subintervdigandly, and
f is monotone on each. However, the fixed poinkat 0 has marginal stability
Ao = 1, and violates condition 3. This type of map is called “intétent” and
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necessitates much extra work. The problem is that the dysamthe neighborhood
of a marginal fixed point is very slow, with correlations dgiog as power laws
rather than exponentially. We will discuss such flows in ¢bap3.

Property 4 is required as the heuristic approach of chdgitéaces two major
hurdles:

1. The trace16.9 is not well defined because the integral kernel is singular.

2. The existence and properties of eigenvalues are by nosobzar.

Actually, property 4 is quite restrictive, but we need it tporesent approach,
so that the Banach space of analytic functions in a disk sgpved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter akpeoblems. First,
in higher dimensions life is not as simple. Multi-dimensibresidue calculus is
at our disposal but in general requires that we find poly-dosédirect product
of domains in each coordinate) and this need not be the casen8, and perhaps
somewhat surprisingly, the ‘counting of periodic orbiteépents a diicult problem.
For example, instead of the Bernoulli shift consider theldiog map of the circle,
X — 2x mod 1,x € R/Z. Compared to the shift on the interval, [ the only
difference is that the endpoints 0 and 1 are now glued togetherauBe these
endpoints are fixed points of the map, the number of cyclesrgithn decreases
by 1. The determinant becomes:

n_
det(1- z£) = exp(— D % ;n - 1] =1-2 (21.25)

n=1

The valuez = 1 still comes from the constant eigenfunction, but the Beliho
polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
of these facts, however, arditiult if one sticks to the space of analytic functions.

Third, our Cauchy formulaa priori work only when considering purely expanding
maps. When stable and unstable directions co-exist we loaesort to stranger
function spaces, as shown in the next section.

21.5 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.

—Federico Bonnettd3anach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followaggox: If f is an
area-preserving hyperbolic and real-analytic map of, fangple, a 2-dimensional
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torus then the Perron-Frobenius operator is unitary ongheesofL? functions,
and its spectrum is confined to the unit circle. On the otherdhavhen we
compute determinants we find eigenvalues scattered armsidkithe unit disk.
Thinking back to the Bernoulli shift examp&l.5 one would like to imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make thergpestnaller so this
is obviously not what happens. Instead one needs to inteodtimixed’ function
space where in the unstable direction one resorts to andlyictions, as before,
but in the stable direction one instead considers a ‘duaespd distributions on
analytic functions. Such a space is neither included in nolutlesL? and we
have thus resolved the paradox. However, it still remainset@een how traces
and determinants are calculated.

The linear hyperbolic fixed point exampl.6is somewhat misleading, as
we have made explicit use of a map that acts independenthgaloe stable
and unstable directions. For a more general hyperbolic tigpe is no way to
implement such direct product structure, and the wholeraemi falls apart. Her
comes an idea; use the analyticity of the map to rewrite theRd-robenius oper-
ator acting as follows (where denotes the sign of the derivative in the unstable
direction):

B o h(w, wp) dwy dwe
2= § b ot 1 o O

Here the functionp should belong to a space of functions analytic respectively
outsidea disk andinside a disk in the first and the second coordinates; with
the additional property that the function decays to zerohasfirst coordinate
tends to infinity. The contour integrals are along the botiedeof these disks.

It is an exercise in multi-dimensional residue calculusedfy that for the above
linear example this expression reducestb.9). Such operators form the building
blocks in the calculation of traces and determinants. Onguoave the following:

Theorem: The spectral determinant for 2-d hyperbolic analytic mapeiitire. remark 21.8]

The proof, apart from the Markov property that is the sameoastie purely
expanding case, relies heavily on the analyticity of the malpe explicit construction
of the function space. The idea is to view the hyperbolicgyaaross product of a
contracting map in forward time and another contracting mapackward time.

In this case the Markov property introduced above has to akoehted a bit.
Instead of dividing the state space into intervals, onedéwit into rectangles. The
rectangles should be viewed as a direct product of inteifgag horizontal and
vertical), such that the forward map is contracting in, fxarmple, the horizontal
direction, while the inverse map is contracting in the \eaitdirection. For Axiom

A systems (see rema#k..8 one may choose coordinate axes close to the gtaidtable
manifolds of the map. With the state space divided MiectanglegMaq, Mo, ..., My},
M = Iihx |Y one needs a complex extenshx DY, with which the hyperbolicity
condition (which simultaneously guarantees the Markoperty) can be formulated
as follows:
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Figure 21.3: For an analytic hyperbolic map,
specifying the contracting coordinaig, at the initial
rectangle and the expanding coordinatat the image
rectangle defines a unique trajectory between the two
rectangles. In particulamy, and z, (not shown) are
uniquely specified.

Analytic hyperbolic propertyEither f(AM;) N Int(M;) = 0, or for each pair
Wh € CI(Dih), Z, € CI(D‘J.’) there exist unique analytic functions wf, z,; W, =
Wy(Wh, 2,) € Int(D}), z, = zy(Wh,2) € Int(D'j‘), such thatf (wh, wy) = (z, 2).
Furthermore, ifv, € I andz, € I, thenw, € I andz, € I;‘ (see figure21.3).

In plain English, this means for the iterated map that onkaogs the coordinates
Z, Z, at timen by the contracting pais,, wy, wherew, is the contracting coordinate
at timen + 1 for the ‘partial’ inverse map.

In two dimensions the operator i21.26 acts on functions gnalytic outside
Dih in the horizontal direction (and tending to zero at infinignd insideDY in
the vertical direction. The contour integrals are pregisdbng the boundaries of
these domains.

rbolicand the
1 that the trace

A map f satisfying the above
theorem states that the associate
formula (L6.9) is correct.

Examples of analytic hyperbalic maps are provided by snmallydic perturbations

of the cat map, the 3-disk repeller, and the 2-d baker’'s map.

21.6 Thephysicsof eigenvalues and eigenfunctions

,
J We appreciate by now that any honest attempt to look at thetrgpe
properties of the Perron-Frobenius operator involves maathematics, but the
effort is rewarded by the fact that we are finally able to conthel &analyticity
properties of dynamical zeta functions and spectral detemts, and thus substantiate
the claim that these objects provide a powerful and welkétmd perturbation
theory.

Often (see chaptet5) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate fromedieepor, for a general
evolution operator, formulas for expectation values ofobables and their higher
moments. Also the eigenfunction associated to the leadiggnealue has a physical
interpretation (see chaptér): it is the density of the natural measures, with
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singular measures ruled out by the proper choice of the fumapace. This
conclusion is in accord with the generalized Perron-Frafsetheorem for evolution
operators. In the finite dimensional setting, such a theadeformulated as

follows:
[remark 21.7]

e Perron-Frobenius theorem: Let Lj; be a nonnegative matrix, such that
somen exists for which [");; > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate meépasitive

2. The corresponding eigenvector (defined up to a constast)énnegative
coordinates

We may ask what physical information is contained in eigkres beyond the
leading one: suppose that we have a probability conservistgs (so that the
dominant eigenvalue is 1), for which the essential specadius satisfies <
Pess< O < 1 on some Banach spa&e Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiusVe denote byiy, 12..., Am
the eigenvalues outside of this disk, ordered by the sizéaif fabsolute value,
with 11 = 1. Then we have the following decomposition

M
Lo = ) Awilivie + PLy (21.27)
i=1

whenlL; are (finite) matrices in Jordan canomical forlp & 0 is a [2x 1] matrix,
asy is simple, due to the Perron-Frobenius theorem), whetemsa row vector
whose elements form a basis on the eigenspace correspatedingandy; is
a column vector of elements @* (the dual space of linear functionals o8y
spanning the eigenspace ¢f corresponding tol;. For iterates of the Perron-
Frobenius operator2(.27 becomes

M
Ll = > Wyillyie + PL. (21.28)
i=1

If we now consider, for example, correlation between ihiti@volvedn steps and
final &,

L) = fM dyé(y) (L) (y) = fM dw(g o ) (W)ew), (21.29)

it follows that

L
€LY = RunlE. )+ ) o€ ) + 00", (21.30)

i=2
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where
cﬁ@@=ﬂﬁwmmwm

The eigenvalues beyond the leading one provide two piecasarmation:
they rule the convergence of expressions containing higremoof the evolution
operator to leading order (th& contribution). Moreover ifw1(&,¢) = 0
then @1.29 defines a correlation function: as each term 21.80 vanishes
exponentially in then — oo limit, the eigenvaluest,, ...,y determine the
exponential decay of correlations for our dynamical systeFhe prefactorsv
depend on the choice of functions, whereas the exponerdgidydrates (given
by logarithms of1;) do not: the correlation spectrum is thusi@versalproperty
of the dynamics (once we fix the overall functional space oickvithe Perron-
Frobenius operator acts).

[exercise 21.7]

Example 21.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (21.6) on the space of analytic functions on a disk: apart from the origin
we have only simple eigenvalues Ay = 2% k =0,1,.... The eigenvalue g = 1

corresponds to probability conservation: the corresponding eigenfunction Byo(X) = 1
indicates that the natural measure has a constant density over the unit interval. If we
now take any analytic function n(X) with zero average (with respect to the Lebesgue
measure), it follows that wi(n,n) = 0, and from (21.30) the asymptotic decay of the
correlation function is (unless also wy(n,n) = 0)

C,,(n) ~ expnlog?2). (21.312)

Thus, —log; gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be
treated exactly, as for analytic functions we can employ the Euler-MacLaurin summation
formula

1@ = fo ' dw(w) + i ”(mfl)(l)_"(mfl)(o)Bm(z). (21.32)

|
m=1 m:

As we are considering functions with zero average, we have from (21.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

m!

Sl —m\n(,,(m) _ (m 1
Cmm=2f2”"“)"®»£dm®%®
m=1

The decomposition (21.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

@ =Y Bu@unlnl.,
m=0
we see that these functionals are of the form
1
ol = [ dwrwetw).
0
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essential spectrum

Figure 21.4: Spectrum of the Perron-Frobenius oper ~ SPECtral radius isglateq eigénvalue

ator acting on the space @*** Holder-continuous
functions: onlyk isolated eigenvalues remain betwee
the spectral radius, and the essential spectral rad
which bounds the “essential,” continuous spectrum.

where

—1)-1 , )
(W) = LT%—(M4%W—1)—&“DNM, (21.33)
wheni > 1 and Wo(w) = 1. This representation is only meaningful when the function &
is analytic in neighborhoods of w,w — 1.

21.7 Troublesahead

The above discussion confirms that for a series of examplesmfasing generality

formal manipulations with traces and determinants aréigdt the Perron-Frobenius

operator has isolated eigenvalues, the trace formulasxpieidy verified, and

the spectral determinant is an entire function whose zgrieds the eigenvalues.
Real life is harder, as we may appreciate through the foligvgionsiderations:

e Our discussion tacitly assumed something that is phygiealirely reasonable:
our evolution operator is acting on the space of analytictions, i.e., we
are allowed to represent the initial densit{x) by its Taylor expansions in
the neighborhoods of periodic points.  This is however fanmfrbeing
the only possible choice: mathematicians often work with fthnction
spaceCk®, j.e., the space of times diferentiable functions whoséth
derivatives are Holder continuous with an exponert @ < 1: then every
y" with Ren > k is an eigenfunction of the Perron-Frobenius operator and
we have

[exercise 21.1]

1
IAIAT

Ly = y',  neC.

This spectrum dfers markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between therapeadius and a
smaller disk of radius A1, see figure21.4 In literature the radius of
this disk is called thessential spectral radius

In sect.21.4we discussed this point further, with the aid of a less tfivia
1-dimensional example. The physical point of view is commatary to
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the standard setting of ergodic theory, where many chaotipgsties of a
dynamical system are encoded by the presencecohtinuousspectrum,
used to prove asymptotic decay of correlations in the spad& square-

integrable functions. .
[exercise 21.2]

e A deceptively innocent assumption is hidden beneath muatiwtas discussed
so far: that 21.1) maps a given function space into itself. Tévganding
property of the map guarantees that: fifx) is smooth in a domairD
then f(x/A) is smooth on darger domain, providedA| > 1. For higher-
dimensional hyperbolic flows this is not the case, and, asswerssect21.5
extensions of the results obtained for expandirtymaps are highly nontrivial.

e Itis not at all clear that the above analysis of a simple or@edh, one fixed
point repeller can be extended to dynamical systems withdCaets of
periodic points: we showed this in segi..4

Résum é

Examples of analytic eigenfunctions fordlmaps are seductive, and make the
problem of evaluating ergodic averages appear easy; pesfrate over the desired
observable weighted by the natural measure, right? No rigenatural measure
sits on a fractal set and is singular everywhere. The poitttisfoook is that you
neverneed to construct the natural measure, cycle expansiohdontihat job.

A theory of evaluation of dynamical averages by means ofetfacmulas
and spectral determinants requires a deep understanditigiofanalyticity and
convergence.

We work here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)
2. exact spectrum for a locally analytic map, matrix repnéssgon

3. rigorous proof of existence of discrete spectrum far®¢perbolic maps

In the case of especially well-behaved “AxioAi systems, where both the
symbolic dynamics and hyperbolicity are under control,sitpbssible to treat
traces and determinants in a rigorous fashion, and straudfseabout the analyticity
properties of dynamical zeta functions and spectral detemmts outlined above
follow.

Most systems of interest ar®t of the “axiom A’ category; they are neither
purely hyperbolic nor (as we have seen in chapi€randl1l) do they have finite
grammar. The importance of symbolic dynamics is generatiggly unappreciated;
the crucial ingredient for nice analyticity properties efafunctions is the existence
of a finite grammar (coupled with uniform hyperbolicity).
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The dynamical systems which areally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably nevey fcilaotic, and the
central question remains: How do we attack this problem iysdesnatic and

controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 21.1 Surveys of rigorous theory.  We recommend the references listed in
remarkl.1for anintroductionto the mathematical literature on thilsject. For a physicist,
Driebe’s monograph34] might be the most accessible introduction into mathersatic
discussed briefly in this chapter. There are a number of wevigf the mathematical
approach to dynamical zeta functions and spectral detamtsn with pointers to the
original references, such as ref§, P]. An alternative approach to spectral properties
of the Perron-Frobenius operator is given in réf. [

Ergodic theory, as presented by Sina#][ and others, tempts one to describe the
densities on which the evolution operator acts in terms thfeeiintegrable or square-
integrable functions. For our purposes, as we have alrezaty, $his space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrdfednd Fomin {5]; more
advanced old-fashioned presentations are Walters dnd Denker, Grillenberger and
Sigmund [L6]; and a more formal one is given by Petersoni][

W. Tucker P8, 29, 30] has proven rigorously via interval arithmetic that the &tz
attractor is strange for the original parameters, and has@stable periodic orbit for the
slightly different parameters.

Remark 21.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref.4]. A technical introduction of the theory from an operatoimiof
view is given in ref. f]. The theory is presented in a more general form in &f. [

Remark 21.3 Bernoulli shift. ~ For a more detailed discussion, consult chapter 3 of
ref. [34]. The extension of Fredholm theory to the case or Bernohift ®n C** (in
which the Perron-Frobenius operatont compact — technically it is onlguasi-compact
That is, the essential spectral radius is strictly smalantthe spectral radius) has been
given by Ruelle T]: a concise and readable statement of the results is ceutainef. B].

Remark 21.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dyrnaabing the unstable directions.
As mentioned in the text this can be quite involved techihjicab such unstable foliations
are not characterized by strong smoothness propertiesuEbran approach, see ré&il.[

Remark 21.5 Spectral determinants for smooth flows.  The theorem on pag&62
also applies to hyperbolic analytic mapsdimensions and smooth hyperbolic analytic
flows in (d + 1) dimensions, provided that the flow can be reduced to a wiseanalytic
map by a suspension on a Poincaré section, complementecdimabytic “ceiling” function
(3.5 that accounts for a variation in the section return times.example, if we take as the
ceiling functiong(x) = €T, whereT (x) is the next Poincaré section time for a trajectory
staring atx, we reproduce the flow spectral determinatit.( 3. Proofs are beyond the
scope of this chapter.
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Remark 21.6 Explicit diagonalization. For 1drepellers a diagonalization of an explicit
truncated_n,, matrix evaluated in a judiciously chosen basis may yieldymaare eigenvalues
than a cycle expansion (see refs)[11]). The reasons why one persists in using periodic
orbit theory are partially aesthetic and partially pragmaiThe explicit calculation of
Lmn demands an explicit choice of a basis and is thus non-inviaiiia contrast to cycle
expansions which utilize only the invariant information tbe flow. In addition, we
usually do not know how to construtty,, for a realistic high-dimensional flow, such
as the hyperbolic 3-disk game of pinball flow of sec3, whereas periodic orbit theory

is true in higher dimensions and straightforward to apply.

Remark 21.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theorem
may be foundinref.17]. For positive transfer operators, this theorem has bepargdized
by Ruelle [L3].

Remark 21.8 Axiom A systems. The proofs in sect21.5follow the thesis work
of H.H. Rugh P, 18, 19]. For a mathematical introduction to the subject, congst t
excellent review by V. Baladi 1]. It would take us too far afield to give and explain
the definition of Axiom A systems (see ref&3 24]). Axiom A implies, however, the
existence of a Markov partition of the state space from whih properties 2 and 3
assumed on pagib0follow.

Remark 21.9 Exponential mixing speed of the Bernoulli shift. We see fromZ%1.3)
that for the Bernoulli shift the exponential decay rate ofretations coincides with the
Lyapunov exponent: while such an identity holds for a nundfesystems, it is by no
means a general result, and there exist explicit countarphes.

Remark 21.10 Left eigenfunctions. We shall never use an explicit form of left eigenfunctions,
corresponding to highly singular kernels lik&l(33. Many details have been elaborated
in a number of papers, such as refl], with a daring physical interpretation.

Remark 21.11 Ulam'sidea. The approximation of Perron-Frobenius operator defined
by (14.19 has been shown to reproduce the spectrum for expanding, raaps finer
and finer Markov partitions are usedl]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in réf][
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Exercises

21.1. What space does £ act on? Show that 21.2 N W(1+4u+ ) @1
is a complete basis on the space of analytic functions (1-u)2(1 - u?)2(1 - usd)?
on a disk (and thus that we found tkempleteset of
eigenvalues). Fy(u) is a polynomial inu, and the coficients fall df

asymptotically asC, ~ u"”. Verify; if you have a

21.2. What space does £ act on?  What can be said about -
» L I u proof to all orders, e-malil it to the authors. (See also

the spectrum ofZ1.7) on LY[0,1]? Compare the result

with figure21.4 solution21.3.
21.3. Euler formula.  Derive the Euler formuladl.9 21.5. Bernoulli shift on L spaces.  Check that the family
o0 ) i 2u ( 11132]) belonlgs toLl([(l), 1]3'. Wdrlgt can be said a?O|Ut
1+tu = 1+ + + ial- spectral radius 0,1])? A usefu
oo = e o u><1i|é§?a§qcsse—e' Bre o
oo k(k=1)
2
= Z t - u)u. T lui2136. Cauchy inf2grafS. Rework all complex analysis steps
k=0 used in the Bernoulli shift example on analytic functions
on a disk.
21.4. 2-d product expansion**, We conjecture that the
expansion corresponding t8%.349 is in this case 21.7. Escaperate. Consider the escape rate from a strange
o o repeller: find a choice of trial functions and ¢ such
l_l(l +)et = Z Fi(u) tk that 21.29 gives the fraction on particles surviving after
o (1-u(1-u?)?2---(1-u)2" qterations, if their initial density distribution igo(X).
1 2u ) Discuss the behavior of such an expression in the long

1+ (1- u)zt + (1-u)2(1- uz)zt time limit.
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